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FACTOR FREQUENCIES IN GENERALIZED
THUE–MORSE WORDS

L’uboḿıra Balková

We describe factor frequencies of the generalized Thue–Morse word tb,m defined for b ≥ 2,
m ≥ 1, b, m ∈ N, as the fixed point starting in 0 of the morphism

ϕb,m(k) = k(k + 1) . . . (k + b− 1),

where k ∈ {0, 1, . . . , m − 1} and where the letters are expressed modulo m. We use the result
of Frid [4] and the study of generalized Thue–Morse words by Starosta [6].
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1. INTRODUCTION

The generalized Thue–Morse word tb,m is defined for b ≥ 2, m ≥ 1, b,m ∈ N, as the
fixed point starting in 0 of the morphism

ϕb,m(k) = k(k + 1) . . . (k + b− 1),

where k ∈ {0, 1, . . . ,m − 1} and where the letters are expressed modulo m. Naturally,
the class of generalized Thue–Morse words contains the famous Thue–Morse word t2,2

whose factor frequencies have been determined by Dekking [3].
Generalized Thue–Morse words belong to the class of circular fixed points of uniform

marked primitive morphisms. For such a class, Frid [4] has provided an algorithm for the
computation of factor frequencies. We recall her algorithm in Section 1. The aim of this
paper is to describe the set of frequencies of factors of length n in tb,m for every n ∈ N.
The most direct way is to apply Frid’s algorithm. However, there is even an easier
way thanks to the knowledge of reduced Rauzy graphs (obtained from the description
of bispecial factors by Starosta [6]) and the invariance of the generalized Thue–Morse
word under symmetries preserving factor frequencies. In Section 2, we define reduced
Rauzy graphs and their relation to factor frequencies. In Section 3, we explain what
a symmetry is and how it preserves factor frequencies. The main result is presented in
Section 4, where we combine Frid’s algorithm, reduced Rauzy graphs, and symmetries in
order to get factor frequencies of generalized Thue–Morse words. Recently, an optimal
upper bound on the number of factor frequencies in infinite words whose language is
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invariant under more symmetries has been derived in [2]. The generalized Thue–Morse
word is an example of infinite words for which the upper bound is not attained, as shown
in Section 5.

We ask the reader to consult Preliminaries of the paper Generalized Thue–Morse
words and palindromic richness by Starosta [6] for undefined terms.

2. FACTOR FREQUENCIES OF FIXED POINTS
OF CIRCULAR MARKED UNIFORM MORPHISMS

If w is a factor of an infinite word u and if the following limit exists

lim
|v|→+∞,v∈L(u)

#{occurrences of w in v}
|v|

,

where L(u) denotes the set of factors of u, then the limit is denoted ρ(w) and called
the frequency of w in u. Generalized Thue–Morse words are fixed points of primitive
morphisms, therefore, in the sequel, we limit our considerations to primitive morphisms.

Let us recall first a result of Frid [4], which is useful for the calculation of factor
frequencies in fixed points of primitive morphisms. In order to introduce the result,
we need some further notions. Let ϕ be a morphism on A∗ = {a1, a2, . . . , am}∗. We
associate with ϕ the incidence matrix Mϕ given by [Mϕ]ij = |ϕ(aj)|ai , where |ϕ(aj)|ai

denotes the number of occurrences of ai in ϕ(aj). The morphism ϕ is called primitive
if there exists k ∈ N satisfying that the power Mk

ϕ has all entries strictly positive. As
shown in [5], for fixed points of primitive morphisms,

• factor frequencies exist,
• it follows from the Perron–Frobenius theorem that the incidence matrix has one

real eigenvalue λ which is larger than the modulus of any other eigenvalue,
• the components of the unique eigenvector (x1, x2, . . . , xm)T corresponding to λ

normalized so that
∑m

i=1 xi = 1 coincide with the letter frequencies, i. e., xi = ρ(ai)
for all i ∈ {1, 2, . . . ,m}.

Let ϕ be a morphism on A∗. We denote ψij : A+ → A+, where i, j ∈ N, the mapping
that associates to v ∈ A+ the word ψij(v) obtained from ϕ(v) by erasing i letters from
the left and j letters from the right, where i+ j < |ϕ(v)|. We say that a word v ∈ A+

admits an interpretation s = (b0b1 . . . bm, i, j) if v = ψij(b0b1 . . . bm), where bk ∈ A and
i < |ϕ(b0)| and j < |ϕ(bm)|. The word a(s) = b0b1 . . . bm is an ancestor of s. The set of
all interpretations of v is denoted I(v). Now, we can recall the result of Frid for factor
frequencies of fixed points of primitive morphisms.

Proposition 2.1. Let ϕ be a primitive morphism having a fixed point u and let λ be
the dominant eigenvalue of the incidence matrix Mϕ. Then for any factor v of u, it
holds

ρ(v) =
1
λ

∑
s∈I(v)

ρ(a(s)). (1)

For circular fixed points of uniform marked primitive morphisms, the algorithm of
Frid [4] provides the possible frequencies of factors of a given length and for every fre-
quency, the number of factors having that frequency. In order to describe her algorithm,
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we have to recall several notions. A morphism ϕ defined on the alphabet A is called
uniform if all images of letters are of the same length b, i. e., |ϕ(a)| = b for all a ∈ A. In
the case of a uniform primitive morphism ϕ, the dominant eigenvalue of the incidence
matrix Mϕ is λ = b. A morphism is called marked (sometimes also bifix-free) if every pair
of images of distinct letters differs both in the first letter and in the last letter. Let u be
a fixed point of a morphism ϕ defined on A, then its factor w contains a synchronization
point (w1, w2) if w = w1w2 and for every v1, v2 ∈ A∗ and for every factor s of u, there
exists factors s1, s2 of u such that the following implication holds

v1wv2 = ϕ(s) ⇒ s = s1s2, v1w1 = ϕ(s1), w2v2 = ϕ(s2).

