Kybernetika 48 no. 1, 130-143, 2012

Bounds of general Fréchet classes

Jaroslav Skřivánek


This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.


copula, Fréchet class, Diophantine equation


60E05, 62H20, 11D45


  1. F. Durante, E. P. Klement and J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. ID 161537 (2008).   CrossRef
  2. P. Embrechts, F. Lindskog and A. McNeil: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.   CrossRef
  3. P. Embrechts: Copulas: A personal view. J. Risk Insurance 76 (2009), 3, 639-650.   CrossRef
  4. H. Joe: Multivariate models and Dependence Concepts. Chapman\&Hall, London 1997.   CrossRef
  5. R. B. Nelsen: Introduction to Copulas. Springer-Verlag, New York 2006.   CrossRef
  6. C. Genest and J. Nešlehová: A primer on copulas for count data. Astin Bull. 37 (2007), 2, 475-515.   CrossRef
  7. A. P. Tomás and M. Filgueiras: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence - EPIA'97, Lecture Notes in Artificial Intelligence 1323 (E. Costa and A. Cardoso, eds.), Springer-Verlag 1997, pp. 73-84.   CrossRef