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EIGENSPACE OF A THREE-DIMENSIONAL
MAX- LUKASIEWICZ FUZZY MATRIX

Imran Rashid, Martin Gavalec and Sergĕı Sergeev

Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events
system, characterized by a given transition matrix and fuzzy state vectors. Description of the
eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was
presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix
in max- Lukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under
which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and
the structure of the increasing eigenspace is described. Complete characterization of the general
eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and
column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples
in Section 6.

Keywords:  Lukasiewicz triangular norm, max-t fuzzy algebra, eigenproblem, monotone
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1. INTRODUCTION

The eigenproblem for a fuzzy matrix corresponds to finding a stable state (possibly:
all stable states) of a complex discrete-events system, described by the given transition
matrix and fuzzy state vectors. Hence, investigation of the eigenspace structure in fuzzy
algebras is important for applications, see e. g. [3, 4, 13, 14]. The eigenproblem has
been studied by many authors in the case of max-min fuzzy algebra, which is the basic
one of fuzzy algebras. Many interesting results were found in describing the structure of
the eigenspace, and algorithms were suggested for computing the maximal eigenvector
of a given max-min matrix, see [1, 2, 5, 6]. The problem has also been studied in more
general structures like semi-modules or distributive lattices [10, 11, 12, 15, 16, 17].

Complete structure of the eigenspace in max-min fuzzy algebra as a union of intervals
of monotone eigenvectors was described in [7]. The approach from [7] can be transferred
to other fuzzy algebras of type max-t with triangular norm t. This was done for the
drastic t-norm in [8], where the structure of the eigenspace of a given max-drast fuzzy
matrix was completely described.

In this paper we describe the structure of the eigenspace for matrices in max- Lukasiewicz
algebra. As the eigenspace structure for matrices of higher dimensions is rather complex,
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we investigate the eigenproblem in full for three-dimensional fuzzy matrices. Necessary
and sufficient conditions are proved under which the monotone eigenspace of a given
matrix is non-empty, which means that the corresponding system has a stable state.
Further, the structure of the monotone eigenspace is described and, using simultaneous
row and column permutations of the matrix, complete characterization of the general
eigenspace structure of a given three-dimensional fuzzy matrix is presented. In other
words, all stable states of the corresponding system are described.

Results in the paper come from the research aimed on investigation of stable states
of systems with fuzzy transition matrix in max-t fuzzy algebras with various triangular
norm t. More complex cases of eigenspace structure for max- Lukasiewicz fuzzy matrices
with higher dimension will be considered in future research.

2. EIGENVECTORS IN MAX-T ALGEBRA

Let us denote the real unit interval as I = 〈0, 1〉, let t be one of the triangular norms
used in fuzzy theory. By max-t algebra we understand a triple (I,⊕,⊗) with ⊕ = max
and ⊗ = t, binary operations on I. For given natural n, we denote N = {1, 2, . . . , n}.
Further, the notation I(n, n) (I(n)) denotes the set of all square matrices (all vectors)
of a given dimension n over I. Operations ⊕, ⊗ are extended to matrices and vectors
by the usual definition.

The eigenproblem for a given matrix A ∈ I(n, n) in max-t algebra consists of finding
an eigenvector x ∈ I(n) for which A ⊗ x = x holds true. Eigenspace of a matrix
A ∈ I(n, n) is denoted by F(A) :=

{
x ∈ I(n); A⊗ x = x

}
.

Investigation of the eigenspace structure can be simplified by permuting any vector
x ∈ I(n) to an increasing form. For given permutations ϕ, ψ ∈ Pn we denote by Aϕψ
the matrix with rows permuted by ϕ and columns permuted by ψ, and we denote by xϕ
the vector permuted by ϕ. It can be easily shown that the following theorem holds, see
also [7].

Theorem 2.1. Let A ∈ I(n, n), x ∈ I(n) and ϕ ∈ Pn. Then x ∈ F(A) if and only if
xϕ ∈ F(Aϕϕ).

We define the increasing eigenspace of a matrix A ∈ I(n, n) as

F≤(A) :=
{
x ∈ I(n); A⊗ x = x, (∀ i, j)[ i ≤ j ⇒ xi ≤ xj ]

}
,

and the strictly increasing eigenspace as

F<(A) :=
{
x ∈ I(n); A⊗ x = x, (∀ i, j)[ i < j ⇒ xi < xj ]

}
.

Similar notation I≤(n) and I<(n) will be used without the condition A⊗x = x. We shall
also use the notation I≤ϕ (n) :=

{
x ∈ I(n); xϕ ∈ I≤(n)

}
, I<ϕ (n) :=

{
x ∈ I(n); xϕ ∈

I<(n)
}

, F≤ϕ (A) :=
{
x ∈ F(A); xϕ ∈ I≤(n)

}
and F<ϕ (A) :=

{
x ∈ F(A); xϕ ∈ I<(n)

}
.

In this notation, the assertions of Theorem 2.1 can be expressed as F≤ϕ (A) =
{
x ∈

I(n); xϕ ∈ F≤(Aϕϕ)
}

and F<ϕ (A) =
{
x ∈ I(n); xϕ ∈ F<(Aϕϕ)

}
.
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It has been proved in [7] that if the binary operation ⊗ coincides with the minimum
operation, then the strictly increasing eigenspace F<(A) can be described as an inter-
val of strictly increasing eigenvectors, where the bounds m?(A), M?(A) ∈ I(n) of the
interval are defined as follows

m(j)(A) := max
k>j

ajk M (j)(A) := max
k≥j

ajk

m?
i (A) := max

j≤i
m(j)(A) M?

i (A) := min
j≥i

M (j)(A).

Theorem 2.2. [7] Let A ∈ I(n, n) and let x ∈ I(n) be a strictly increasing vector in
max-min algebra (max-t algebra with the t-norm equal to minimum operation). Then
x ∈ F(A) if and only if m?(A) ≤ x ≤M?(A). In formal notation,

F<(A) = 〈m?(A),M?(A)〉 ∩ I<(n) .

Remark 2.3. In [7], Theorem 2.1, Theorem 2.2 are presented in a slightly different
formulation, namely for a max-min algebra (B,⊕,⊗) with an arbitrary bounded lin-
early ordered set B and with the operations ⊕ = max, ⊗ = min. Moreover, analogous
description is given for the non-strictly increasing eigenspace F≤(A), and for constant
eigenvectors. Hence, the structure of F(A) in a max-min algebra B is completely de-
scribed for any matrix A ∈ B(n, n).

In fuzzy sets theory, various triangular norms are used. The most frequent of them
are
Gödel norm G(x, y) = min(x, y)
product norm prod(x, y) = (x · y)
drastic norm

drast(x, y) =
{

min(x, y) if max(x, y) = 1
0 if max(x, y) < 1

 Lukasiewicz norm  L(x, y) = max(x+ y − 1, 0).

The max-t fuzzy algebra with the Gödel norm is a special case of the max-min algebra,
and by Remark 2.3 the eigenspace for this case is described in [7]. The eigenspace for the
max-drast fuzzy algebra and max-prod fuzzy algebra with the drastic norm and product
norm was discussed in [8] and [9] respectively.

3. EIGENVECTORS IN MAX- LUKASIEWICZ ALGEBRA

In this section, the above considerations will be transferred to the case of max- Lukasiewicz
algebra, which is a special case of max-t fuzzy algebra with  Lukasiewicz triangular norm.
In the rest of this paper we shall work with the max- L fuzzy algebra (I,⊕,⊗ l) with bi-
nary operation ⊕ = max and ⊗ l =  L. Hence, for every x, y ∈ I(n) and for every i ∈ N
we have

(x⊕ y)i = max(xi, yi)

(x⊗ l y)i =  L(xi, yi) =
{
xi + yi − 1 if min(xi + yi − 1, 0) = 0
0 otherwise.
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The following proposition contains several logical consequences of the definition of
 Lukasiewicz triangular norm which will be used in development of the further theory.