In other words, a synchronization point marks a boundary between letter images in every
occurrence of w in u. Any factor w of u that contains a synchronization point is called
circular. We call a fixed point u of a morphism ϕ circular (with synchronization delay L)
if every factor w of length greater than or equal to L is circular. For uniform marked
primitive morphisms, Proposition 2.1 takes the following form (as provided in [4]).

Proposition 2.2. Let v be a circular factor of a fixed point of a uniform marked primi-
tive morphism ϕ with the letter image length b, then there exists a unique interpretation
of v. Moreover, if we denote the unique ancestor of v by w, then ρ(v) = ρ(w)

b .

We define the structure ordering number K for fixed points of circular uniform mor-
phisms as the least integer satisfying b(K − 1) + 1 ≥ L. The following statements can
be found in [4] as Proposition 4 and Theorem 5.

Proposition 2.3. Let n ≥ K, then there exists a unique triplet of decomposition pa-
rameters (p(n), k(n),∆(n)), where p(n) ∈ N, k(n) ∈ {K, . . . , b(K − 1)}, and ∆(n) ∈
{1, . . . , bp(n)}, such that

n = bp(n)(k(n)− 1) + ∆(n).

The explicit formulae read p(n) =
⌈
logb

n
K−1

⌉
− 1, k(n) =

⌈
n

bp(n)

⌉
, ∆(n) = n −

bp(n)(k(n)− 1). Let us recall that Ln(u) denotes the set of factors of u of length n and
C denotes the factor complexity.

Theorem 2.4. Let u be a circular fixed point of a uniform marked primitive morphism
ϕ. Denote Ln(u) = {v(n)

1 , v
(n)
2 , . . . , v

(n)
C(n)}, where the index n emphasizes the length. For

all n ≥ K, the set Ln+1(u) can be partitioned into

(a) C(k(n) + 1) groups of ∆(n) words each, every word in the jth group having the
frequency 1

bp(n) ρ
(
v

k(n)+1
j

)
, j ∈ {1, . . . , C(k(n) + 1)},

(b) C(k(n)) groups of bp(n)−∆(n) words each, every word in the jth group having the
frequency 1

bp(n) ρ
(
v

k(n)
j

)
, j ∈ {1, . . . , C(k(n))}.

The frequencies ρ
(
v
(k)
j

)
, k ∈ {K, . . . , b(K − 1) + 1}, can be found directly using (1).

Theorem 2.4 provides then explicit formulae for factor frequencies of circular fixed points
of uniform marked primitive morphisms.
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2.1. Reduced Rauzy graphs

Assume throughout this section that factor frequencies of infinite words in question exist.
The Rauzy graph of order n of an infinite word u is a directed graph Γn whose set of
vertices is Ln(u) and set of edges is Ln+1(u). An edge e = w0w1 . . . wn starts in the
vertex w = w0w1 . . . wn−1, ends in the vertex v = w1 . . . wn−1wn, and is labeled by its
factor frequency ρ(e).

It is easy to see that edge frequencies in a Rauzy graph Γn behave similarly as the
current in a circuit. We may formulate an analogy of the Kirchhoff’s current law: the
sum of frequencies of edges ending in a vertex equals the sum of frequencies of edges
starting in this vertex.

Observation 2.5. (Kirchhoff’s law for frequencies) Let w be a factor of an infinite
word u over the alphabet A whose factor frequencies exist. Then

ρ(w) =
∑

a∈Lext(w)

ρ(aw) =
∑

a∈Rext(w)

ρ(wa),

where Lext(w) denotes the set of left extensions of w, i. e., Lext(w) = {a ∈ A
∣∣ aw ∈

L(u)} and Rext(w) denotes the set of right extensions.

The Kirchhoff’s law for frequencies has some useful consequences.

Corollary 2.6. Let w be a factor of an infinite word u such that ρ(w) exists.
• If w has a unique right extension a, then ρ(w) = ρ(wa).

• If w has a unique left extension a, then ρ(w) = ρ(aw).

Corollary 2.7. Let w be a factor of an aperiodic recurrent infinite word u such that
ρ(w) exists. Let v be the shortest bispecial (BS) factor containing w, then ρ(w) = ρ(v).

The assumption of recurrence and aperiodicity in Corollary 2.7 is needed in order to
ensure that every factor can be extended to a BS factor.

Corollary 2.6 implies that if a Rauzy graph contains a vertex w with only one in-
coming edge aw and one outgoing edge wb, then ρ := ρ(aw) = ρ(w) = ρ(wb) = ρ(awb).
Therefore, we can replace this triplet (edge-vertex-edge) with only one edge awb keep-
ing the frequency ρ. If we reduce the Rauzy graph step by step applying the above
described procedure, we obtain the so-called reduced Rauzy graph Γ̃n, which simplifies
the investigation of edge frequencies. In order to outline this construction, we introduce
the notion of an n-simple path.

