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THE GAMMA-UNIFORM DISTRIBUTION
AND ITS APPLICATIONS

Hamzeh Torabi and Narges H. Montazeri

Up to present for modelling and analyzing of random phenomenons, some statistical distri-
butions are proposed. This paper considers a new general class of distributions, generated from
the logit of the gamma random variable. A special case of this family is the Gamma-Uniform
distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shan-
non and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the
extreme order statistics, simulation issues, estimation by method of maximum likelihood and
the expected information matrix. We show that the Gamma-Uniform distribution provides
great flexibility in modelling for negatively and positively skewed, convex-concave shape and
reverse ‘J’ shaped distributions. The usefulness of the new distribution is illustrated through
two real data sets by showing that it is more flexible in analysing of the data than of the Beta
Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponen-
tial Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.

Keywords: Bathtub shaped hazard rate function, convex-concave shaped, ExpIntegralE
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1. INTRODUCTION

Recently, attempts have been made to define new families of probability distributions
that provide great flexibility in modelling skewed data in practice. One such example
is a broad family of univariate distributions generated from the beta distribution, pro-
posed by Jones [10], which extends the original beta family of distributions with the
incorporation of two additional parameters. These parameters control the skewness and
the tail weight. Earlier, with a similar goal in mind, Eugene et al. [7] defined the family
of beta-normal distributions and discussed its properties.

The class of “Beta-generated distributions” is defined as follows:
Consider a continuous cumulative distribution function (cdf) G with probability density
function (pdf) g. Then, the cdf of the univariate family of distributions generated by G,
is defined by

F (x) =
1

B(α, β)

∫ G(x)

0

wα−1(1− w)β−1 dw = IG(x)(α, β), α > 0, β > 0, (1)
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where Iz(a, b) = Bz(a,b)
B(a,b) is the regularized incomplete Beta function, in which

Bz(a, b) =
∫ z

0

ta−1(1− t)b−1 dt, 0 ≤ z ≤ 1,

is the incomplete Beta function and B(a, b) = B1(a, b) is the Euler Beta function.
Following the terminology of Arnold in the discussion of Jones’ [10] paper, the dis-

tribution G will be referred to as the “parent distribution” in what follows. Note that
the supports of random variables associated with F (·) and G(·) are equal. The pdf
corresponding to (1) can be written as

f(x) =
1

B(α, β)
g(x) {G(x)}α−1 {1−G(x)}β−1

, α > 0, β > 0. (2)

This class of generalized distributions has been receiving considerable attention over
the last years, in particular after the works of Eugene et al. [7] and Jones [10].

Eugene et al. [7] introduced what is known as the Beta-Normal (BN) distribution
by taking G to be cdf of the Normal distribution. Nadarajah and Kotz [13] introduced
what is known as the Beta-Gumbel (BG) distribution by taking G to be cdf of Gumbel
distribution. Nadarajah and Gupta [15] introduced the Beta-Fréchet (BF) distribution
by taking G to be the Fréchet distribution. Lee et al. [12] defined the Beta-Weibull
(BW) distribution by taking G to be cdf of Weibull distribution. Further, Nadarajah
and Kotz [14] examined the Beta-Exponential (BE) distribution by taking G to be cdf
of Exponential distribution. Alfred Akinsete et al. [1] defined the Beta-Pareto (BP)
distribution by taking G to be cdf of Pareto distribution. Fredy Barreto et al. [3] intro-
duced the Beta Generalized Exponential (BGE) distribution by taking G to be cdf of
Generalized Exponential distribution. Pescim et al. [17] proposed the Beta-Generalized
Half-Normal (BGHN) distribution by taking G to be cdf of Generalized Half-Normal
distribution. Paranáıba et al. [16] introduced the Beta Burr XII distribution (BBXII)
by taking G to be cdf of Burr XII distribution. Silva et al. [19] introduced the Beta
Modified Weibull distribution (BMW) by taking G to be cdf of Beta Modified Weibull
distribution. Cordeiro and Lemonte [5] introduced the β Birnbaum–Saunders distribu-
tion (β-BS) by taking G to be cdf of Birnbaum–Saunders distribution. Cordeiro and
Lemonte [6] introduced the Beta-Laplace distribution (BL) by taking G to be cdf of
Laplace distribution. Mahmoudi [18] introduced the Beta-Generalized Pareto distribu-
tion (BGP) by taking G to be cdf of Generalized Pareto distribution.