Proposition 3.1. Let a, b, c ∈ [0, 1]. Then

(i) a⊗ l b = b if and only if a = 1 or b = 0

(ii) a⊗ l c = b if and only if a = 1 + b− c or (a ≤ 1− c and b = 0)

(iii) a⊗ l c ≤ b if and only if a ≤ 1 + b− c

(iv) a⊗ l c > b if and only if a > 1 + b− c

(v) If c < b then a⊗ l c < b.

P r o o f . (i) Let a ⊗ l b = b. We have either 0 ≤ a + b − 1 or a + b − 1 ≤ 0. That is,
by definition of  Lukasiewicz triangular norm, either a = 1 or b = 0. For the converse
implication, first consider that a = 1. Then a + b − 1 = 1 + b − 1 = b ≥ 0 implies that
a⊗ l b = b. If b = 0, then a+ b− 1 = a− 1 ≤ 0. Hence a⊗ l b = b follows again from the
definition.

(ii) Let a ⊗ l c = b. By definition, either 0 ≤ a + c − 1 = b or a + c − 1 ≤ 0(= b).
That is, either a = 1 + b − c or (a ≤ 1 − c and b = 0). Conversely, let a = 1 + b − c or
(a ≤ 1− c and b = 0). Then either a+ c− 1 = b ≥ 0 or (a+ c− 1 ≤ 0 and b = 0). It
follows directly from the definition that in either case a⊗ l c = b.

(iii) By definition a⊗ l c ≤ b implies that, either a+c−1 ≤ 0(≤ b) or 0 ≤ a+c−1 ≤ b.
It follows directly that in either case a ≤ 1 + b − c. Conversely, a ≤ 1 + b − c implies
a+ b− 1 ≤ b. Also, 0 ≤ b. Then by definition a⊗ l c ≤ b.

(iv) The proof is analogous to (iii).

(v) Let 0 ≤ c < b. That is b > 0. As a ≤ 1 then a+c < 1+b implies that a+c−1 < b.
Hence, a⊗ l c < b follows from the definition. �

Proposition 3.2. Let A ∈ I(n, n), x ∈ I(n). Then x ∈ F(A) if and only if for every
i ∈ N the following hold

aij ⊗ l xj ≤ xi for every j ∈ N, (1)
aij ⊗ l xj = xi for some j ∈ N. (2)

P r o o f . By definition, x ∈ F(A) is equivalent with the condition maxj∈N aij⊗ lxj ≤ xi
for every i ∈ N , which is equivalent to (1) and (2). �

Proposition 3.3. Let A ∈ I(n, n), x ∈ I<(n). Then x ∈ F<(A) if and only if for every
i ∈ N the following hold

aij ⊗ l xj ≤ xi for every j ∈ N, j ≥ i, (3)
aij ⊗ l xj = xi for some j ∈ N, j ≥ i. (4)
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P r o o f . By Proposition 3.1(v), aij⊗ l xj < xi for every j < i, xj < xi. Hence the terms
with j < i in (1) and (2) of Proposition 3.2 can be left out. �

Theorem 3.4. Let A ∈ I(n, n) and x ∈ I<(n). Then x ∈ F<(A) if and only if for
every i ∈ N the following hold

(i) aij ≤ 1 + xi − xj for every j ∈ N, j ≥ i,

(ii) if i = 1, then x1 = 0 or a1j = 1 + x1 − xj for some j ∈ N ,

(iii) if i > 1, then aij = 1 + xi − xj for some j ∈ N, j ≥ i.

P r o o f . Suppose that x ∈ F<(A), that is A ⊗ l x = x. Then aij ⊗ l xj ≤ xi, for every
j ∈ N, j ≥ i by Proposition 3.1(iii) gives aij ≤ 1 + xi − xj . If i = 1 then a1j ⊗ l xj = x1,
for some j ∈ N . Then by Proposition 3.1(ii), we have x1 = 0 or a1j = 1 + x1 − xj ,
for some j ∈ N . To prove (iii), consider aij ⊗ l xj = xi for some j ∈ N , j ≥ i > 1. By
definition we have, either aij +xj−1 ≤ 0 or 0 ≤ aij +xj−1. The case aij⊗ lxj = 0 = xi
is not possible, as for i > 1, xi > 0. Then we must have 0 ≤ aij + xj − 1 = xi, that is
aij = 1 + xi − xj .

Conversely, suppose that conditions (i), (ii), (iii) hold true. We show that x ∈ F<(A),
that is A ⊗ l x = x. In other words, maxj∈N aij ⊗ l xj = xi for every i ∈ N . Let i ∈ N
be fixed. By (i) and Proposition 3.1(iii), aij ⊗ l xj ≤ xi, for every j ∈ N, j ≥ i. If i = 1
then by (ii) and Proposition 3.1(ii), a1j = 1 + x1 − xj , for some j ∈ N . If i > 1 then
by (iii) aij = 1 + xi − xj , for some j ∈ N , j ≥ i > 1, we have aij + xj − 1 = xi > 0,
because i > 1. This implies max(0, aij + xj − 1) = xi, that is aij ⊗ l xj = xi. Hence
maxj∈N aij ⊗ l xj = xi for every i ∈ N , that is A⊗ l x = x or x ∈ F<(A). �

The following theorem describes necessary conditions under which a given square
matrix can have a strictly increasing eigenvector.

Theorem 3.5. Let A ∈ I(n, n). If F<(A) 6= ∅, then the following conditions are
satisfied

(i) aij < 1 for all i, j ∈ N , i < j ,

(ii) ann = 1 .

P r o o f . Let F<(A) 6= ∅. That is, there exists x ∈ F<(A) such that conditions of
Theorem 3.4 hold true. Condition aij < 1 follows directly from (i) and ann = 1 from
(iii) of Theorem 3.4. �

Remark 3.6. Generally speaking, the conditions in Theorem 3.5 are only necessary. It
can be easily seen that in the case n = 2 the necessary conditions in Theorem 3.5 are also
sufficient. Namely, if n = 2, then we have two conditions: a12 < 1 and a22 = 1. Then,
arbitrary vector x1 = 0 and 0 < x2 ≤ 1 − a12 fulfills the conditions of Theorem 3.4.
Hence the vector x = (x1, x2) with x1 = 0 and 0 < x2 ≤ 1− a12 is a strictly increasing
eigenvector of A. In the particular case when a11 = 1, the variable x1 can even take
arbitrary values from the interval (0, 1). The result is completely formulated in the
following theorem.
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Theorem 3.7. Let A ∈ I(2, 2). Then F<(A) 6= ∅ if and only if the a12 < 1 and a22 = 1.
If this is the case, then

(i) F<(A) =
{

(x1, x2) ∈ I(2, 2); x1 ∈ (0, 1), x1 < x2 ≤ min(1, 1 + x1 − a12)
}

,
if a11 = 1 ,

(ii) F<(A) =
{

(x1, x2) ∈ I(2, 2); x1 ∈ (0,min(a11, a12)), x2 = 1 + x1 − a12 ≤ 1
}

,
if a11 < 1 .

P r o o f . The statement follows from the arguments in Remark 3.6. �

In the next theorem, a necessary and sufficient condition for the existence of a non-
zero constant eigenvector is presented. The set of all constant eigenvectors of a matrix
A is denoted by F=(A).

Theorem 3.8. Let A ∈ I(n, n), then there is a non-zero constant eigenvector x ∈
F=(A) if and only if

(i) max{ aij ; j ∈ N } = 1 for every i ∈ N .