Definition 2.8. Let u be an infinite word whose factor frequencies exist. A factor e of
length larger than n such that its prefix and its suffix of length n are special factors of
u and e does not contain any other special factors is called an n-simple path. We define
the label of an n-simple path e as ρ(e).

Definition 2.9. The reduced Rauzy graph Γ̃n of u of order n is a directed graph whose
set of vertices is formed by left special (LS) and right special (RS) factors of Ln(u) and
whose set of edges is given in the following way. Vertices w and v are connected with
an edge e if there exists an n simple path starting in w and ending in v. We assign to
such an edge e the label of the corresponding n-simple path.
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Remark 2.10. According to Corollary 2.6 and Definition 2.9, if u is an aperiodic re-
current infinite word whose factor frequencies exist, it holds for every n ∈ N that

{ρ(e)
∣∣ e ∈ Ln+1(u)} = {ρ(e)

∣∣ e edge in Γ̃n}.

Considering Corollary 2.7 and Definition 2.9, one may observe the following.

Observation 2.11. Let u be an aperiodic recurrent infinite word whose factor frequen-
cies exist. Take n ∈ N such that u does not contain a BS factor of length n and denote
by m the minimal number m > n such that Lm(u) contains a BS factor. Then

{ρ(e) | e edge in Γ̃n} = {ρ(e) | e edge in Γ̃m} ∪ {ρ(v) | v BS vertex in Γ̃m}.

Similarly as in the above observation, we usually say a BS vertex instead of a vertex
of the reduced Rauzy graph Γ̃n corresponding to a BS factor in Ln(u).

3. SYMMETRIES PRESERVING FACTOR FREQUENCY

We will be interested in symmetries preserving in a certain way the number of factor
occurrences in u and consequently, frequencies of factors of u. Let us call a symmetry
on A∗ any mapping Ψ satisfying the following two properties:

1. Ψ is a bijection: A∗ → A∗,
2. for all w, v ∈ A∗

#{occurrences of w in v} = #{occurrences of Ψ(w) in Ψ(v)}.

The following statements are taken from [2]. Recall that θ : A∗ → A∗ is an antimorphism
if for any w, v ∈ A∗ it satisfies θ(wv) = θ(v)θ(w) and w is a θ-palindrome if θ(w) = w.

Theorem 3.1. Let Ψ : A∗ → A∗. Then Ψ is a symmetry if and only if Ψ is a morphism
or an antimorphism such that Ψ restricted to A is a letter permutation.

Observation 3.2. Let u be an infinite word whose language is invariant under a sym-
metry Ψ. For every w in L(u) whose frequency exists, the frequency ρ(Ψ(w)) exists as
well and it holds

ρ(w) = ρ(Ψ(w)).

We denote the set of all morphisms and antimorphisms on A∗ by AM(A∗).

Theorem 3.3. Let G ⊂ AM(A∗) be a finite group containing an antimorphism and let
u be a uniformly recurrent aperiodic infinite word whose language is invariant under all
elements of G and such that the frequency ρ(w) exists for every factor w ∈ L(u). Then
there exists M ∈ N such that

#{ρ(e) | e ∈ Ln+1(u)} ≤ 1
#G

(
4
(
C(n+ 1)− C(n)

)
+ #G−X − Y

)
for all n ≥M,

where X is the number of BS factors of length n and Y is the number of BS factors of
length n that are θ-palindromes for an antimorphism θ ∈ G.
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4. FACTOR FREQUENCIES OF GENERALIZED THUE–MORSE WORDS

The generalized Thue–Morse word tb,m is defined for b ≥ 2, m ≥ 1, b,m ∈ N, as the
fixed point starting in 0 of the morphism

ϕb,m : k → k(k + 1) . . . (k + b− 1), (2)

where k ∈ Zm = {0, 1, . . . ,m− 1} and where the letters are expressed modulo m.

Definition 4.1. We denote by q the smallest positive integer satisfying q(b − 1) ≡ 0
mod m.

The word tb,m is periodic if and only if b ≡ 1 mod m (see [1]). In this case,
tb,m = (01 . . . (m − 1))ω, where ω denotes an infinite repetition. It is thus readily
seen that any factor of tb,m has its frequency equal to 1

m .

Properties of ϕb,m and tb,m:
a) ϕb,m is primitive, thus letter frequencies exist and are equal to the components

of the eigenvector 1
m (1, 1, . . . , 1)T of the incidence matrix corresponding to the

dominant eigenvalue b,
b) ϕb,m is uniform (|ϕb,m(k)| = b for all k ∈ Zm),
c) ϕb,m is marked,
d) tb,m is circular with synchronization delay L = 2b.

P r o o f . Any w ∈ L(tb,m) of length greater than or equal to 2b contains either

for some k, ` ∈ Zm a factor k`, where ` 6≡ k + 1 mod m, or is of length 2b and of
the form w = k(k + 1) . . . (k + 2b− 1) for some k ∈ Zm.

(i) In the first case, it is easy to see that k marks the end of w1 and ` the beginning
of w2 in the synchronization point (w1, w2) of w.