In this paper we will introduce a new class of “Gamma-generated distributions”.
Consider (similar to the previous class) a continuous cdf G with pdf g. We define the
cdf of the univariate family of distributions generated by G as follows:

F (x) =
1

Γ(α)βα

∫ G(x)/G(x)

0

e−
w
β wα−1 dw = 1−Q

(
α,

G(x)
βG(x)

)
, α>0, β>0, (3)

where G(x) = 1 − G(x) and Q(a, z) = Γ(a,z)
Γ(a) is the regularized incomplete gamma

function where
Γ(a, z) =

∫ ∞
z

ta−1e−t dt, z ≥ 0,
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is the incomplete gamma function and Γ(a) is Euler gamma function.
Note that the support of random variables associated with F (·) and G(·) are equal.

The pdf corresponding to (3) can be written as

f(x) =
1

Γ(α)βα

g(x)

G
2
(x)

exp
{
− G(x)
βG(x)

} {
G(x)
G(x)

}α−1

, α > 0, β > 0. (4)

If X has a density of the form (4), then the random variable W = G(X)

G(X)
has a Gamma

distribution Gamma(α, β). The opposite is also true, that is, if W has a Gamma(α, β),
then the random variable X = G←( W

1+W ) has a Gamma-generated distribution with
density (4), where

G←(u) = inf{x : G(x) ≥ u}, 0 < u < 1,

is left continuous inverse of G. The function G←(u) exists for any cdf G and it agrees
with G−1(u) if G is a strictly increasing function.

The pdf f(x) in (4) will be most tractable when both functions G(x) and g(x) have
simple analytic expressions, also one of the simplest distribution in Statistics is the
Uniform distribution. Then, we study the case when G(x) is the cdf of the Uniform
distribution in (a, b), i.e, U(a, b). In this case, the random variable X is said to be have
the Gamma-Uniform distribution and denoted by GU(α, β, a, b).

2. THE GAMMA-UNIFORM DISTRIBUTION

We are motivated to introduce the Gamma-Uniform (GU) distribution by taking G in
(3) to be cdf of a U(a,b). The cdf of the GU distribution becomes

F (x) =
∫ x−a

b−x

0

e−
w
β wα−1

Γ(α)βα
dw = 1−Q

(
α,

x− a

β(b− x)

)
, a < x < b. (5)

Although the range of the GU distribution relates on a and b, but it can be used for
analyzing and modelling any data set with changing these parameters.

The corresponding pdf and the hazard rate function associated with (5) are:

f(x) =
(b− a)e−

x−a
β(b−x) (x−a

b−x )α−1

(b− x)2βαΓ(α)
, a < x < b, (6)

and

h(x) =
(b− a)e−

x−a
β(b−x) (x−a

b−x )α−1

(b− x)2βαΓ(α, x−a
β(b−x) )

, a < x < b, (7)

respectively.
Figure 1 illustrates some of the possible shapes of pdf, cdf and hazard rate function

of the GU distributions for various values of α, β and a = 0, b = 5. The graphs (a), (b),
(c) and (d) show that the pdf of the GU distributions is positively skewed, negatively
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Fig. 1. Plots of the pdf, cdf and hazard rate function of the GU

distribution for various values of α, β and a = 0, b = 5.
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skewed, reverse ‘J’ shaped and convex-concave shape, respectively, for various values of
α and β.