P r o o f . Let x = (c, c, . . . , c) ∈ I(n) with c > 0 be a constant eigenvector of A.
Then (i) follows from the conditions (1), (2) in Proposition 3.2. Conversely, if (i) is
satisfied, then clearly the conditions (1), (2) hold true for the unit constant vector
u = (1, 1, . . . , 1) ∈ I(n). Hence u ∈ F=(a). �

Theorem 3.9. Let A ∈ I(n, n). If the condition (i) of Theorem 3.8 is satisfied, then
F=(A) =

{
(c, c, , . . . , c); c ∈ I

}
. If A does not satisfy the condition (i), then F=(A) ={

(0, 0, , . . . , 0)
}

.

P r o o f . It is easy to verify that if A satisfies the condition (i), then the conditions (1),
(2) hold true for an arbitrary constant vector (c, c, . . . , c) with c ∈ I, hence F=(A) ={

(c, c, , . . . , c); c ∈ I
}

.
On the other hand, let us assume that the condition (i) is not satisfied. Clearly,

the zero constant vector (0, 0, , . . . , 0) fulfills the conditions (1), (2). Hence we have{
(0, 0, , . . . , 0)

}
⊆ F=(A). The equality F=(A) =

{
(0, 0, , . . . , 0)

}
follows from Theo-

rem 3.8. �

Remark 3.10. Description of non-strictly increasing eigenvectors is necessary for com-
puting of the general eigenspace of dimension n = 3 and higher. This extension of the
presented theory is given in the next two sections for three-dimensional matrices. More-
over, the necessary conditions from Theorem 3.5 are extended to necessary and sufficient
ones.

Remark 3.11. The max- L fuzzy algebra is closely related to the max-plus algebra (also
called: tropical algebra) with operations ⊕ = max and ⊗ = + defined on the set of all
real numbers. If we denote by E the n×n matrix with all inputs equal to 1, and symbols
F+ (Fl) denote the eigenspace of a given matrix in max-plus (max- L) algebra, then the
following theorem holds true.
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Theorem 3.12. Let A ∈ I(n, n). If a vector x ∈ I(n) is max-plus eigenvector of the
matrix A− E, then x is max- L eigenvector of A. In formal notation,

F+(A− E) ∩ I(n) ⊆ Fl(A) .

P r o o f . Assume that x ∈ I(n) satisfies the equation (A−E)⊗x = x, i. e. the max-plus
equality ⊕

j∈N
(aij − 1)⊗ xj = xi

holds for every i ∈ N . Adding the expression ⊕ 0 to both sides, and expressing the
operation ⊗ explicitly as addition, we get by easy computation⊕

j∈N
(aij − 1 + xj)⊕ 0 =

⊕
j∈N

(
(aij − 1 + xj)⊕ 0

)
=

⊕
j∈N

aij ⊗ l xj = xi ⊕ 0 = xi .

Hence, A⊗ l x = x. �

4. EIGENVECTORS IN THE THREE-DIMENSIONAL CASE

In this section we consider the three-dimensional eigenproblem in the max- Lukasiewicz
fuzzy algebra. In other words, we assume n = 3, hence we work with matrices in I(3, 3)
and vectors in I(3). The results from the previous sections will be extended and a
complete description of the eigenspace will be given.

The following theorem describes the necessary and sufficient conditions under which
a three-dimensional fuzzy matrix has a strictly increasing eigenvector.

Theorem 4.1. Let A ∈ I(3, 3). Then F<(A) 6= ∅ if and only if the following conditions
are satisfied

(i) a12 < 1 , a13 < 1 , a23 < 1 ,

(ii) a22 = 1 , or a13 < a23 ,

(iii) a33 = 1 .

P r o o f . Let F<(A) 6= ∅, i. e. there exists x ∈ F<(A). The conditions (i) and (iii) follow
directly from Theorem 3.4. To prove the condition (ii), let us assume that a22 < 1. Then
by (iii) of Theorem 3.4 we get a22 = 1 +x2−x2 or a23 = 1 +x2−x3. The first equation
implies a22 = 1, which is a contradiction. Therefore we must have a23 = 1+x2−x3 < 1.
By (i) of Theorem 3.4, we have a13 ≤ 1 + x1 − x3 = 1 + (x1 − x2) + (x2 − x3) =
(1 + x2 − x3) + (x1 − x2) < 1 + x2 − x3 = a23. This implies a13 < a23.

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. To show that
F<(A) 6= ∅, we consider two cases.

Case 1. If a22 < 1, then put x1 = 0 and choose x2 ≤ min(1− a12, a23 − a13) and 0 <
x2 < 1 − a13, and put x3 = x2 + (1 − a23). By our assumption, 1 − a12 > 0, a23 −
a13 > 0 and 1 − a13 > 0. Therefore the choice of x2 fulfilling the conditions x2 ≤
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min(1 − a12, a23 − a13) and 0 < x2 < 1 − a13 is always possible. Also by assumption,
a23 < 1 implies that 1 − a23 > 0. Therefore x3 = x2 + (1 − a23) > x2. Moreover,
x2 ≤ min(1 − a12, a23 − a13) ≤ a23 − a13 ≤ a23, i. e. x2 ≤ a23. From this we have
x3 = x2 + (1 − a23) ≤ 1, i. e. x3 ≤ 1. This shows that x ∈ I<(3). To show that
x ∈ F<(A), consider x2 ≤ min(1 − a12, a23 − a13) and 0 < x2 < 1 − a13. This implies
that x2 ≤ 1−a12 and 0 < x2 < 1−a13, or equivalently, a12 ≤ 1−x2 and a13 < 1−x2,
which implies condition (i) of Theorem 3.4. Choice of x1 = 0 satisfies the condition (ii)
of Theorem 3.4. Also, x3 = x2 + (1 − a23), a23 = 1 + x2 − x3 imply condition (iii) of
Theorem 3.4. Hence F<(A) 6= ∅.

Case 2. If a22 = 1, then put x1 = 0, choose 0 < x2 < min(1 − a12, 1 − a13) and
choose x3 such that x2 < x3 ≤ min(1 − a13, x2 + (1 − a23)). The choice 0 < x2 <
min(1 − a12, 1 − a13) is always possible because by our assumption 1 − a12 > 0 and
1− a13 > 0. Also 1− a23 > 0 by the same argument and therefore x ∈ I<(3). Consider
x2 < min(1−a12, 1−a13) ≤ 1−a12. Then x2 < 1−a12 implies that a12 < 1−x2. Similarly
a13 < 1−x2 and by x3 ≤ min(1−a13, x2 +(1−a23)) we have a23 ≤ 1+x2−x3, showing
that condition (i) of Theorem 3.4 is satisfied. Conditions (ii) and (iii) of Theorem 3.4
are satisfied by the choice of x1 = 0 and assumption a22 = 1, respectively. Hence
F<(A) 6= ∅. �

Theorem 4.2. Let A ∈ I(3, 3) satisfy conditions (i), (ii) and (iii) of Theorem 4.1. Then
x ∈ F<(A) if and only if x ∈ I<(3) and either x1 = 0 and conditions

if a22 < 1, then
0 < x2 ≤ min(1− a12, a23 − a13), x2 < 1− a13, x3 = x2 + (1− a23) , (5)

if a22 = 1, then

0 < x2 < min(1− a12, 1− a13), x2 < x3 ≤ min
(
1− a13, x2 + (1− a23)

)
, (6)

are satisfied, or x1 > 0 and conditions

if a11 = 1, a22 = 1, then x1 < x2 < 1 ,

x2 ≤ x1 + (1− a12), x3 ≤ min
(
x1 + (1− a13), x2 + (1− a23), 1

)
, (7)

if a11 = 1, a22 < 1, then x1 < a23 ,

x2 ≤ min
(
a23, x1 + (1− a12), x1 + (a23 − a13)

)
, x3 = x2 + (1− a23) , (8)

if a11 < 1, a22 = 1, then
0 < x1 < a12, x2 = x1 + (1− a12) ,

x3 ≤ min
(
x1 + 2− (a12 + a23), x1 + (1− a13), 1

)
, or

0 < x1 ≤ a13, x1 + (a23 − a13) ≤ x2 < x1 + (1− a12) ,
x3 = x1 + (1− a13) , (9)

if a11 < 1, a22 < 1, then
a12 − a13 + a23 ≥ 1, 0 < x1 ≤ a12 + a23 − 1, x2 = x1 + (1− a12) ,

x3 = x1 + 2− (a12 + a23), or
a12 − a13 + a23 ≤ 1, 0 < x1 ≤ a13, x2 = x1 + (a23 − a13) ,

x3 = x1 + (1− a13) (10)
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are satisfied.

