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HOLT–WINTERS METHOD
WITH GENERAL SEASONALITY

Tomáš Hanzák

The paper suggests a generalization of widely used Holt–Winters smoothing and forecasting
method for seasonal time series. The general concept of seasonality modeling is introduced both
for the additive and multiplicative case. Several special cases are discussed, including a linear
interpolation of seasonal indices and a usage of trigonometric functions. Both methods are
fully applicable for time series with irregularly observed data (just the special case of missing
observations was covered up to now). Moreover, they sometimes outperform the classical Holt–
Winters method even for regular time series. A simulation study and real data examples
compare the suggested methods with the classical one.
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1. INTRODUCTION

Holt–Winters method employs p seasonal indices (additive or multiplicative) to model
the seasonal pattern of length p, see e. g. [8] or [14]. Many modifications appeared later,
introducing different trend types than the basic (locally) linear: exponential, damped
linear or damped exponential, see [6] for a nice overview.

However, smaller attention was paid to the seasonality modeling, even though the us-
age of seasonal indices brings couple of limitations, see Section 2. Holt–Winters method
with general seasonality modeling is therefore suggested in this paper. The goal is to offer
a broader spectrum of possibilities for seasonality treatment while staying in the widely
known and understood framework of the Holt–Winters method. The suggested meth-
ods are applicable also for irregular time series and both additive and multiplicative
seasonality is offered.

Model based approach to exponential smoothing (various ARIMA, SARIMA and
state space models) was often applied, see e. g. [1, 10, 11] or [3]. In contrast to that,
the method suggested in this paper can be viewed as ad-hoc, following the tradition
of exponential weighting idea from [4, 8, 14, 15] or [7]. This hopefully supports the un-
derstandability of the method while it does not harm its smoothing and forecasting
performance; [1] and [3] showed that the performance of ad-hoc methods is fairly com-
parable with that of the optimal model based ones.
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In Section 2 the classical Holt–Winters method is reminded. In Section 3 Holt–
Winters method with a general seasonality modeling (in its additive and multiplicative
variants) is presented. The properties of the method are discussed, its theoretical jus-
tification based on Discounted Least Squares (DLS) estimation is given and the imple-
mentation details are outlined here. In Section 4 we discuss particular methods useful
in practice, including linearly interpolated seasonal indices and trigonometric functions.
Sections 5 and 6 compare the suggested methods numerically with the classical one
on simulated and real data, respectively. Section 7 brings the summary of the paper.

2. CLASSICAL HOLT–WINTERS METHOD

To remind it and to unify its notation, we release the basic formulas of the classical
Holt–Winters method here. Let {yt, t ∈ Z} be a regular time series with locally linear
trend and additive seasonality of period p ≥ 2. We consider its level Lt, slope Tt and
seasonal index St at time t. S’s are supposed to approximately sum up to 0 and repeat
after period p.

The forecast ŷt+τ (t) of the future unknown observation yt+τ , τ > 0, constructed
at time t, is

ŷt+τ (t) = Lt + τ · Tt + St⊕τ , (1)

where t⊕τ = t+1−p+[(τ − 1) mod p]. After a new observation yt+1 becomes available,
the level, slope and seasonal index are updated using the recursive formulas

Lt+1 = (1− α) · (Lt + Tt) + α · (yt+1 − St+1−p) , (2)
Tt+1 = (1− γ) · Tt + γ · (Lt+1 − Lt) , (3)
St+1 = (1− δ) · St+1−p + δ · (yt+1 − Lt+1) , (4)

where α, γ, δ ∈ (0, 1] are smoothing constants (for level, slope and seasonal indices).
Equations (2) – (4) are often rewritten to their equivalent error-correction form (see e. g.
[5] or [6]):

Lt+1 = Lt + Tt + α · et+1 , (5)
Tt+1 = Tt + α · γ · et+1 , (6)
St+1 = St+1−p + (1− α) · δ · et+1 , (7)

where et+1 = yt+1 − ŷt+1(t) is the one-step-ahead forecasting error at time t + 1.
To use the seasonal indices, we must be able to assign each observation to exactly

one of p calendar units forming the complete period (e. g. January, February etc.
for monthly observations with annual seasonality, p = 12). This is still possible in a time
series with missing observations, see [4] for such an extension of Holt–Winters method.
However, the calendar assignment is not possible in a general irregular time series and
so there was no Holt–Winters method available for this case up to now.