The graph (g) illustrates that the hazard rate function is bathtub shaped. However,
the GU distribution provide a reasonable parametric fit for modelling phenomenon with
non-monotone failure rate such as the bathtub shaped, which are common in reliability
and biological studies. Also, the graph (h) illustrates an increasing failure rates (IFR)
function. Hence it can be used in some lifetime data analysis.

3. MOMENTS

In general, exact moments of the GU distribution cannot be calculated. However we
derive some closed form expressions for the first four moments, variance, skewness and
kurtosis.

In the subsequent, we will use the function E[n, z] which is defined by

E[n, z] = ExpIntegralE[n, z] =
∫ ∞

1

e−zt/tn

dt.

E(X) =
1
β

{
e

1
β

(
aE[α,

1
β

] + bαβE[1 + α,
1
β

]
)}
,

E(X2) =
1
β2

{
β
(
(a−b)2 + b2β

)
−(a− b)e

1
βE[α,

1
β

]
(
a+aβ(α−1)−b(1+β+αβ)

)}
,

E(X3) =
1

2β2

{
β
(
α(a− b)3 + β

(
2a3 − 3α(a− b)2(a+ b) + α2(a− b)3

))
−(a− b)αe

1
βE[1 + α,

1
β

]
(
− 2ab

(
1 + β + 2αβ + β2(α2 − 1)

)
+a2

(
1+β(α−1)(β(α−2)+2)

)
+b2

(
1+β(α+2)(β+αβ+2)

))}
,

E(X4) =
1

6β4

{
β
(
(a− b)4 + (a− b)3β

(
a(2α− 3)− b(2α+ 9)

)
+ (a− b)2β2

×
(
a2(α−3)(α−2)−2ab(−6+α+α2)+b2(18+α(α+7))

)
+6b4β3

)
+(b− a)e

1
βE[α,

1
β

]
(
− 3a2b

(
1 + β + 3αβ + β2(α− 1)(2 + 3α)

+β3(α− 2)(α− 1)(α+ 1)
)

+ 3ab2(1 + β + αβ)
(
1 + β(α+ 2)(2 + β

×(α− 1))
)

+ a3
(
1 + (α− 1)β(3 + β(α− 2)(3 + β(α− 3)))

)
+b3

(
− 1− β(α+ 3)(3 + (2 + α)β(3 + β + αβ))

))}
.

Suppose X is a random variable with the pdf given by (6). If a = 0 and b = 1 then

E(Xn) = (α)nU
(
n, 1− α,

1
β

)
,
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where (α)n = Γ(α+n)
Γ(α) is Pochhammer symbol and

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt

is confluent hyper geometric function.
Further calculations show that first three important central moments, skewness and

kurtosis of X can be given by

V ar(X) =
(a− b)2

β2

{
β − e

1
βE[α,

1
β

]
(
1 + (α− 1)β + e

1
βE[α,

1
β

]
)}

=:
(a− b)2s1

β2

E[{X − E(X)}3] =
(a− b)3

2β3

{
− β(1 + (α− 2)β) + e

1
βE[α,

1
β

]

×
(
1 + 2β(α− 4) + β2(α− 2)(α− 1) + 2e

1
βE[α,

1
β

]

×
(
3 + 3β(α− 1) + 2e

1
βE[α,

1
β

]
))}

=:
(a− b)3s2

2β3

E[{X − E(X)}4] =
(a− b)4

6β4

{
β
(
1 + β

(
− 3 + 2α+ (6− 5α+ α2)β

))
−e

1
βE[α,

1
β

]
(

1 + 3β(α− 5) + 3β2(α− 5)(α− 2)

+β3(α− 3)(α− 2)(α− 1) + 6e
1
βE[α,

1
β

]

×
(
2
(
1 + β(−5 + 2α+ (2− 3α+ α2)β)

)
+ 3e

1
β

×E[α,
1
β

]
(
2 + 2β(α− 1) + e

1
βE[α,

1
β

]
)))}

=:
(a− b)4s3

6β4

and
Skewness(X) =

−s2
2
√
s1
, Kurtosis(X) =

s3
6s21

− 3,

respectively. Note that the skewness and kurtosis measures depend only on α and β.
These measures are calculated and summarized in Table 1 for some parameters values.