P r o o f . For convenience, we shall use notation F<0 (A) = {x ∈ F<(A); x1 = 0},
F<1 (A) = {x ∈ F<(A); x1 > 0}. Thus, we have F<(A) = F<0 (A) ∪ F<1 (A). The cases
x ∈ F<0 (A) and x ∈ F<1 (A) will be considered separately.

Let A ∈ I(3, 3) satisfy conditions of Theorem 4.1, let x = (0, x2, x3) ∈ I<(3) satisfy
conditions (5) and (6). Using the same arguments as in the converse part of Theorem 4.1
we can easily show that x ∈ F<0 (A).

Conversely, suppose that x ∈ F<0 (A). This implies that conditions of Theorem 3.4
are fulfilled. We consider two cases a22 < 1 and a22 = 1.

Case 1. If a22 < 1, condition (i) of Theorem 3.4 gives a12 ≤ 1+x1−x2, a13 ≤ 1+x1−x3

and a23 ≤ 1 + x2− x3. Since x1 = 0 by our assumption, therefore we have x2 ≤ 1− a12,
x3 ≤ 1−a13 and x3 ≤ 1+x2−a23. Condition (iii) of Theorem 3.4 gives a23 = 1+x2−x3,
which implies that x3 = x2 + 1− a23. By x3 = x2 + 1− a23 and x3 ≤ 1− a13, we have
x2 ≤ a23 − a13. Also, x2 < x3 ≤ 1 − a13 implies that x2 < 1 − a13. Therefore we have
0 < x2 ≤ min(1− a12, a23 − a13), x2 < 1− a13, x3 = x2 + 1− a23.

Case 2. If a22 = 1, condition (i) of Theorem 3.4 gives x2 ≤ 1 − a12, x3 ≤ 1 − a13

and x3 ≤ 1 + x2 − a23. Since 0 < x2 < 1, then we must have x2 < 1 − a12. Also
x2 < x3 ≤ 1 − a13 implies that x2 < 1 − a13. Therefore we have 0 < x2 < min(1 −
a12, 1− a13), x2 < x3 ≤ min(1− a13, x2 + 1− a23).

Let us assume now that a vector x = (x1, x2, x3) ∈ I<(3) with x1 > 0 satisfies
conditions (7) – (10). There are four possible cases and we show that the conditions (i),
(ii) and (iii) of Theorem 3.4 in each case are satisfied. In other words, we show that
x ∈ F<1 (A).

Let a11 = 1, a22 = 1. Then from x2 ≤ x1 + 1− a12 we have a12 ≤ 1 + x1 − x2. Also,
x3 ≤ min(x1 + 1 − a13, x2 + 1 − a23, 1) ≤ x1 + 1 − a13 implies a13 ≤ 1 + x1 − x3, and
x3 ≤ min(x1 + 1− a13, x2 + 1− a23, 1) ≤ x2 + 1− a23 implies a23 ≤ 1 + x2 − x3. That
is, (i) of Theorem 3.4 is satisfied. Conditions (ii) and (iii) of Theorem 3.4 are satisfied
by the assumption a11 = 1 and a22 = 1, respectively.

Let a11 = 1, a22 < 1. Then from x3 = x2 + 1 − a23 we have a23 = 1 + x2 − x3.
Also, x2 ≤ min(a23, x1 + 1 − a12, x1 + (a23 − a13)) implies x2 ≤ x1 + 1 − a12 and
x2 ≤ x1 + (a23 − a13). The first inequality gives a12 ≤ 1 + x1 − x2. By the second
inequality x2 ≤ x1 + (a23− a13) and x3 = x2 + 1− a23, we have a13 ≤ 1 +x1−x3. That
is, (i) of Theorem 3.4 is satisfied. Conditions (ii) and (iii) of Theorem 3.4 are satisfied
by the assumption a11 = 1 and by x3 = x2 + 1− a23, respectively.

Let a11 < 1, a22 = 1. If the first part of the disjunction in (9) is satisfied, then x2 =
x1 +1−a12 implies a12 = 1+x1−x2. Also, x3 ≤ min(x1 +2−(a12 +a23), x1 +1−a13, 1)
implies that x3 ≤ x1 + 1 − a13 and x3 ≤ x1 + 2 − (a12 + a23). The first inequality
implies a13 ≤ 1 + x1 − x3. By x2 = x1 + 1 − a12 and x3 ≤ x1 + 2 − (a12 + a23), we
have a23 ≤ 1 + x2 − x3. That is, (i) of Theorem 3.4 is satisfied. Conditions (ii) and
(iii) of Theorem 3.4 are satisfied by x2 = x1 + 1 − a12 and by the assumption a22 = 1,
respectively.

If the second part of the disjunction in (9) is satisfied, then x3 = x1 + 1− a13 implies
a13 = 1 + x1 − x3. Also, x1 + (a23 − a13) ≤ x2 < x1 + 1 − a12 implies the inequalities
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x1 + (a23 − a13) ≤ x2 and x2 < x1 + 1 − a12. Using x3 = x1 + 1 − a13 in the first
inequality we have a23 ≤ 1+x2−x3, the second inequality gives a12 ≤ 1+x1−x2. That
is, (i) of Theorem 3.4 is satisfied. Conditions (ii) and (iii) of Theorem 3.4 are satisfied
by x3 = x1 + 1− a13 and by the assumption a22 = 1, respectively.

Let a11 < 1, a22 < 1. If the first part of the disjunction in (10) is satisfied, then
a12 − a13 + a23 ≥ 1, and x2 = x1 + 1− a12 implies a12 = 1 + x1 − x2. By substituting in
x3 = x1 + 2− (a12 + a23), we get a23 = 1 + x2 − x3. Also, x3 = x1 + 2− (a12 + a23) =
x1 + 1 − (a12 + a23 − 1) ≤ x1 + 1 − a13. This implies that x3 ≥ x1 + 1 − a13, or
a13 ≤ 1 + x1 − x3. That is, (i) of Theorem 3.4 is satisfied. Conditions (ii) and (iii) of
Theorem 3.4 are satisfied by x2 = x1 + 1− a12 and a23 = 1 + x2 − x3, respectively.

If the second part of the disjunction in (10) is satisfied, then a12− a13 + a23 ≤ 1, and
x3 = x1+1−a13 gives a13 = 1+x1−x3. We have, x2 = x1+(a23−a13) ≤ x1+1−a12, that
is a12 ≤ 1+x1−x2. Also, x2 = x1+(a23−a13) = (x1+1−a13)−(1−a23) = x3−(1−a23)
implies that a23 = 1 + x2 − x3. That is, (i) of Theorem 3.4 is satisfied. Conditions (ii)
and (iii) of Theorem 3.4 are satisfied by x3 = x1 + 1 − a13 and a23 = 1 + x2 − x3,
respectively.

Conversely, suppose that x ∈ F<1 (A). Then conditions (i), (ii) and (iii) of Theorem 3.4
hold true and we show that conditions (7)–(10) are satisfied in all four cases. We
start with an easy observation that in each case, condition (i) of Theorem 3.4 implies
x2 ≤ x1 + 1− a12, x3 ≤ x1 + 1− a13 and x3 ≤ x2 + 1− a23.