Time series with p � 0, i. e. with many observations per one period, are also not
favorable for the classical Holt–Winter method since we need to carry out enormous
number of seasonal indices to form the seasonal pattern. This is unpleasant especially
when the seasonal pattern is relatively smooth.
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The above mentioned issues can be overcome by using a different or extended season-
ality modeling while not leaving the widely understandable framework of Holt–Winters
method at the same time. The general approach and its special cases are presented
in Sections 3 and 4.

3. GENERAL SEASONALITY MODELING IN HOLT–WINTERS METHOD

Seasonality can be generally modeled using K ≥ 1 different real-valued functions f1, f2,
. . . , fK , all defined on R. Each fk is supposed to be periodic with a specific period
pk ∈ (0,+∞). The seasonal pattern S is formed as a linear combination of fk as
in a linear regression:

S(t) =
∑K

k=1
Ak · fk(t) , (8)

where t ∈ R is time and Ak ∈ R are appropriate amplitudes.
In the case of an additive seasonality, this S(t) is then added to the time series level

Lt to create the smoothed value:

ŷt = Lt + S(t) (9)

while to get a multiplicative seasonality, Lt is multiplied by the exponential of S(t):

ŷt = Lt · exp[S(t)] . (10)

We suppose fk just to be bounded. One can take functions fk centered to 0 in a certain
sense. It is also reasonable (but not necessary) for fk to be linearly independent, see (8).

3.1. Method formulation

Now we will incorporate the above described general seasonality modeling concept into
Holt–Winters method. Let {ytn , n ∈ Z}, tn+1 > tn, be an irregular seasonal time
series with locally linear trend (the other trend types can be used as well) and additive
seasonality (multiplicative case will be described later in Section 3.3). We consider its
level Ltn , slope Ttn and seasonal component

Stn(t) =
∑K

k=1
Ak

tn
· fk(t) (11)

at time tn. Here Ak
tn

are adaptive amplitudes valid at time tn. We must correctly
distinguish between the two different times t and tn here.

The forecast ŷtn+τ (tn) and the smoothed value ŷtn
are analogous to (1):

ŷtn+τ (tn) = Ltn + τ · Ttn + Stn(tn + τ) , (12)
ŷtn

= Ltn
+ Stn

(tn) . (13)

After a new observation ytn+1 becomes available, the level L, slope T and the K seasonal
amplitudes Ak, k = 1, . . . ,K, are updated using error-correction formulas analogous
to (5) – (7):

Ltn+1 = Ltn + (tn+1 − tn) Ttn + αtn+1etn+1 , (14)
Ttn+1 = Ttn + αtn+1γtn+1etn+1/(tn+1 − tn) , (15)

Ak
tn+1

= Ak
tn

+ (1− αtn+1) δk
tn+1

etn+1/fk(tn+1) , (16)
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where etn+1 = ytn+1 − ŷtn+1(tn) and we take 0/0 = 0 by definition in (16). Formu-
las (14) and (15) are equivalent to those in [15] and [4]. The factor (1 − αtn+1)δ

k
tn+1

in (16) expresses the portion of etn+1 which is absorbed to the kth seasonal component
Ak

tn+1
fk(tn+1). The division by fk(tn+1) in (16) is due to (11) and it is not in conflict

with the additive seasonality used.
Smoothing coefficient αtn

∈ (0, 1] for level in (14) is updated in a recursive way,
following the basic idea of exponential weighting, exactly as in [15] and [4]:

αtn+1 =
αtn

αtn
+ (1− α)tn+1−tn

, (17)

where α ∈ (0, 1] is a smoothing constant for level.
For the smoothing coefficient γtn ∈ (0, 1] for slope in (15), we will rather use a modified

updating formula from [7]:

γtn+1 =
γtn

γtn + tn−tn−1
tn+1−tn

(1− γ)tn+1−tn

, (18)

where γ ∈ (0, 1] is a smoothing constant for slope. For irregular time series, this differs
from that one used in [15] or [4]:

γ∗tn+1
=

γ∗tn

γ∗tn
+ (1− γ)tn+1−tn

. (19)

The modified coefficient γtn+1 defined by (18) makes the slope estimate Ttn+1 in (15)
safe from a negative impact of the time distance tn+1 − tn being close to zero. See [7]
for further details and evaluation of this modification on the non-seasonal Holt method.

Smoothing coefficients δk
tn

, k = 1, . . . ,K, for the seasonal amplitudes in (16) are also
updated in a recursive way. We consider K generally different smoothing constants
δk ∈ (0, 1] belonging to each of the functions fk (but we can take δk ≡ δ as a special
case). For k = 1, . . . ,K let us denote

W k
tn
≡

∑+∞

j=0

(
1− δk

)tn−tn−j
f2

k (tn−j) . (20)

Obviously W k can be easily updated recursively over time:

W k
tn+1

=
(
1− δk

)tn+1−tn ·W k
tn

+ f2
k (tn+1) . (21)

For k = 1, . . . ,K, let us further denote the dimensionless quantities

∆k
tn+1

≡ f2
k (tn+1) / W k

tn+1
(22)

(we take again 0/0 = 0). Since according to (20) it is 0 ≤ f2
k (tn+1) ≤ W k

tn+1
, we have

∆k
tn+1

∈ [0, 1]. This is declared to be the ideal value for δk
tn+1

in the case that K = 1,
i. e. if there was no competition between individual fk’s.

Formula (22) is consistent with the fundamental idea of exponential weighting, see [15]
for simple exponential smoothing. In (20) together with (22), besides the observation
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time tn−j , we measure the relevance of a particular observation ytn−j with respect to Ak

also by the magnitude f2
k (tn−j). This expresses the fact that if fk(tn−j) ≈ 0 then

the observation at time tn−j contains very little information about the value of Ak.
In Section 3.2 we give additional justification for the choice in (20) and (22).

However, if K > 1 (which is typically the case), it can happen that
∑K

k=1 ∆k
tn+1

> 1
which implies that the total portion of the error absorbed would exceed 100 % if one used
δk
tn+1

= ∆k
tn+1

. So it is necessary to normalize ∆k
tn+1

in a suitable way to get the final
coefficients δk

tn+1
. We let

∆tn+1 ≡ 1−
∏K

k=1

(
1−∆k

tn+1

)
∈ [0, 1] (23)

to be the total portion of the error absorbed instead of

Dtn+1 ≡
∑K

k=1
∆k

tn+1
≥ 0 . (24)

To achieve this, let us take the final smoothing coefficients δk
tn+1

as

δk
tn+1

≡
∆tn+1

Dtn+1

·∆k
tn+1

∈ [0, 1] , k = 1, . . . ,K (25)

(again take 0/0 = 0). The motivating interpretation of (23) vs. (24) is that we rather
imagine independence than disjointness of the k events of absorbtion with probabilities
∆k

tn+1
.

Let us summarize that the suggested Holt–Winters method with general seasonality
consists of formulas (14) – (18) and (21) – (25). One needs to keep totally 4 + 2K nu-
merical variables in memory which are updated through the time by the above listed
recursive formulas. The computational complexity of the method is comparable with
that from [4] and is reduced with lower number K of seasonal functions fk or when some
of them are repeatedly equal to 0 (see Section 4 for concrete examples).

3.2. Properties of the method and its theoretical justification

The smoothing coefficients δk
tn+1

as defined in (20) – (25) have reasonable properties:

• By Ak
tn+1

update we move from ŷtn+1(tn) closer to ytn+1 . Summing the k move-
ments, we come to Stn+1(tn+1) = Stn(tn+1)+(1−αtn+1)∆tn+1etn+1 , see (11), (16),
(24), (25). So the total portion of etn+1 absorbed by seasonals is (1−αtn+1)∆tn+1 ∈
[0, 1]. Compare this with (7).