(ii) In the second case, (w, ε) is a synchronization point of w = k(k + 1) . . . (k +
2b− 1), where ε denotes the empty word. �

e) L(tb,m) is invariant under the dihedral group Dm = {Πx

∣∣ x ∈ Zm} ∪ {Ψx

∣∣ x ∈
Zm}, where for all x ∈ Zm, Πx is a morphism and Ψx an antimorphism defined
for all k ∈ Zm by

Πx(k) = x+ k,
Ψx(k) = x− k.

For the proof see [6].

In the sequel, we will only consider aperiodic words, i. e., b 6≡ 1 mod m. The aim
of this section is to describe {ρ(e)

∣∣ e ∈ Ln+1(tb,m)} for all n ∈ N. Theorem 2.4
gives explicit formulae for factor frequencies if the frequencies of factors of length n ∈
{1, . . . , 2b + 1} (the structure ordering number for tb,m is K = 3) are known. There
is even an easier way to get factor frequencies using symmetries of L(tb,m) and the
description of BS factors from [6].
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Proposition 4.2. If v is a BS factor of L(tb,m) of length greater than or equal to 2b,
then there exists a BS factor w ∈ L(tb,m) such that v = ϕb,m(w). Moreover, ρ(v) = ρ(w)

b .

P r o o f . The first part has been proved as Lemma 3 in [6]. The second part follows
from Proposition 2.2. �

Remark 4.3. With Proposition 4.2 in hand, one can see that all BS factors are iterated
images of BS factors of length less or equal to 2b− 1.

The set of BS factors of length n, where 1 ≤ n ≤ 2b− 1, taken from [6] reads:

{w(j) = j(j + 1) . . . (j + n− 1)
∣∣ j ∈ Zm}.

The corresponding set of left extensions is of the following form:

1. for 1 ≤ n ≤ b

Lext(w(j)) = {j − 1 + k(b− 1)
∣∣ k ∈ {0, 1, . . . , q − 1}},

2. for b+ 1 ≤ n ≤ 2b− 1

Lext(w(j)) = {j − 1, j + b− 2}.

There are no LS factors of length n which are not BS, where 1 ≤ n ≤ b and the set of
LS factors of length n which are not BS, where b+ 1 ≤ n ≤ 2b− 1, reads:

{v(j) = j(j + 1) . . . (j + b− 1)(j + 1) . . . (j + n− b)
∣∣ j ∈ Zm}.

The corresponding set of left extensions is of the following form:

Lext(v(j)) = {j − 1 + k(b− 1)
∣∣ k ∈ {0, 1, . . . , q − 1}}.

Remark 4.4. It is not difficult to see that for any morphism Π of Dm, it holds:

1. w is a LS (RS) factor of tb,m if and only if Π(w) is a LS (RS) factor of tb,m,
2. left (right) extensions of Π(w) are Π-images of left (right) extensions of w,

and for any antimorphism Ψ of Dm, it holds:

1. w is a LS (RS) factor of tb,m if and only if Ψ(w) is a RS (LS) factor of tb,m,
2. left (right) extensions of Ψ(w) are Ψ-images of right (left) extensions of w.

Reduced Rauzy graph method (RRG method). We get the frequencies {ρ(e)
∣∣

e ∈ Ln+1(tb,m)} for all n ∈ N in the following way.

Step (i) We describe reduced Rauzy graphs of order n, in particular edge and vertex
frequencies, where 1 ≤ n ≤ 2b − 1, making use of the invariance of L(tb,m)
under symmetries. We notice that all of them contain a BS factor as a vertex.
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Step (ii) Proposition 4.2 says that every BS factor is of length b`n, ` ∈ N, where
n ∈ {1, . . . , 2b − 1}. It is not difficult to see that all reduced Rauzy graphs
of order greater than or equal to 2b containing a BS factor as their vertex
are obtained by a repeated application of ϕb,m simultaneously to vertices
and edges of reduced Rauzy graphs of order n, where 2 ≤ n ≤ 2b − 1. By
Proposition 4.2, the reduced Rauzy graph of order nb` obtained when ϕb,m is
applied ` times to the reduced Rauzy graph of order n, where 2 ≤ n ≤ 2b−1,
satisfies

{ρ(e)
∣∣ e edge in Γ̃nb`} = { 1

b` ρ(e)
∣∣ e edge in Γ̃n},

{ρ(v)
∣∣ v BS vertex in Γ̃nb`} = { 1

b` ρ(v)
∣∣ v BS vertex in Γ̃n}.

Step (iii) Applying Observation 2.11, we obtain

(a) If (n− 1)b` < N < nb` for some n ∈ {2, . . . , 2b}, then

{ρ(e)
∣∣ e ∈ LN+1(tb,m)} = { 1

b` ρ(e)
∣∣ e edge in Γ̃n}

∪ { 1
b` ρ(v)

∣∣ v BS vertex in Γ̃n}.

(b) If N = nb` for some n ∈ {2, . . . , 2b− 1}, then

{ρ(e)
∣∣ e ∈ LN+1(tb,m)} = { 1

b` ρ(e)
∣∣ e edge in Γ̃n}.

Let us illustrate the RRG method for the Thue–Morse word t2,2.