The required numerical evaluations were implemented using the Mathematica (version
7) software through the some commands like ExpIntegralE.

From Table 1, it is concluded that for a constant α, the skewness measurement is a
decreasing function of β.

4. PERCENTILES

The pth percentile xp, is defined by F (xp)=p. From (5), we have 1−Q
(
α,

xp−a
β(b−xp)

)
=p.

If z1−p = xp−a
β(b−xp) , then z1−p = Q−1(α, 1 − p), where Q−1 is the inverse of regularized

incomplete gamma function. Thus xp = a+βbz1−p

1+βz1−p
.



22 H. TORABI AND N.H. MONTAZERI

α β E(X) Var(X) Skewness(X) Kurtosis(X)

0.02 0.2 -4.9660 0.0446 10.2131 133.3170
2 -4.8178 0.7369 6.0870 40.3935
10 -4.6067 2.2505 4.3676 18.8672

0.5 0.2 -4.2079 0.8622 1.6905 2.9297
2 -1.5568 7.0084 0.3140 -1.1780
10 0.9443 9.7743 -0.5957 -1.0360

2 0.2 -2.3945 1.6547 0.3393 -0.4545
2 2.3073 2.3584 -1.3031 1.7293
10 4.2015 0.5784 -3.3861 17.4109

10 0.2 1.5189 0.5329 -0.5709 0.4121
2 4.4769 0.0294 -1.3776 3.7337
10 4.8903 0.0015 -1.5605 5.0870

Tab. 1. Mean, variance, skewness and kurtosis of GU(α, β,−5, 5) for

various values of α, β.

Example 4.1. If X ∼ GU(2, 4, 0, 5) and p = 0.5, then z0.5 = Q−1(2, 0.5) = 1.67835.
Therefore the median of the distribution is x0.5 = 4.35178.

5. ASYMPTOTIC PROPERTIES

Let X1, . . . , Xn be a random sample of (3). Sometimes one would be interested in the
asymptotic of extreme values Xn:n = max(X1, . . . , Xn) and X1:n = min(X1, . . . , Xn).
The limiting distribution of Yn = Xn:n−bn

an
is Type I (Exponential type), since limn→∞ n[1−

F (any + bn)] = e−y in which an and bn are the solution of the system F (an + bn) =
1− (ne)−1 and F (bn) = n−1

n . Hence, it follows of Theorems 7.8.3 and 7.8.5 from [2] that

P (Yn ≤ y) ≈ G(1)(y) = exp(−e−y), −∞ < y <∞.

and the exact distribution of Yn is

Gn(y) = [FX(any + bn)]n = 1−
[
Q

(
α,

any + bn − a

β(b− any − bn)

)]n

,
a− bn
an

< y <
b− bn
an

.

The limiting distribution of Wn = X1:n+bn

an is type III (limiting Type), since

limy→0
F (ky − bn)
F (y − bn)

= kα where bn = − inf{x| F (x) > 0} = −a and an = bn + sn

in which sn is the solution of nF (sn) = 1. Hence, it follows from Theorem 7.8.6 from
[2] that

P (Wn ≤ w) ≈ H(3)(w) = 1− exp(−wα), w > 0.

and the exact distribution of Wn is

Hn(w) = 1− [1− FX(anw − bn)]n = 1−
[
Q

(
α,

anw

β(b− anw − a)

)]n

, 0 < w <
b− a

an
.
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Example 5.1. Suppose again that X ∼ GU(2, 4, 0, 5), and we are interested to obtain
the distribution of the maximum and minimum of a random sample of size n = 100.
It can be easily shown that bn and an is obtained from the solution of the system
1 − Q

(
2, bn

4(5−bn)

)
= 99

100 and 1 − Q
(
2, an+bn

4(5−an−bn)

)
= 1 − (100e)−1 which gives an =

0.025748 and bn = 4.81853.
For minimum of a random sample, we have bn = −a = 0 and sn is obtained from

1−Q
(
2, sn

4(5−sn)

)
= 1

100 which gives sn = 1.86367, thus an = 1.86367.
In Figure 2, graphs of Gn(y), G(1), Hn(w) and H(3)(w) for n = 100 are illustrated.