• The error etn+1 is absorbed more to fk with higher δk (i. e. it has really the meaning
of a smoothing constant) and with f2

k (tn+1) larger compared to its recent values,
see (20) and (22).

• If fk(tn+1) → 0 then (ceteris paribus) δk
tn+1

/fk(tn+1) → 0. This means that we do
not need to worry about values of fk near to 0, see the division in (16).
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To justify the concrete choice in (20) and (22) for δk ≡ δ, let us consider a Discounted
Least Squares (DLS) estimation of K parameters Ak in the linear regression model

yt ≈
∑K

k=1
Ak fk(t) (26)

with discount factor 1−δ ∈ (0, 1). The minimized criterion based on the data up to time
tn is

Σn(A) ≡
∞∑

j=0

[
ytn−j

−
∑K

k=1
Ak fk(tn−j)

]2

(1− δ)tn−tn−j , (27)

where we denoted A = (A1, . . . , AK)′. We purposely do not consider the level-trend
component L + t · T in (26) since we focus on the seasonal smoothing coefficients δtn

here (we can think of y here as being after a trend elimination).
Denote by Atn the argument of minima of Σn(A). It is

Atn
= (F ′

nDnF n)−1F ′
nDnY n , (28)

where F n = {fk(tn−j)}k=1,...,K
j=0,1,2,... is the regression design matrix, Dn = Diag{1, (1 −

δ)tn−tn−1 , (1 − δ)tn−tn−2 , . . .} is the diagonal discounting matrix and Y n = (ytn , ytn−1 ,
ytn−2 , . . .)

′1. Further denote

ŷtn+1(tn) =
∑K

k=1
Ak

tn
fk(tn+1) (29)

the regression prediction of ytn+1 using the estimate Atn and etn+1 = ytn+1 − ŷtn+1(tn)
the corresponding prediction error. Since it is

Σn+1(A) = (1− δ)tn+1−tn · Σn(A) +
[
ytn+1 − ŷtn+1(tn+1)

]2
, (30)

ytn+1 = ŷtn+1(tn) implies Atn+1 = Atn
2. This fact together with (28) gives us

Atn+1 = Atn + (F ′
n+1Dn+1F n+1)−1{fk(tn+1)}k=1,...,K · etn+1 , (31)

where {fk(tn+1)}k=1,...,K is the first column (j = 0) of matrix F ′
n+1.

Given that K × K matrix F ′
n+1Dn+1F n+1 is diagonal (i. e. the regressors fk are

orthogonal in the sense that fk · fl ≡
∑+∞

j=0(1 − δ)tn+1−tn+1−jfk(tn+1−j)fl(tn+1−j) = 0
for all k 6= l), we get

Ak
tn+1

= Ak
tn

+
fk(tn+1)
W k

tn+1

etn+1 = Ak
tn

+ ∆k
tn+1

etn+1/fk(tn+1) , (32)

where W k
tn+1

and ∆k
tn+1

are defined exactly as before. This result support the definition
of ∆k

tn+1
in (22).

1The infinite dimension of the matrices F n, Dn and Y n just turns the scalar products from finite
sums to series sums convergent due to exponential decay of (1− δ)tn−tn−j .

2Atn makes Σn(A) minimal and the second summand 0 due to ŷtn+1 (tn+1) = ŷtn+1 (tn) = ytn+1 .
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Ignoring the possible non-zero off-diagonal elements of matrix F ′
n+1Dn+1An+1 is

the reason why we need to do the normalization in (25). If we solved correctly K ×K
matrix inversion in (31), we would receive directly reasonable values for δk

tn+1
with

no additional normalization needed.
Since K is typically quite large (e. g. 12), we prefer the simplified approach of (20) –

(25) based on the diagonality assumption. If the functions fk are approximately or-
thogonal (i. e. their scalar products fk · fl for k 6= l are almost zero when compared to
fk · fk = W k

tn+1
) then this is an acceptable approximation.