0

1

11

00

0110

01

10

010

101
10010110

n = 1 n = 2 n = 3

0011

0101

1010

1100

010101

001011

110 100

0110 1001

1101

1011 0010

0100

Fig. 1. Reduced Rauzy graphs of t2,2 of order n ∈ {1, 2, 3}.

Step (i) In the first step, we describe edge and vertex frequencies in Γ̃n for n ∈ {1, 2, 3}

Γ̃1: ρ(0) = ρ(1) = 1
2 and {ρ(e)

∣∣ e edge in Γ̃1} = { 1
3 ,

1
6}.

Explanation:

• Thanks to Observation 3.2, we have ρ(0) = ρ(1), ρ(01) = ρ(10), and
ρ(00) = ρ(11).

• Using Property a) of ϕb,m and tb,m, we get ρ(0) = 1
2 .
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• By Corollary 2.6 and Proposition 2.2, it holds ρ(00) = ρ(1001) = 1
2ρ(10).

• Applying the Kirchhoff’s law for frequencies, we get
ρ(0) = ρ(01) + ρ(00) = 3

2ρ(01), consequently ρ(01) = 1
3 .

Γ̃2: ρ(01) = ρ(10) = 1
3 and {ρ(e)

∣∣ e edge in Γ̃2} = { 1
6}.

Explanation:

• Thanks to Observation 3.2, we have ρ(010) = ρ(101) and ρ(0110) =
ρ(1001).

• By Proposition 2.2, it holds ρ(0110) = 1
2ρ(01) = 1

6 .
• Applying the Kirchhoff’s law for frequencies, we get
ρ(01) = ρ(010) + ρ(0110). Therefore ρ(010) = 1

6 .

Γ̃3: ρ(010) = ρ(101) = 1
6 and {ρ(e)

∣∣ e edge in Γ̃3} = { 1
6 ,

1
12}.

Explanation:

• Thanks to Observation 3.2, we have ρ(011) = ρ(100) = ρ(001) = ρ(110),
ρ(0011) = ρ(1100), ρ(0101) = ρ(1010), ρ(0010) = ρ(1101) = ρ(1011) =
ρ(0100).

• By Corollary 2.6 and Proposition 2.2, it holds ρ(0010) = ρ(100101) =
1
2ρ(100) = 1

2ρ(1001) = 1
12 and ρ(0011) = ρ(100110) = 1

2ρ(101) = 1
12 .

• The Kirchhoff’s law for frequencies implies
ρ(0101) = ρ(010)− ρ(0100) = 1

12 .

Step (ii) All reduced Rauzy graphs of order greater than or equal to 4 containing a BS
factor as their vertex are depicted in Figure 2.

(01)

(10)

(010)

(101)
(1001)(0110)

(0011)

(0101)

(1010)

(1100)

(010)(101)

(001)(011)

(110) (100)

(0110) (1001)

(1101)

(1011) (0010)

(0100)

Fig. 2. For any reduced Rauzy graph of t2,2 of order n ≥ 4

containing a BS factor as its vertex, there exists ` ≥ 1 such that the

graph takes one of the depicted forms.

It holds for all ` ∈ N
{ρ(e)

∣∣ e edge in Γ̃2·2`} = { 1
2`

1
6},

{ρ(v)
∣∣ v BS vertex in Γ̃2·2`} = { 1

2`
1
3},

and
{ρ(e)

∣∣ e edge in Γ̃3·2`} = { 1
2`

1
6 ,

1
2`

1
12},

{ρ(v)
∣∣ v BS vertex in Γ̃3·2`} = { 1

2`
1
6}.
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Step (iii) Applying the third step of the RRG method, we get the sets of factor fre-
quencies {ρ(e)

∣∣ e ∈ LN+1(t2,2)} for N ∈ N.

• {ρ(e)
∣∣ e ∈ L1(t2,2)} = { 1

2}.
• {ρ(e)

∣∣ e ∈ L2(t2,2)} = { 1
3 ,

1
6}.

• If 2 · 2` < N < 3 · 2` for some ` ∈ N, then

{ρ(e)
∣∣ e ∈ LN+1(t2,2)} =

{
1
2`

1
6
,

1
2`

1
12

}
∪

{
1
2`

1
6

}
=

{
1
2`

1
6
,

1
2`

1
12

}
.

• If 3 · 2` < N < 4 · 2` for some ` ∈ N, then

{ρ(e)
∣∣ e ∈ LN+1(t2,2)} =

{
1

2`+1

1
6

}
∪

{
1

2`+1

1
3

}
=

{
1

2`+1

1
3
,

1
2`+1

1
6

}
.

• If N = 2 · 2` for some ` ∈ N, then

{ρ(e)
∣∣ e ∈ LN+1(tb,m)} =

{
1
2`

1
6

}
.

• If N = 3 · 2` for some ` ∈ N, then

{ρ(e)
∣∣ e ∈ LN+1(tb,m)} =

{
1
2`

1
6
,

1
2`

1
12

}
.

Application of the RRG method. The RRG method for tb,m says that it suffices
to describe frequencies of edges and vertices being BS factors in reduced Rauzy graphs of
order n, where 1 ≤ n ≤ 2b− 1, in order to get {ρ(e)

∣∣ e ∈ Ln+1(e)} for all n ∈ N. Using
the description of BS factors from [6], one can see that Step (i) of the RRG method has
to be executed for 1 ≤ n ≤ b and for b+ 1 ≤ n ≤ 2b− 1 separately.