When a11 = 1, a22 = 1, then the inequalities in condition (7) follow directly from the
assumption x ∈ I<(3) and from the above observation.

When a11 = 1, a22 < 1, then condition (iii) of Theorem 3.4 gives x3 = x2 + 1 − a23.
Since x ∈ I<(3) then x3 = x2+1−a23 ≤ 1 implies x1 < x2 ≤ a23. Using x3 = x2+1−a23

in x3 ≤ x1 + 1 − a13 we get x2 ≤ x1 + (a23 − a13). Thus, we have verified all relations
in condition (8).

When a11 < 1, a22 = 1, then by condition (ii) of Theorem 3.4 either x2 = x1+1−a12,
x3 ≤ x1 + 1− a13 and x3 ≤ x2 + 1− a23, or x2 < x1 + 1− a12, x3 = x1 + 1− a13 and
x3 ≤ x2 + 1− a23 hold true.

Let us consider the first possibility. Since x ∈ I<(3) then x2 = x1 + 1 − a12 < 1,
which implies x1 < a12. By x2 = x1 + 1 − a12 and x3 ≤ x2 + 1 − a23 we have x3 ≤
x1 + 2 − (a12 + a23). The remaining relations in the first part of the disjunction in (9)
follow from the starting observation.

In the second possibility, we have x3 = x1 + 1 − a13 ≤ 1 that is, x1 ≤ a13. By
x3 = x1 + 1−a13 and x3 ≤ x2 + 1−a23, we have x2 ≥ x1 + (a23−a13). We have verified
all relations in the second part of the disjunction in (9) .

When a11 < 1, a22 < 1, then condition (ii) of Theorem 3.4 implies x2 = x1 + 1− a12,
or x3 = x1 + 1− a13. Moreover, condition (iii) of Theorem 3.4 gives x3 = x2 + 1− a23.
We shall consider two cases.

In the first case we assume x2 = x1 +1−a12, x3 ≤ x1 +1−a13 and x3 = x2 +1−a23.
Combining the two equalities we get x3 = x1 + 2 − (a12 + a23), and using this value in
the inequality assumption we get 1 ≤ a12−a13 +a23. Thus, all relations in the first part
of the disjunction in condition (10) must hold true.

In the second case we assume x2 ≤ x1+1−a12, x3 = x1+1−a13 and x3 = x2+1−a23.
The two equalities imply x2 = x1 + (a23 − a13). Inserting this value into the inequality
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assumption we get a12 − a13 + a23 ≤ 1. Thus, all relations in the second part of the
disjunction in condition (10) have been verified. �

5. NON-STRICTLY INCREASING EIGENVECTORS

In this section the three-dimensional eigenproblem is investigated for non-strictly in-
creasing eigenvectors. Analogously to the notation introduced in [7] and [9] we denote

I<(D12, 3) =
{
x ∈ I(3); x1 = x2 < x3

}
, (11)

I<(D23, 3) =
{
x ∈ I(3); x1 < x2 = x3

}
, (12)

and
F<(D12, A) =

{
x ∈ I<(D12, 3); A⊗ l x = x

}
, (13)

F<(D23, A) =
{
x ∈ I<(D23, 3); A⊗ l x = x

}
, (14)

for a given matrix A ∈ I(3, 3).

Proposition 5.1. Let A ∈ I(3, 3), x ∈ I<(D12, 3). Then x ∈ F<(D12, A) if and only
if the following hold

1− a13 ≥ x3 − x1 , (15)
1− a23 ≥ x3 − x1 , (16)

x1 = 0 or max(a11, a12) = 1 or 1− a13 = x3 − x1 , (17)
x1 = 0 or max(a21, a22) = 1 or 1− a23 = x3 − x1 , (18)

a33 = 1 . (19)

P r o o f . Let x ∈ F<(D12, A), then 0 ≤ x1 = x2 < x3 ≤ x3. By (1) in Proposition 3.2,
a13 ⊗ l x3 ≤ x1. Then by definition 0 ≤ a13 + x3 − 1 ≤ x1 or a13 + x3 − 1 ≤ 0 ≤ x1,
implies that 1−a13 ≥ x3−x1 holds in either case. Similarly, 1−a23 ≥ x3−x2 = x3−x1.
By (2) in Proposition 3.2 we have, a11⊗ l x1 = x1 or a12⊗ l x2 = x1 or a13⊗ l x3 = x1.
The first two of the equalities are trivially fulfilled if x1 = x2 = 0. On the other hand,
if x1 = x2 > 0, then we get a11 = 1 or a12 = 1 or a13 + x3 − 1 = x1. That is,
max(a11, a12) = 1 or 1 − a13 = x3 − x1. By the same argument we get x1 = 0 or
max(a21, a22) = 1 or 1 − a23 = x3 − x1. In view of the assumption x1 = x2 < x3,
equation (19) follows from (2) in Proposition 3.2.

Conversely, conditions (15) and (16), in view of Proposition 2 are equivalent to a13⊗ l

x3 ≤ x1 and a23 ⊗ l x3 ≤ x1 respectively. Three conditions (17), (18) and (19) together
imply condition (2) in Proposition 3.2. Hence x ∈ F<(D12, A). �

Proposition 5.2. Let A ∈ I(3, 3), x ∈ I<(D23, 3). Then x ∈ F<(D23, A) if and only if
the following hold

1−max(a12, a13) ≥ x2 − x1 , (20)
x1 = 0 or a11 = 1 or 1−max(a12, a13) = x2 − x1 , (21)

max(a22, a23) = 1 , (22)
max(a32, a33) = 1 . (23)
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P r o o f . Let x ∈ I<(D23, 3) then, 0 ≤ x1 < x2 = x3 ≤ 1. Similarly as in previous
proof, it is easy to show that conditions (20), (21), (22), (23) are equivalent to conditions
in Proposition 3.2. �

Theorem 5.3. Let A ∈ I(3, 3). Then F<(D12, A) 6= ∅ if and only if the following
conditions are satisfied

(i) a13 < 1 , a23 < 1 ,

(ii) a33 = 1 .

P r o o f . Let there exist x ∈ F<(D12, A). In view of (15) of Proposition 5.1, a13 − 1 ≤
x1 − x3 < 0 implies that a13 < 1. Similarly we have a23 < 1. Condition (ii) is the same
as condition (19).

Conversely, suppose that conditions (i), (ii) hold true. We show that there exists
x = (x1, x2, x3) ∈ F<(D12, A). The choice of x1 = x2 = 0 and x3 = min(1−a13, 1−a23)
satisfies conditions (15) – (19) of Proposition 5.1. Hence F<(D12, A) 6= ∅. �

Theorem 5.4. Let A ∈ I(3, 3). Then F<(D23, A) 6= ∅ if and only if the following
conditions are satisfied

(i) a12 < 1 , a13 < 1 ,

(ii) max(a22, a23) = 1 ,

(iii) max(a32, a33) = 1 .

P r o o f . The proof is analogous to the proof of Theorem 5.3. In the converse part we
put x1 = 0, and take an arbitrary value x2 = x3 in the interval 〈1 − max(a12, a13), 1〉.