Another possible approach, not using the ideas of Holt–Winters method at all, would
be to regress y on the regressors {1, t, f1(t), . . . , fK(t)} using DLS estimation method
with a certain discount factor. But besides facing the necessity of inverting (K + 2) ×
(K+2) matrices, we lose the important flexibility of having three independent smoothing
constants as in Holt–Winters method.

3.3. Multiplicative seasonality

Up to now we have considered only the case of an additive seasonality. To get a multi-
plicative seasonality, one has to replace the additive prediction and smoothing formulas
(12) and (13) with

ŷtn+τ (tn) = (Ltn
+ τ · Ttn

) · exp [Stn
(tn + τ)] , (33)

ŷtn = Ltn · exp [Stn(tn)] . (34)

The recursive formula (16) for the amplitudes update is simply changed to

Ak
tn+1

= Ak
tn

+ (1− αtn+1) δk
tn+1

[
ln ytn+1 − ln ŷtn+1(tn)

]
. (35)

By taking the natural logarithm of the multiplicative forecasting error ytn+1/ŷtn+1(tn)
we simply convert it from the multiplicative world of y to the additive world of fk and
Ak. In (33) and (34) we do the reverse conversion from additive to multiplicative.

So just the exponential and logarithm transformations must be placed correctly into
formulas (12), (13) and (16) of the additive method to switch completely to the multi-
plicative seasonality. This enables us to implement the both variants as a single piece
of programm code.

3.4. Practical implementation

To apply successfully the above described smoothing and forecasting method, one must
necessarily deal with the following tasks:

• To choose suitable seasonality modeling functions fk, specially their number K,
depending on the nature of the seasonal pattern. The standardized choices are
suggested in Section 4. Generally with higher K we are able to model more pre-
cisely even complicated patterns but we must beware of over-fitting. See Sections 5
and 6 for practical experiences.

• To choose the values of K + 2 smoothing constants α, γ and δk, k = 1, . . . ,K.
It seems reasonable to reduce the number of parameters by taking δk ≡ δ. The
three constants α, γ and δ can be searched numerically over the unit cube (0, 1]3.
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• To set up the initial values L0, T0, α0, δ0, Ak
0 and W k

0 before running the recursive
computation. We recommend using the general approach of backcasting (backward
forecasting, see [2] for a brief explanation). To initialize the backcasting itself we
can put simply Ak

0 = 0 and W k
0 based on a rough approximation of (20) (let

f2
k be the average squared value of fk over the available observation times and q

the average time spacing of the series):

W k
0 ≈

+∞∑
j=0

(1− δk)jq f2
k =

f2
k

1− (1− δk)q
. (36)

4. USEFUL SPECIAL CASES

4.1. Classical Holt–Winters method

To get the classical Holt–Winters method (for regular time series) with p seasonal indices
and period p ≥ 2, see (1) – (7), we simply take K = p and

fk(t) =
{

1 if (t mod p) = k ,
0 otherwise .

(37)

So fk are the indicators of individual calendar units, it is pk ≡ p and fk are perfectly
orthogonal (it is even fk(t)fl(t) = 0 for all k 6= l and t ∈ R). Further take δk ≡ δ.
The seasonal smoothing coefficients are of a trivial form:

δk
t =

{
1− (1− δ)p if (t mod p) = k ,
0 otherwise .

(38)

So only one amplitude Ak (belonging to the actual calendar unit of t) is updated in one
time step, the remaining ones stay unchanged. It is f2

k = 1/p. Notice that δk
t =

1− (1− δ)p 6= δ due to the p time steps between the two consecutive observations from
the same calendar unit. But this is just a different parametrization of the method.

However, for multiplicative seasonality, we get a slightly different smoothing formulas
for the seasonal indices. The classical method additively averages the old and the new
values of the seasonal index while our method does this mixing in terms of a weighted
geometric mean. This multiplicative treating of multiplicative seasonal indices seems
to be more reasonable and consistent.