Part 1)
For 1 ≤ n ≤ b, the reduced Rauzy graph Γ̃n has m vertices. All of them are BS factors
of the form k(k + 1) . . . (k + n − 1). Since each of them is equal to Πk(01 . . . (n − 1)),
their frequencies are the same. Moreover,

• e is an edge ending in 01 . . . (n − 1) if and only if Πk(e) is an edge ending in
k(k + 1) . . . (k + n− 1),

• e is an edge ending in 01 . . . (n− 1) if and only if Ψk+n−1(e) is an edge starting in
k(k + 1) . . .

(
k + n− 1),

and since ρ(e) = ρ(Πk(e)) = ρ(Ψk+n−1(e)), it suffices to describe frequencies of edges
ending in 01 . . . (n − 1) in order to get all edge frequencies of Γ̃n. As shown in [6],
Lext(01 . . . (n − 1)) = {−1 + k(b − 1)

∣∣ k ∈ {0, 1, . . . , q − 1}}, where q is taken from
Definition 4.1.
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Lemma 4.5. Consider the generalized Thue–Morse word tb,m with b ≥ 2,m ≥ 1, b,m ∈
N, and b 6≡ 1 mod m. Let q be the number given in Definition 4.1. Denote f = ρ(01).
Then f = bq−1

m
b−1
bq−1 and for 1 ≤ n ≤ b, the frequencies of the vertex w = 01 . . . (n − 1)

and of the edges ending in w satisfy

ρ
(
01 . . . (n− 1)

)
= (n− 1)f − n−2

m for n ≥ 1,
ρ
(
(−1)01 . . . (n− 1)

)
= nf − n−1

m ,
ρ
(
(−1 + k(b− 1))01 . . . (n− 1)

)
= 1

bk f for k ∈{1, . . . , q−1}.

P r o o f . It holds by Corollary 2.6 and Proposition 2.2 for k ∈ {1, . . . , q − 1} that

ρ
(
(−1 + k(b− 1))0

)
= ρ

(
ϕ(−1 + (k − 1)(b− 1))0)

)
=

1
b
ρ
(
(−1 + (k − 1)(b− 1))0

)
.

Thus ρ
(
(−1+k(b−1))0

)
= 1

bk ρ
(
(−1)0

)
= 1

bk ρ
(
Π−1(01)

)
= 1

bk f . Using Observation 2.5,
we obtain f = ρ(0)−

∑q−1
k=1

f
bk . Therefore

f =
bq−1

m

b− 1
bq − 1

.

Let us proceed by induction on n. Let n = 1, then ρ(0) = 1
m by Property a) of ϕb,m

and tb,m. Let 1 < n+ 1 ≤ b. Assume

ρ
(
01 . . . (n− 1)

)
= (n− 1)f − n−2

m for n ≥ 2,
ρ
(
(−1)01 . . . (n− 1)

)
= nf − n−1

m ,
ρ
(
(−1 + k(b− 1))01 . . . (n− 1)

)
= 1

bk f for k ∈ {1, . . . , q − 1}.

Then, ρ(01 . . . n) = ρ
(
Π−1(01 . . . n)

)
= ρ

(
(−1)01 . . . (n − 1)

)
= nf − n−1

m . Applying
Corollary 2.6, we get

ρ
(
(−1 + k(b− 1))01 . . . n

)
= ρ

(
(−1 + k(b− 1))01 . . . (n− 1)

)
= 1

bk f .
Using the Kirchhoff’s law for frequencies (Observation 2.5), we have

ρ
(
(−1)01 . . . n

)
= nf − n−1

m −
∑q−1

k=1
f
bk = (n+ 1)f − n

m . �

Part 2)
For b+ 1 ≤ n ≤ 2b− 1, the reduced Rauzy graph Γ̃n has 3m vertices: m of them are BS
factors of the form Πk(01 . . . (n−1)), k ∈ Zm, m of them are LS factors (that are not RS
factors) of the form Πk(01 . . . (b−1)1 . . . (n−b)), k ∈ Zm, m of them are RS factors (that
are not LS factors) obtained by applying Ψ0 to LS factors. Since symmetries preserve
frequencies, all BS factors have their frequency equal to ρ(01 . . . (n − 1)) and similarly,
all LS and RS factors have their frequency equal to ρ(01 . . . (b − 1)1 . . . (n − b)). By
analogous arguments as in part 1), we deduce that it suffices to describe frequencies of
edges ending in 01 . . . (n − 1) and in 01 . . . (b − 1)1 . . . (n − b) and the frequency of the
unique edge 01 . . . (b− 1)1 . . . (n+ 1− b) starting in 01 . . . (b− 1)1 . . . (n− b) in order to
get all edge frequencies of Γ̃n. Again by [6],

Lext(01 . . . (n− 1)) = {−1, b− 2},
Lext(01 . . . (b− 1)1 . . . (n− b)) = {−1 + k(b− 1)

∣∣ k ∈ {0, 1, . . . , q − 1}}.
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Lemma 4.6. Consider the generalized Thue–Morse word tb,m with b ≥ 2,m ≥ 1, b,m ∈
N, and b 6≡ 1 mod m. Let q be the number given in Definition 4.1. Denote f = ρ(01).
Then for b+ 1 ≤ n ≤ 2b− 1, the frequencies