�

Theorem 5.5. Let A ∈ I(3, 3) and let conditions (i)–(ii) of Theorem 5.3 be sat-
isfied. Denoting F<0 (D12, A) = {x ∈ F<(D12, A); x1 = 0}, F<1 (D12, A) = {x ∈
F<(D12, A); x1 > 0} we have F<(D12, A) = F<0 (D12, A)∪F<1 (D12, A), where F<0 (D12, A)
consists exactly of all vectors x = (x1, x2, x3) ∈ I(3) satisfying

0 = x1 = x2 < x3 ≤ 1−max(a13, a23) , (24)

and F<1 (D12, A) consists exactly of all vectors x = (x1, x2, x3) ∈ I(3) satisfying 0 <
x1 = x2 < x3 and conditions

if max(a11, a12) = 1, max(a21, a22) = 1, then 1−max(a13, a23) ≥ x3 − x1 , (25)
if max(a11, a12) < 1, max(a21, a22) = 1, then 1− a23 ≥ 1− a13 = x3 − x1 , (26)
if max(a11, a12) = 1, max(a21, a22) < 1, then 1− a13 ≥ 1− a23 = x3 − x1 , (27)
if max(a11, a12) < 1, max(a21, a22) < 1, then 1− a13 = 1− a23 = x3 − x1 . (28)
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P r o o f . LetA ∈ I(3, 3) satisfy conditions (i) – (ii) of Theorem 5.3 and let x = (0, 0, x3) ∈
I<(D12, 3) satisfy condition (24). It is easy to see that conditions in Proposition 5.1
are fulfilled, i. e. x ∈ F<(D12, A). Conversely, if x ∈ F<0 (D12, A), then condition (24)
follows from conditions (15) and (16).

Let us assume now that a vector x = (x1, x2, x3) ∈ I(3) satisfies 0 < x1 = x2 < x3 and
conditions (25) – (28). Then x ∈ I<(D12, 3) and conditions (25) – (28) imply conditions
(15) – (18) in Proposition 5.1. The condition (19) of Proposition 5.1 is identical with (ii)
in Theorem 5.3. Hence x = (x1, x2, x3) ∈ F<(D12, A), in view of Proposition 5.1.

Conversely, let x ∈ F<1 (D12, A). Then x1 > 0 and conditions (15) – (19) of Proposi-
tion 5.1 are satisfied. Conditions (25) – (28) then follow immediately. �

Theorem 5.6. Let A ∈ I(3, 3) and let conditions (i) – (ii) of Theorem 5.4 be sat-
isfied. Denoting F<0 (D23, A) = {x ∈ F<(D23, A); x1 = 0}, F<1 (D23, A) = {x ∈
F<(D23, A); x1 > 0} we have F<(D23, A) = F<0 (D23, A)∪F<1 (D23, A), where F<0 (D23, A)
consists exactly of all vectors x = (x1, x2, x3) ∈ I(3) satisfying

0 = x1 < x2 = x3 ≤ 1−max(a12, a13) , (29)

and F<1 (D23, A) consists exactly of all vectors x = (x1, x2, x3) ∈ I(3) satisfying 0 <
x1 < x2 = x3 and conditions

if a11 = 1, then 1−max(a12, a13) ≥ x2 − x1 , (30)
if a11 < 1, then 1−max(a12, a13) = x2 − x1 . (31)

P r o o f . The proof is analogous to the proof of Theorem 5.5. �

6. EXAMPLES

In this section the above considerations will be illustrated by computing the complete
eigenspace in max- L fuzzy algebra of two given three-dimensional matrices.

Example 6.1. Let us consider the matrix

A =

0.6 0.8 0.3
0.5 0.9 0.4
0.3 0.7 1


Matrix A satisfies the conditions (i), (ii) and (iii) of Theorem 4.1, hence F<(A) 6= ∅.
By Theorem 4.2, the strictly increasing eigenspace of A is F<(A) = F<0 (A) ∪ F<1 (A).
Since a22 = 0.9 < 1, then by condition (5) of Theorem 4.2, F<0 (A) consists exactly of
the vectors (0, x2, x3) ∈ I(3) fulfilling the conditions

0 < x2 ≤ min(1− a12, a23 − a13), x2 < 1− a13, x3 = x2 + (1− a23), i. e.
0 < x2 ≤ min(1− 0.8, 0.4− 0.3), x2 < 1− 0.3, x3 = x2 + (1− 0.4) .

Hence,
F<0 (A) =

{
(0, x2, x3) ∈ I(3) : 0 < x2 ≤ 0.1, x3 = x2 + 0.6

}
.
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Since a11 = 0.6 < 1, a22 = 0.9 < 1, and a12− a13 + a23 = 0.8− 0.3 + 0.4 = 0.9 ≤ 1, then
we get in a similar way by the condition (10) of Theorem 4.2

F<1 (A) =
{

(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.3, x2 = x1 + 0.1, x3 = x1 + 0.7
}
.

Further, Theorem 5.5 implies that

F<(D12, A) = F<0 (D12, A) =
{

(0, 0, x3) ∈ I(3) : 0 < x3 ≤ 0.6
}
.

By Theorem 5.4 we get F<(D23, A) = ∅ and according to Theorem 3.9, A has exactly
one constant eigenvector (0, 0, 0). By analogous considerations of all matrices Aϕϕ for
permutations ϕ ∈ P3, we get that, in view of Theorem 2.1, A has no other eigenvectors.
Summarizing we get

F(A) = F≤(A) = F=(A) ∪ F<(D12, A) ∪ F<0 (A) ∪ F<1 (A)

=
{

(0, 0, 0)
}
∪

{
(0, 0, x3) ∈ I(3) : 0 < x3 ≤ 0.6

}
∪

{
(0, x2, x3) ∈ I(3) : 0 < x2 ≤ 0.1, x3 = x2 + 0.6

}
∪

{
(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.3, x2 = x1 + 0.1, x3 = x1 + 0.7

}
.

Example 6.2. In this example we change the entry a22 = 0.9 to b22 = 1, and leave the
remaining entries unchanged. We start with computing the strictly increasing eigenspace
of matrix B

B =

0.6 0.8 0.3
0.5 1 0.4
0.3 0.7 1


Matrix B satisfies conditions (i), (ii), (iii) in Theorem 4.1, hence F<(B) 6= ∅. By
Theorem 4.2, the strictly increasing eigenspace of B is F<(B) = F<0 (B)∪F<1 (B). Since
b22 = 1, then by condition (6) in Theorem 4.2, F<0 (B) consists exactly of the vectors
(0, x2, x3) ∈ I(3) fulfilling the conditions

0 < x2 < min(1− b12, 1− b13), x2 < x3 ≤ min
(
1− b13, x2 + (1− b23)

)
, i. e.

0 < x2 ≤ min(1− 0.8, 1− 0.3), x2 < x3 ≤ min
(
1− 0.3, x2 + (1− 0.4)

)
.

Hence,

F<0 (B) =
{

(0, x2, x3) ∈ I(3) : 0 < x2 ≤ 0.2, x2 < x3 ≤ min
(
0.7, x2 + 0.6)

}
.

Since b11 = 0.6 < 1, b22 = 1, then we get in a similar way by the condition (9) of
Theorem 4.2 that F<1 (B) consists exactly of the vectors (0, x2, x3) ∈ I<(3) fulfilling the
conditions

0 < x1 < b12, x2 = x1 + (1− b12) ,

x3 ≤ min
(
x1 + 2− (b12 + b23), x1 + (1− b13), 1

)
, or

0 < x1 ≤ b13, x1 + (b23 − b13) ≤ x2 < x1 + (1− b12), x3 = x1 + (1− b13) .

Thus, F<1 (B) =

=
{

(x1, x2, x3) ∈ I(3) : 0 < x1 < 0.8, x2 = x1 + 0.2, x2 < x3 ≤ min(x1 + 0.7, 1)
}

∪
{

(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.3, x1 + 0.1 ≤ x2 < x1 + 0.2, x3 = x1 + 0.7
}
.
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By Theorem 3.9, B has exactly one constant eigenvector (0, 0, 0), by Theorem 5.5
and Theorem 5.6 we get F<(D12, B) = F<0 (D12, B), F<(D23, B) = F<0 (D12, B) ∪
F<1 (D23, B), where

F<0 (D12, B) =
{

(0, 0, x3) ∈ I(3) : 0 < x3 ≤ 0.6
}
,

F<0 (D23, B) =
{

(0, x2, x3) ∈ I(3) : 0 < x2 = x3 ≤ 0.2
}
,

F<1 (D23, B) =
{

(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.8, x2 = x3 = x1 + 0.2
}
.