4.2. Normalized seasonal indices

In [2] the possibility to normalize the seasonal indices in Holt–Winters method to ensure
that they always sum up to 0 is mentioned. This is a reasonable normalizing condition
which helps us to strictly separate the level and the seasonal component. We can employ
such a normalizing in our general seasonality concept. Just replace (37) with

fk(t) =
{

1 if (t mod p) = k ,
−1/(p− 1) otherwise .

(39)

Functions fk(t) are now centered to 0 and so the whole seasonal component S(t) defined
in (11) is as well. Functions fk(t) are still linearly independent and approximately
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orthogonal for p � 0. Now always all the amplitudes Ak are updated in a single time
step.

4.3. Missing observations

By taking K, fk and δk the same as in Section 4.1 and just allowing the analyzed time se-
ries y to have missing observations (so the calendar assignment is still possible), we come
to the method from [4]. Again only the one amplitude Ak belonging to the actual calen-
dar unit of t is updated in a single time step. But now the non-zero smoothing coefficient
δk
t varies step by step, depending on the value of W k which contains the information

about the time structure of the series when the current calendar unit is concerned.

4.4. Interpolated seasonal indices

To cover the inter-calendar observations or to reduce the number of seasonal indices
used, it is possible to interpolate linearly the neighboring indices. We will describe this
directly for the number K ≥ 2 of the seasonal indices used independent of the period
length p ∈ (0,+∞) and with the general time axis origin o ∈ R. Let us define

fk(t) =
{

1−min
j∈Z

∣∣∣∣K · (t− o)
p

− (j ·K + k)
∣∣∣∣}+

. (40)

Each of fk has the form of p-periodic sequence of identical isosceles triangles with the ba-
sis length of 2p/K and the height of 1. The neighboring fk’s are shifted by p/K to each
other and it is fK(o) = 1. By setting the amplitudes Ak we can form any p-periodic
K−piecewise linear seasonal pattern. The amplitudes Ak will appear as the pattern
values at the K equidistant break points.

Functions fk(t) are still linearly independent. But they are not perfectly orthogonal
since the neighboring triangles always overlap by one half of their bases. We can take
routinely f2

k = 1/K or f2
k = 2/3 ·1/K depending on the layout of the observation times.

In a single time step, only one (if fk(t) = 1 for some k) or two (otherwise) amplitudes
are updated. In the later case, the two updated amplitudes belong to the two indices
surrounding the observation time t.

The practical choice of K and o should reflect the smoothness of the seasonal pattern
and the layout of observation times. For example, the following three settings can be
tested in practice for regular time series with period p ∈ N (see Sections 5 and 6):

• Classical method: K = p and o = 0. It is an extension of the method for missing
observations from [4].

• Shifted seasonal indices: K = p and o = 0.5. All the observations are shifted
by 0.5 so they are all treated as inter-calendar. Always the two surrounding in-
dices are composed (by their simple arithmetic average) to form the corresponding
seasonal component.

• Sparse seasonal indices: K = p/2 together with o = 0 or o = 1. This is suitable
for large p and relatively smooth seasonal pattern.
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Of course we must beware of interpolating observation at peak or low point of the sea-
sonal pattern.

4.5. Trigonometric functions

As an alternative to the seasonal indices, we can use trigonometric functions of time
to model the seasonality. The seasonal pattern will be composed from several harmonic
curves of different periods. Since usually both the amplitude and phase of the harmonic
curve are unknown (and/or variable during time) we will always involve sine and cosine
functions of the same period. The individual periods pk will be taken as p, p/2, p/3, . . .
where p is the period length of the series. For example, when K = 4 (only even values
of K are used), we define

f1(t) = sin
2πt

p
, f2(t) = cos

2πt

p
, f3(t) = sin

4πt

p
, f4(t) = cos

4πt

p
. (41)

The user just has to specify the value of h = K/2, i. e. the number of full harmonics
to be included. Sometimes even h = 1 can give good results, the values h = 2, 3 or 4 are
applicable in most cases. It should always be 2h ≤ p/q to prevent from over-fitting.