Fig. 2. Comparison of cdf Gn(y) with limiting cdf G(1)(y) and cdf

Hn(w) with limiting cdf H(3)(w) for n = 100.

According to the Figure 2, it is concluded that for the extremes, the limiting distri-
bution is a good approximation to the original one.

6. SHANNON AND RÉNYI ENTROPY

An entropy of a random variable X with the pdf f(·), is a measure of variation of the
uncertainty. Denote by HSh(f) the well-known Shannon entropy introduced by Shannon
(1948). It is defined by

HSh(f) = E[− log f(X)] = −
∫
X
f(x) log(f(x)) dx. (8)

One of the main extensions of this entropy was defined by Rényi (1961). This generalized
entropy measure is given by

HR(λ) = HR(λ, f) =
1

1− λ
log

∫
X
f(x)λ dx, λ > 0 and λ 6= 1. (9)

The additional parameter λ is used to describe complex behaviour in probability models
and the associated process under study. Rényi entropy HR(λ) is monotonically decreas-
ing in λ while Shannon entropy (8) is obtained from HR(λ) for λ ↑ 1; see for more details
[20].
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The Shannon entropy of the GU distribution is

HSh(f) = α+ log β + log Γ(α)− (α− 1)ψ(α) + β−α

{
(α− 1)×

(
βα log β

−U (1,0,0)(α, α+ 1,
1
β

)− (α+ 1)U (0,1,0)(α, α+ 1,
1
β

)
}

+ log(b− a)

= HSh(fW ) + β−α

{
(α− 1)×

(
βα log β − U (1,0,0)(α, α+ 1,

1
β

)

−(α+ 1)U (0,1,0)(α, α+ 1,
1
β

)
}

+HSh(fU ),

where U (1,0,0)(a, b, z) = ∂aU(a, b, z), U (0,1,0)(a, b, z) = ∂bU(a, b, z), ψ(z) = d lnΓ(z)/dz =
Γ
′
(z)/Γ(z) is Poly Gamma function, HSh(fW ) is Shannon entropy of G(α, β) and

HSh(fU ) is Shannon entropy of U(a, b).
The Rényi entropy of the GU distribution if λα− λ+ 1 > 0 is

HR(λ, f) =
1

1− λ

[
log Γ(λα− λ+ 1)− (λα− λ+ 1) log λ− λ log Γ(α)− (λ− 1) log β

+(λα− λ+ 1) log
λ

β
+ logU(λα− λ+ 1, λ+ λα,

λ

β
)
]

+ log(b− a)

= HR(λ, fW ) +
1

1− λ

[
(λα− λ+ 1) log

λ

β
+ logU(λα− λ+ 1, λ+ λα,

λ

β
)
]

+HR(λ, fU ),

where HR(λ, fW ) is Rényi entropy of Gamma(α, β) and HR(λ, fU ) is Rényi entropy of
U(a, b).

7. SIMULATION

For simulation of the distribution, note from (5) that if W is a random number from a
Gamma(α, β), then

G−1

(
W

1 +W

)
=

W

1 +W
(b− a) + a =

a+ bW

1 +W

will follow the pdf of (5).

8. INFERENCE

In this section, estimating by the method maximum likelihood (ML) are discussed. The
log-likelihood function for a random sample X1, . . . , Xn from (6) is:

` := logL(α, β, a, b) = n log(b− a)− nα log β − n log Γ(α)−
n∑

i=1

(
xi − a

β(b− xi)

)

+(α− 1)
n∑

i=1

log
(
xi − a

b− xi

)
− 2

n∑
i=1

log(b− xi)
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The required numerical evaluations were implemented using the R software through the
package (stats4), command mle with the L-BFGS-B method, because the boundaries of
the range of the distribution are restricted by parameters a and b.