Summarizing we get the increasing eigenspace of B in the following form

F≤(B) = F=(B) ∪ F<0 (D12, B) ∪ F<0 (D23, B) ∪ F<1 (D23, B) ∪ F<0 (B) ∪ F<1 (B)

=
{

(0, 0, 0)
}
∪

{
(0, 0, x3) ∈ I(3) : 0 < x3 ≤ 0.6

}
∪

{
(0, x2, x3) ∈ I(3) : 0 < x2 = x3 ≤ 0.2

}
∪

{
(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.8, x2 = x3 = x1 + 0.2

}
∪

{
(0, x2, x3) ∈ I(3) : 0 < x2 ≤ 0.2, x2 < x3 ≤ min

(
0.7, x2 + 0.6)

}
∪

{
(x1, x2, x3) ∈ I(3) : 0 < x1 < 0.8, x2 = x1 + 0.2, x2 < x3 ≤ min(x1 + 0.7, 1)

}
∪

{
(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.3, x1 + 0.1 ≤ x2 < x1 + 0.2, x3 = x1 + 0.7

}
.

Further eigenvectors of matrix B will be found using Theorem 2.1 with all possible

permutations in P3. E. g., applying permutation ϕ =
(

1 2 3
1 3 2

)
to rows and columns

of B we get matrix Bϕϕ which satisfies conditions (i), (ii) and (iii) of Theorem 4.1

Bϕϕ =

0.6 0.3 0.8
0.3 1 0.7
0.5 0.4 1


For simplicity, we use the notation in which the permuted vector xϕ is denoted as
y = (y1, y2, y3) = (xϕ(1), xϕ(2), xϕ(3)) = (x1, x3, x2). Analogously as above we compute

F<0 (Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 < y2 < min(1− a12, 1− a13),

y2 < y3 ≤ min
(
1− a13, y2 + (1− a23)

)}
,

F<1 (Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 < a12, y2 = y1 + (1− a12),

y3 ≤ min
(
y1 + 2− (a12 + a23), y1 + (1− a13), 1

)}
∪

{
(y1, y2, y3) ∈ I(3) : 0 < y1 ≤ a13, y1 + (a23 − a13) ≤ y2 < y1 + (1− a12),

y3 = y1 + (1− a13)
}
,

F<0 (D12, Bϕϕ) =
{

(0, 0, y3) ∈ I(3) : 0 = y1 = y2 < y3 ≤ 1−max(a13, a23)
}
,

F<1 (D12, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 = y2 < y3, 1− a23 ≥ 1− a13 = y3 − y1
}
,

F<0 (D23, Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 = y1 < y2 = y3 ≤ 1−max(a12, a13)
}
,

F<1 (D23, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 < y2 = y3, 1−max(a12, a13) = y2 − y1
}
,

F=(Bϕϕ) =
{

(0, 0, 0)
}
.
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F<0 (Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 < y2 < min(1− 0.3, 1− 0.8),

y2 < y3 ≤ min
(
1− 0.8, y2 + (1− 0.7)

)}
,

F<1 (Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 < 0.3, y2 = y1 + (1− 0.3),

y3 ≤ min
(
y1 + 2− (0.3 + 0.7), y1 + (1− 0.8), 1

)}
∪

{
(y1, y2, y3) ∈ I(3) : 0 < y1 ≤ 0.8, y1 + (0.7− 0.8) ≤ y2 < y1 + (1− 0.3),

y3 = y1 + (1− 0.8)
}
,

F<0 (D12, Bϕϕ) =
{

(0, 0, y3) ∈ I(3) : 0 = y1 = y2 < y3 ≤ 1−max(0.8, 0.7)
}
,

F<1 (D12, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 = y2 < y3, 1− 0.7 ≥ 1− 0.8 = y3 − y1
}
,

F<0 (D23, Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 = y1 < y2 = y3 ≤ 1−max(0.3, 0.8)
}
,

F<1 (D23, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 < y2 = y3, 1−max(0.3, 0.8) = y2 − y1
}
,

F=(Bϕϕ) =
{

(0, 0, 0)
}
.

F<0 (Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 < y2 < 0.2, y2 < y3 ≤ min
(
0.2, y2 + 0.3)

)}
,

F<1 (Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1< 0.3, y2 = y1+0.7, y3 ≤ min
(
y1+1, y1+0.2, 1

)}
∪

{
(y1, y2, y3) ∈ I(3) : 0 < y1 ≤ 0.8, y1+(−0.1) ≤ y2< y1+0.7, y3 = y1+0.2)

}
,

F<0 (D12, Bϕϕ) =
{

(0, 0, y3) ∈ I(3) : 0 = y1 = y2 < y3 ≤ 0.2
}
,

F<1 (D12, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 = y2 < y3, 0.3 ≥ 0.2 = y3 − y1
}
,

F<0 (D23, Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 = y1 < y2 = y3 ≤ 0.2
}
,

F<1 (D23, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 < y2 = y3, 0.2 = y2 − y1
}
,

F=(Bϕϕ) =
{

(0, 0, 0)
}
.

F<0 (Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 < y2 < y3 ≤ 0.2
)}
,

F<1 (Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 ≤ 0.8, y1 < y2 < y3 = y1 + 0.2)
}
,

F<0 (D12, Bϕϕ) =
{

(0, 0, y3) ∈ I(3) : 0 < y3 ≤ 0.2
}
,

F<1 (D12, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 = y2 ≤ 0.8, y3 = y1 + 0.2
}
,

F<0 (D23, Bϕϕ) =
{

(0, y2, y3) ∈ I(3) : 0 < y2 = y3 ≤ 0.2
}
,

F<1 (D23, Bϕϕ) =
{

(y1, y2, y3) ∈ I(3) : 0 < y1 ≤ 0.8, y2 = y3 = y1 + 0.2
}
,

F=(Bϕϕ) =
{

(0, 0, 0)
}
.

Coming back to the original notation xϕ = (x1, x3, x2) = (y1, y2, y3) we get the
permuted increasing eigenspace F≤ϕ (B) of matrix B with x1 ≤ x3 ≤ x2, in the form

F≤ϕ (B) = F<0ϕ(Bϕϕ) ∪ F<1ϕ(Bϕϕ) ∪ F<0ϕ(D12, Bϕϕ) ∪ F<1ϕ(D12, Bϕϕ)

∪ F<0ϕ(D23, Bϕϕ) ∪ F<1ϕ(D23, Bϕϕ) ∪ F=
ϕ (Bϕϕ) ,
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where

F<0ϕ(Bϕϕ) =
{

(0, x2, x3) ∈ I(3) : 0 < x3 < x2 ≤ 0.2
)}
,

F<1ϕ(Bϕϕ) =
{

(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.8, x1 < x3 < x2 = x1 + 0.2)
}
,

F<0ϕ(D12, Bϕϕ) =
{

(0, x2, 0) ∈ I(3) : 0 < x2 ≤ 0.2
}
,

F<1ϕ(D12, Bϕϕ) =
{

(x1, x2, x3) ∈ I(3) : 0 < x1 = x3 ≤ 0.8, x2 = x1 + 0.2
}
,

F<0ϕ(D23, Bϕϕ) =
{

(0, x2, x3) ∈ I(3) : 0 < x3 = x2 ≤ 0.2
}
,

F<1ϕ(D23, Bϕϕ) =
{

(x1, x2, x3) ∈ I(3) : 0 < x1 ≤ 0.8, x3 = x2 = x1 + 0.2
}
,

F=
ϕ (Bϕϕ) =

{
(0, 0, 0)

}
.