1. of the BS vertex w = 01 . . . (n− 1) and of the edges ending in w satisfy

ρ(01 . . . (n− 1)) = 1
bq−1 f − (n−b−1)

bq f,

ρ
(
(−1)01 . . . (n− 1)

)
= 1

bq−1 f − (n−b)
bq f,

ρ
(
(b− 2)01 . . . (n− 1)

)
= 1

bq f,

2. of the edge 01 . . . (b − 1)1 . . . (n + 1 − b) starting in the LS vertex v = 01 . . . (b −
1)1 . . . (n− b) and of the edges ending in v satisfy

ρ
(
01 . . . (b− 1)1 . . . (n+ 1− b)

)
= 1

bf,
ρ
(
(−1)01 . . . (b− 1)1 . . . (n− b)

)
= 1

bq f,
ρ
(
(−1 + (b− 1))01 . . . (b− 1)1 . . . (n− b)

)
= 1

b (2f − 1
m ),

ρ
(
(−1 + k(b− 1))01 . . . (b− 1)1 . . . (n− b)

)
= 1

bk f for k ∈ {2, . . . , q − 1}.

P r o o f . Let us proceed by induction on n.

(a) Let n = b + 1, then using part 1), we obtain ρ(01 . . . b) = ρ
(
Π−1(01 . . . b)

)
=

ρ
(
(−1)01 . . . (b−1)

)
= bf − b−1

m = 1
bq−1 f . By Corollary 2.6, Proposition 2.2, and Obser-

vation 3.2, we have ρ
(
(b−2)01 . . . b

)
= ρ

(
ϕ((−1)0b)

)
= ρ

(
ϕ2((1−b)b)

)
= 1

b2 ρ
(
(1−b)b

)
=

1
b2 ρ

(
Πm−b((1 − b)b)

)
= 1

b2 ρ
(
(−1 + (q − 2)(b − 1))0

)
= 1

bq f . Finally, applying Observa-
tion 2.5, we get ρ((−1)0 . . . b) = 1

bq−1 f − 1
bq f .

Let b+ 1 < n+ 1 ≤ 2b− 1. Assume

ρ
(
01 . . . (n− 1)

)
= 1

bq−1 f − (n−b−1)
bq f,

ρ
(
(−1)01 . . . (n− 1)

)
= 1

bq−1 f − (n−b)
bq f,

ρ
(
(b− 2)01 . . . (n− 1)

)
= 1

bq f.

Then, ρ(01 . . . n) = ρ
(
Π−1(01 . . . n)

)
= ρ

(
(−1)01 . . . (n − 1)

)
= 1

bq−1 f − (n−b)
bq f . Ap-

plying Corollary 2.6, we get ρ
(
(b − 2)01 . . . n

)
= ρ

(
(b − 2)01 . . . (n − 1)

)
= 1

bq f . Us-
ing the Kirchhoff’s law for frequencies (Observation 2.5), we have ρ((−1)01 . . . n) =

1
bq−1 f − (n−b)

bq f − 1
bq f = 1

bq−1 f − (n+1−b)
bq f .

(b) Let n = b + 1, then by Corollary 2.6 and Proposition 2.2, it follows ρ(01 . . . (b −
1)12) = ρ(ϕ(01)) = 1

bf . Again, by Corollary 2.6 and Proposition 2.2, it holds for
k ∈ {2, . . . , q−1} that ρ

(
(−1+k(b−1))01 . . . (b−1)1

)
= ρ

(
ϕ((−1+(k−1)(b−1))01)

)
=

1
bρ

(
(−1 + (k − 1)(b − 1))01

)
= 1

bk f, and for k = 1, we have by the same arguments
ρ
(
(−1 + (b− 1))01 . . . (b− 1)1

)
= ρ

(
ϕ((−1)01)

)
= 1

bρ
(
(−1)01

)
= 1

b (2f − 1
m ). Finally, by

the Kirchhoff’s law for frequencies (Observation 2.5), we derive ρ
(
(−1)01 . . . (b− 1)1

)
=

1
bf −

1
b (2f − 1

m )−
∑q−1

k=2
1
bk f = 1

bq f.
Let b+ 1 < n+ 1 ≤ 2b− 1. Assume

ρ
(
01 . . . (b− 1)1 . . . (n+ 1− b)

)
= 1

bf,
ρ
(
(−1)01 . . . (b− 1)1 . . . (n− b)

)
= 1

bq f,
ρ
(
(−1 + (b− 1))01 . . . (b− 1)1 . . . (n− b)

)
= 1

b (2f − 1
m ),

ρ
(
(−1 + k(b− 1))01 . . . (b− 1)1 . . . (n− b)

)
= 1

bk f for k ∈ {2, . . . , q−1}.
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By Corollary 2.6, we have ρ
(
01 . . . (b−1)1 . . . (n+2−b)

)
= ρ

(
01 . . . (b−1)1 . . . (n+1−b)

)
=

1
bf . Again by Corollary 2.6, we get for all k ∈ {2, . . . , q−1} that ρ

(
(−1+k(b−1)01 . . . (b−

1)1 . . . (n+ 1− b)
)

= ρ
(
(−1 + k(b− 1)01 . . . (b− 1)1 . . . (n− b)