We simulate n =20, 40, 60 and 100 times the GU distribution for α = 2, β = 0.4,
a = 0,−5 and b = 5. For each sample size, we compute the MLE’s of α, β, a and b. We
repeat this process 1000 times and compute the average estimators (AE), Bias and the
mean squared errors (MSE). The results are reported in Table 2.

a = 0 a = −5
n AE Bias MSE AE Bias MSE

20 α 1.644 -0.356 12.847 1.660 -0.340 9.726
β 1.390 0.990 2.612 1.697 1.297 6.264
a 0.218 0.218 3.441 -4.608 0.392 16.070
b 4.419 -0.581 2.302 3.823 -1.177 11.389

40 α 1.852 -0.148 4.893 1.749 -0.251 4.956
β 0.752 0.352 0.387 0.878 0.478 0.572
a 0.149 0.149 0.711 -4.643 0.357 3.131
b 4.734 -0.266 1.259 4.281 -0.719 5.782

60 α 1.842 -0.158 1.463 1.656 -0.344 2.789
β 0.636 0.236 0.187 0.866 0.466 0.516
a 0.129 0.129 0.146 -4.637 0.363 1.472
b 4.841 -0.159 0.979 4.315 -0.685 4.320

100 α 1.887 -0.113 0.898 1.711 -0.289 0.842
β 0.534 0.134 0.074 0.659 0.259 0.182
a 0.080 0.080 0.086 -4.735 0.265 0.331
b 4.874 -0.126 0.549 4.468 -0.532 2.183

Tab. 2. Estimated AE, Bias and MSE based on 1000 simulations of

the GU distribution with α = 2, β = 0.4, a = 0,−5 and b = 5, with

n=20, 40, 60, and 100.

Comparing the performance of all the estimators, it is observed that values the MSE’s
decrease as the sample size increase.

For fixed a and b, to obtain interval estimation and to test for α and β, one requires

the 2× 2 expected information matrix I. One obtains I =
2664 I11 I12
I21 I22

3775, where

I11 = −E
[
∂2f(X;θ)

∂α2

]
= ψ

′
(α), I12 = I21 = −E

[
∂2f(X;θ)
∂α∂β

]
=

1
β
,

I22 = −E
[
∂2f(X;θ)

∂β2

]
=

α

β2
,

and θ = (θ1, θ2) := (α, β).
Under conditions that are fulfilled for parameters in the interior of the parameter

space but not on the boundary, the asymptotic distribution of
√
n(θ̂−θ) isN2(0, I−1(θ)),
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where θ̂ is the MLE of θ. An asymptotic confidence interval (ACI) with significance level
γ for each parameter θi is given by

ACI(θi, 100(1− γ)) =
(
θ̂i − zγ/2

√
I−1(θ̂)i/n, θ̂i + zγ/2

√
I−1(θ̂)i/n

)
, i = 1, 2,

where I−1(θ̂)i is the ith diagonal element of I−1(θ) estimated at θ̂. I−1(θ̂)1 and I−1(θ̂)2
can be written as

I−1(θ̂)1 =
I22

I11I22 − I2
12

=
α̂

α̂ψ′(α̂)
,

and

I−1(θ̂)2 =
I11

I11I22 − I2
12

=
β̂2ψ

′
(α̂)

α̂ψ′(α̂)
,

respectively.
We simulate n =20, 40, 60 and 100 times the GU distribution for α = 2, β = 0.4 and

fixed a = 0,−5 and b = 5. For each sample size, we compute the MLE’s of α and β.
We also compute the asymptotic confidence interval in each replications and repeat this
process 1000 times and compute the AE, Bias, MSE, coverage probabilities (CP) and
ACI. The results are reported in Table 3.