If another permutation ψ =
(

1 2 3
3 1 2

)
is applied to rows and columns of B, then

conditions (i), (ii) and (iii) of Theorem 4.1 are satisfied by the obtained matrix

Bψψ =

 1 0.3 0.7
0.3 0.6 0.8
0.4 0.5 1


Analogously we compute in notation z = (z1, z2, z3) = (xψ(1), xψ(2), xψ(3)) = (x3, x1, x2)

F<0 (Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 < z2 ≤ min(1− a12, a23 − a13), z2 < 1− a13,

z3 = z2 + (1− a23)
}
,

F<1 (Bψψ) =
{

(z1, z2, z3) ∈ I(3) : z1 < a23, z2 ≤ min
(
a23, z1+(1− a12), z1+(a23 − a13)

)
,

z3 = z2 + (1− a23)
}
,

F<0 (D12, Bψψ) =
{

(0, 0, z3) ∈ I(3) : 0 = z1 = z2 < z3 ≤ 1−max(a13, a23)
}
,

F<1 (D12, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 = z2 < z3, 1− a13 ≥ 1− a23 = z3 − z1
}
,

F<0 (D23, Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 = z1 < z2 = z3 ≤ 1−max(a12, a13)
}
,

F<1 (D23, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 < z2 = z3, 1−max(a12, a13) ≥ z2 − z1
}
,

F=(Bψψ) =
{

(0, 0, 0)
}
.

F<0 (Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 < z2 ≤ min(1− 0.3, 0.8− 0.7), z2 < 1− 0.7,

z3 = z2 + (1− 0.8)
}
,

F<1 (Bψψ) =
{

(z1, z2, z3) ∈ I(3) : z1 < 0.8, z2 ≤ min
(
0.8, z1+(1− 0.3), z1+(0.8− 0.7)

)
,

z3 = z2 + (1− 0.8)
}
,

F<0 (D12, Bψψ) =
{

(0, 0, z3) ∈ I(3) : 0 = z1 = z2 < z3 ≤ 1−max(0.7, 0.8)
}
,

F<1 (D12, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 = z2 < z3, 1− 0.7 ≥ 1− 0.8 = z3 − z1
}
,

F<0 (D23, Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 = z1 < z2 = z3 ≤ 1−max(0.3, 0.7)
}
,

F<1 (D23, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 < z2 = z3, 1−max(0.3, 0.7) ≥ z2 − z1
}
,

F=(Bψψ) =
{

(0, 0, 0)
}
.



326 I. RASHID, M. GAVALEC AND S. SERGEEV

F<0 (Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 < z2 ≤ 0.1, z2 < 0.3, z3 = z2 + 0.2)
}
,

F<1 (Bψψ) =
{

(z1, z2, z3) ∈ I(3) : z1 < 0.8, z2 ≤ min
(
0.8, z1 + 0.7, z1 + 0.1

)
,

z3 = z2 + 0.2)
}
,

F<0 (D12, Bψψ) =
{

(0, 0, z3) ∈ I(3) : 0 = z1 = z2 < z3 ≤ 0.2
}
,

F<1 (D12, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 = z2 < z3, 0.3 ≥ 0.2 = z3 − z1
}
,

F<0 (D23, Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 = z1 < z2 = z3 ≤ 0.3
}
,

F<1 (D23, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 < z2 = z3, 0.3 ≥ z2 − z1
}
,

F=(Bψψ) =
{

(0, 0, 0)
}
.

F<0 (Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 < z2 ≤ 0.1, z3 = z2 + 0.2)
}
,

F<1 (Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 < z2 ≤ min
(
0.8, z1 + 0.1

)
, z3 = z2 + 0.2)

}
,

F<0 (D12, Bψψ) =
{

(0, 0, z3) ∈ I(3) : 0 < z3 ≤ 0.2
}
,

F<1 (D12, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 = z2 < z3 = z1 + 0.2
}
,

F<0 (D23, Bψψ) =
{

(0, z2, z3) ∈ I(3) : 0 < z2 = z3 ≤ 0.3
}
,

F<1 (D23, Bψψ) =
{

(z1, z2, z3) ∈ I(3) : 0 < z1 < z2 = z3 ≤ z1 + 0.3
}
,

F=(Bψψ) =
{

(0, 0, 0)
}
.

Coming back to the original notation xψ = (x3, x1, x2) = (z1, z2, z3) we get the
permuted increasing eigenspace F≤ψ (B) of matrix B with x2 ≤ x3 ≤ x1, in the form

F≤ψ (B) = F<0ψ(Bψψ) ∪ F<1ψ(Bψψ) ∪ F<0ψ(D12, Bψψ) ∪ F<1ψ(D12, Bψψ)

∪ F<0ψ(D23, Bψψ) ∪ F<1ψ(D23, Bψψ) ∪ F=
ψ (Bψψ) ,

where

F<0 (Bψψ) =
{

(x1, x2, 0) ∈ I(3) : 0 < x1 ≤ 0.1, x2 = x1 + 0.2)
}
,

F<1 (Bψψ) =
{

(x3, x1, x2) ∈ I(3) : 0 < x3 < x1 ≤ min
(
0.8, x3 + 0.1

)
, x2 = x1 + 0.2)

}
,

F<0 (D12, Bψψ) =
{

(0, x2, 0) ∈ I(3) : 0 < x2 ≤ 0.2
}
,

F<1 (D12, Bψψ) =
{

(x1, x2, x3) ∈ I(3) : 0 < x3 = x1 < x2 = x3 + 0.2
}
,

F<0 (D23, Bψψ) =
{

(x1, x2, 0) ∈ I(3) : 0 < x1 = x2 ≤ 0.3
}
,

F<1 (D23, Bψψ) =
{

(x1, x2, x3) ∈ I(3) : 0 < x3 < x1 = x2 ≤ x3 + 0.3
}
,

F=(Bψψ) =
{

(0, 0, 0)
}
.

It is easy to verify that, of all six possible permutations in P3, only the identical
permutation and ϕ, ψ are such that the permuted matrix satisfies conditions (i), (ii) and
(iii) of Theorem 4.1, hence there are no further permuted strictly increasing eigenvectors
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of B. By Theorem 5.3 and Theorem 5.4 we can also verify that no further permuted
non-strictly increasing eigenvectors exist. As a consequence, the eigenspace of matrix B
in max- L fuzzy algebra is equal to

F(B) = F≤(B) ∪ F≤ϕ (B) ∪ F≤ψ (B).

CONCLUSIONS

Presented results are part of the research aimed on investigation of stable states of
systems with fuzzy transition matrix in max-t fuzzy algebras with various triangular
norm t. Stable states correspond to eigenvectors of the transition fuzzy matrix. For
matrices in max-min algebra and in max-drast algebra the eigenvectors were described
in [7] and in [8].

In this paper we describe the structure of the eigenspace for three-dimensional fuzzy
matrices in max- Lukasiewicz fuzzy algebra. Necessary and sufficient conditions are
proved under which the monotone eigenspace of a given matrix is non-empty, which
means that the corresponding system has at least one stable state. Further, the struc-
ture of the monotone eigenspace is studied and, using simultaneous row and column
permutations of the matrix, complete characterization of the general eigenspace struc-
ture of a given three-dimensional fuzzy matrix is presented. In other words, all stable
states of the corresponding system are described.

More complex cases of eigenspace structure for max- Lukasiewicz fuzzy matrices with
higher dimension will be considered in future research.
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Bohemia, České Budějovice 2010, pp. 162–167..

[9] M. Gavalec, I. Rashid, and S. Sergeev: Monotone eigenspace structure of a max-prod
fuzzy matrix. In preparation.

[10] M. Gondran: Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO
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