)
= 1

bk f , and analogously,
ρ
(
(−1 + (b − 1)01 . . . (b − 1)1 . . . (n + 1 − b)

)
= ρ

(
(−1 + (b − 1)01 . . . (b − 1)1 . . . (n −

b)
)

= 1
b (2f − 1

m ). Using the Kirchhoff’s law for frequencies (Observation 2.5), we have
ρ
(
(−1)01 . . . (b− 1)1 . . . (n+ 1− b)

)
= 1

bf −
1
b (2f − 1

m )−
∑q−1

k=2
1
bk f = 1

bq f . �

Theorem 4.7. Let b ≥ 2,m ≥ 1, b,m ∈ N, and b 6≡ 1 mod m. Let tb,m be the fixed
point of the morphism ϕb,m defined in (2). Let q be the number given in Definition 4.1
and let f = ρ(01). Then the sets of factor frequencies take the following form for N ∈ N.

N {ρ(e)
˛̨
e ∈ LN+1(tb,m)}

0 1
m

1 f

bk , where k ∈ {0, . . . , q − 1}

(n− 1)b` < N < nb`, ` ∈ N, 1
b`

`
(n− 1)f − n−2

m
)
´
, 1

b`

`
nf − n−1

m

´
, 1

b`

`
1
bk f

´
,

where n ∈ {3, . . . , b} where k ∈ {1, . . . , q − 1}

(n− 1)b` < N < nb`, ` ∈ N, 1
b`

`
2b+1−n

bq f
´
, 1

b`

“
1

bq−1 f − (n−b)
bq f

”
, 1

b`+1 (2f − 1
m

), 1
b`

`
1
bk f

´
,

where n ∈ {b + 1, . . . , 2b− 1} where k ∈ {1, . . . , q}

(2b− 1)b` < N < 2b`+1, ` ∈ N 1
b`+1

`
2f − 1

m

´
, 1

b`+1

`
1
bk f

´
,

where k ∈ {0, . . . , q − 1}

nb`, ` ∈ N, 1
b`

`
nf − n−1

m

´
, 1

b`

`
f

bk

´
,

where n ∈ {2, . . . , b} where k ∈ {1, . . . , q − 1}

nb`, ` ∈ N, 1
b`

`
2b−n

bq f
´
, 1

b`+1

`
2f − 1

m

´
, 1

b`

`
1
bk f

´
,

where n ∈ {b + 1, . . . , 2b− 1} where k ∈ {1, . . . , q}

P r o o f . The statement is obtained when putting together Lemmas 4.5 and 4.6 and
Steps (ii) and (iii) of the RRG method. �

5. UPPER BOUND ON FREQUENCIES

In the last section, let us show and explain that the optimal upper bound on the number
of factor frequencies in infinite words whose language is invariant under more symmetries,
here recalled as Theorem 3.3, is not reached for large enough n for any generalized Thue–
Morse word tb,m with b ≥ 2,m ≥ 1, b,m ∈ N, and b 6≡ 1 mod m. Let q be the number
given in Definition 4.1. First of all, the upper bound cannot be attained for q > 2 : for
any length n there exist LS factors w whose number of extensions equals #Rext(w) = q
(see Remark 4.3), consequently the estimate #{w ∈ Ln(u) | w LS} ≤ C(n+1)−C(n) =∑

w∈Ln(u)

(
#Lext(w)− 1

)
, used in the proof of Theorem 3.3, is too rough for q > 2.

Nevertheless, even in the case of q = 2, if we take n = (2b− 1)b` for any l ∈ N, then
#{ρ(e)

∣∣ e ∈ Ltb,m
(n + 1)} ≤ 3 = q + 1 by Theorem 4.7. By the description of factor
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complexity from [6], we have C(n+ 1)− C(n) = qm = 2m. It follows from Properties of
ϕb,m and tb,m summarized in Section 4 that #G = 2m and the number of BS factors of
length n is equal to m and is the same as the number of BS factors being θ-palindromes
for some antimorphism Ψx, x ∈ Zm. Therefore, the upper bound from Theorem 3.3 is
equal to 1

2m

(
8m+ 2m−m−m

)
= 4. Hence, for any M ∈ N, the equality in the upper

bound from Theorem 3.3 is not reached for all n ≥M .
Let us explain the reason. In the proof of Theorem 3.3, we have used the invariance

of L(tb,m) under symmetries in order to obtain the upper bound on the number of factor
frequencies. However, some factors may have the same frequency for another reason.
We observe as a direct consequence of Corollary 2.6 the following.

Observation 5.1. If w is a BS factor of an infinite word u such that for every a ∈
Lext(w), there exists a unique b ∈ Rext(w) satisfying awb ∈ L(u) (let us call such BS
factors slim), then ρ(aw) = ρ(awb) = ρ(wb).

For n = 2b − 1, the BS factor of the form w = 01 . . . (2b − 2) is slim: w can be
extended in only two ways, as (b−2)w(2b−1) and as (−1)wb. Hence, ρ((−1)w) = ρ(wb)
even if these factors are not symmetric images of each other. Similarly, the BS factor
v = ϕ`

b,m(w) of length n = (2b− 1)b` is slim and ρ(av) = ρ(vb), where a is the last letter
of ϕ`

b,m(−1), i. e., a = −1 + `(b − 1). It holds again that av and vb are not symmetric
images of one another.
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