n AE Bias MSE CP ACI
20 α 2.290 0.290 0.596 0.96 (1.286, 3.293)

β 0.380 1.890 0.018 0.87 (0.214, 0.547)
40 α 2.182 0.182 0.282 0.96 (1.506, 2.859)

a=0 β 0.385 1.782 0.009 0.88 (0.265, 0.504)
60 α 2.094 0.094 0.154 0.95 (1.564, 2.624)

β 0.396 1.694 0.007 0.92 (0.295, 0.496)
100 α 2.053 0.053 0.079 0.96 (1.651, 2.456)

β 0.396 1.653 0.003 0.93 (0.319, 0.474)
20 α 2.339 0.339 0.682 0.97 (1.314, 3.364)

β 0.375 1.939 0.016 0.86 (0.210, 0.539)
40 α 2.148 0.148 0.258 0.95 (1.482, 2.814)

a=-5 β 0.389 1.748 0.009 0.90 (0.269, 0.510)
60 α 2.084 0.084 0.139 0.96 (1.557, 2.611)

β 0.394 1.684 0.006 0.93 (0.294, 0.493)
100 α 2.041 0.041 0.072 0.96 (1.641, 2.441)

β 0.399 1.641 0.004 0.93 (0.321, 0.477)

Tab. 3. Estimated AE, Bias, MSE, CP and ACI based on 1000

simulations of the GU distribution with fixed a = 0,−5, b = 5 and

α = 2, β = 0.4 with n= 20, 40, 60 and 100.

It is observed that for all the parametric values the MSE’s and the biases decrease as
the sample size increase. It is also interesting to observe that the asymptotic confidence
interval maintains the nominal coverage probabilities. Therefore, the MLE’s and their
the asymptotic results can be used for estimating and constructing confidence intervals
even for small sample sizes.
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9. APPLICATIONS

In this section, we fit the GU model to two real data sets and show that the GU distribu-
tion is more flexible in analyzing of the data than of the Beta Generalized-Exponential
(BGE) [3], Beta-Exponential (BE) [14], Beta-Pareto (BP)[1], Generalized Exponen-
tial(GE) [9], Exponential Poisson (EP) [11], Beta Generalized Half-Normal (BGHN)
[17] and Generalized Half-Normal (GHN)[4] distributions.

The data set is given in Feigl and Zelen [8] for two groups of patients who died of acute
myelogenous leukemia. The patients were classified into the two groups according to the
presence or absence of a morphologic characteristic of white cells. The patients termed
AG positive were identified by the presence of Auer rods and/or significant granulative
of the leukemic cells in the bone marrow at diagnosis. For the AG negative patients
these factors were absent.

In order to compare the models, we used following four criterions: Akaike Informa-
tion Criterion(AIC), Bayesian Information Criterion (BIC), Kolmogorov–Smirnov (K-S)
statistic and the P-value from the chi-square goodness of fit test, where the lower values
of AIC, BIC and K-S statistic and the upper value of P-value for models indicate that
these models could be chosen as the best model to fit the data. The K-S statistic and
the corresponding P-value evaluations were implemented using the R software through
the command ks.test. The results of the K-S test are just illustrative from this reason,
unknown parameters of distribution were replaced by their ML estimates.

9.1. The myelogenous leukemia data for AG positive

In this subsection we fit a GU model to one real data set. The convex-concave data
is obtained from Feigl and Zelen [8] represent observed survival times (weeks) for AG
positive. The data set is: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5,
65.

Table 4 lists the MLEs of the parameters from the fitted GU, BGHN, GHN, GE, EP
and BP models and the values of the following statistics: AIC, BIC and K-S statistic.
The computations were performed with the R software. These results indicate that the
GU model has the lowest values for the AIC and BIC criteria among the fitted models,
and therefore it could be chosen as the best model.

Model Parameters AIC BIC K-S P-value

GU α̂ = 0.297, β̂=6.657, â=0.99, b̂=166.39 162.4 165.8 0.105 0.992

BGHN â = 0.09, b̂=0.40, α̂=5.99, θ̂=132.49 174.9 178.2 0.095 0.998

GHN α̂ = 0.76, θ̂= 73.62 176.6 178.3 0.145 0.865

GE α̂ = 0.757, λ̂=0.013 177.6 179.3 0.148 0.853

EP λ̂ = 0.01, β̂=0.016 178.6 180.3 0.158 0.789

BP â = 20.35, b̂= 32.71, θ̂=0.01, k̂= 0.06 189.6 192.9 0.198 0.515

Tab. 4. MLEs of the model parameters for the myelogenous

leukemia data (AG positive) and the measures AIC, BIC and K-S

statistics.
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Note that regarding to Table 4, the P-value of the GU distribution (0.992) is slightly
less than the P-value of the BGHN distribution (0.998) but based on the AIC, the GU
distribution is the best fitted distribution.

9.2. The myelogenous leukemia data for AG negative

In this subsection we fit a GU model to one real data set. The reverse ‘J’ shaped data
is obtained from Feigl and Zelen [8] represent observed survival times (weeks) for AG
negative. The data set is: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

Table 5 lists the MLEs of the parameters from the fitted GU, EP, BP, GHN, BGHN,
BGE, BE and GE models and the values of the following statistics: AIC , BIC and K-S.
These results indicate that the GU model has the lowest values for the AIC, BIC and
K-S statistics among the fitted models, and thus the GU distribution is more suitable
than other distributions.

Model Parameters AIC BIC K-S P-value

GU α̂ = 0.46, β̂=0.30, â=1.99, b̂=165.39 123 126.1 0.18 0.682

EP λ̂ =1.01, β̂=0.04 129.1 130.6 0.211 0.476

BP â =1.53, b̂=9.88, θ̂=1.86, k̂=0.09 129.7 132.8 0.22 0.445

GHN α̂ =0.74 ,θ̂=22.79 130.2 131.8 0.22 0.42

BGHN â = 148.23, b̂=94.77, α̂=0.06, θ̂=136.5 131.9 134.98 0.23 0.355

BGE â = 37.95, b̂=3.33, λ̂=0.013, α̂=0.04 132.9 135.9 0.23 0.352

BE â = 0.96, b̂=2.998, λ̂=0.017 131.5 133.8 0.24 0.336

GE α̂ = 0.097, λ̂=0.053 129.5 131 0.24 0.330

Tab. 5. MLEs of the model parameters for myelogenous leukemia

data (AG negative) and the measures AIC, BIC and K-S statistics.

The plots of the estimated densities of distributions fitted to the data set (top plots)
and empirical and four fitted cdf (bottom plots) for the myelogenous leukemiain data in
Figure 3 shows that the GU distribution gives a better fit than the other models.

10. CONCLUSIONS

In this paper, a new flexible class of distributions is considered. Then for a special case
of this class, i.e, the Gamma-Uniform distribution, some moments, Shannon and Rényi
entropy are derived. Finally, the asymptotic distribution of the extreme order statistics
and simulation issues, estimation by method of maximum likelihood and the expected
information matrix are discussed.

An application of the GU distribution to two real data sets are given to demon-
strate that this distribution can be used quite effectively to provide better fit than other
available models.



The gamma-uniform distribution 29

myelogenous leukemia data (AG positive)

D
en

si
ty

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

GU
BGHN
GHN
GE

myelogenous leukemia data (AG negative)

D
en

si
ty

0 10 20 30 40 50 60 70

0.
00

0.
02

0.
04

GU
EP
BP
GHN

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

myelogenous leukemia data (AG positive)

F
n(

x)

GU
BGHN
GHN
GE

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

myelogenous leukemia data (AG negative)

F
n(

x)

GU
EP
BP
GHN

Fig. 3. Estimated densities of distributions (top plots), empirical and

four fitted cumulative distribution functions (bottom plots) for the

myelogenous leukemia data.
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