Let us notice that the trigonometric functions fk are centered to 0, linearly indepen-
dent and approximately orthogonal (exact orthogonality holds for δ = 0 and defining the
scalar product in a continuous way as fk ·fl =

∫ p

0
fk(t)fl(t)dt). Since the sine and cosine

functions are equal to 0 only at isolated time points, usually all the seasonal amplitudes
are updated in each time step. Since sin2 t + cos2 t ≡ 1, we can take routinely f2

k ≡ 1/2.

4.6. Multiple seasonality

Half hourly electricity demand time series contains two different seasonalities: daily
(period 48) and weekly (period 7 · 48 = 336). To make forecasts, [12] used double
seasonal Holt–Winters method with two sets of seasonal indices (48 and 336 indices
for the daily and weekly seasonality, respectively). Another application of such methods
can found e. g. in [13].

Such a multiple seasonality can be obtained as a special case of our general concept.
We simply take two sets of indicator functions fk as in (37), with pk = 48 for the daily
set and pk = 336 for the weekly one.

5. SIMULATION STUDY

In this section we will test the classical Holt–Winters method (Section 4.1), the method
with shifted seasonal indices (Section 4.4) and the method with trigonometric functions
(Section 4.5) on the simulated regular time series with locally constant trend and additive
seasonality with period length p = 7, 12 and 24. The generating model used is

yt = Lt + St + εt , εt ∼ iid N(0, 1) , (42)
Lt = Lt−1 + µt , µt ∼ iid N(0, 0.12) (43)

with εt and µt mutually independent. The seasonal component St used in (42) follows

St = (1− ν) · (St−1 + St−p−St−p−1)− ν ·
∑t−1

j=t−p+1
Sj + πt , πt ∼ iid N(0, 1) , (44)
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i. e. a special AR(p + 1) process. Seasonal innovations {πt} are independent of {µt}
and {εt}. The parameter ν ∈ [0, 1] rules the normalization of S to sum up to 0 and
the smoothness of the seasonal pattern (lower ν creates a smoother pattern). We ini-
tialize (42) – (44) by L0 = 0 and Sj = 0 for j = −p, . . . , 0.

In SARIMA or state space models (see e. g. [10, 11]) the seasonal component for each
calendar unit usually follows a random walk (i. e. the whole {St} follows AR(p) process
St = St−p + πt). This means that the seasonal indices for different calendar units are
independent and the formed seasonal pattern is not autocorrelated or smooth at all.
But such a situation is rather rare in reality and thus the model (44) is more realistic
in our opinion.

For a given p, we simulate time series of length 21p, i. e. 21 complete periods. The first
10 periods are thrown away to eliminate the impact of initialization by S ≡ 0 in (44).
The next 10 periods are used to initialize the methods and to optimize the smoothing
constants α and δ in order to minimize RMSE (Root Mean Square Error) of one-step-
ahead forecasting errors (we use γ = 0.05 fixed). The number h of full harmonics is
also optimized when needed. We try h = 2, 3 for p = 7, h = 2, 3, 4, 5 for p = 12 and
h = 4, 5, 6, 7, 8 for p = 24.

The last period is used to evaluate the out-of-sample forecasting accuracy. We calcu-
late RMSE from all the possible combinations of forecasting times from 20p to 21p− 1
and forecasting horizons from 1 to p, i. e. from p(p + 1)/2 forecasting errors totally.

For each p we use ν = 0.05, 0.1 and 0.2 in (44) and for each combination of p and
ν we simulate 100 time series. This means that totally 5100-times the constants α
and δ are optimized. We use a locally constant trend (instead of locally linear), see
(42) and (43), and a low fixed value of γ = 0.05 purposely to prevent from three-
dimensional smoothing constants optimization. All the computations were implemented
in a specialized application developed by the author (the same holds for Section 6).

Classical H-W Shifted indices Trigonometric
p ν RMSE ranking RMSE ranking RMSE ranking
7 0.05 2.910 1.88 2.786 1.94 2.932 2.17
7 0.1 2.761 1.91 2.624 1.85 2.785 2.24
7 0.2 2.195 2.01 2.185 2.17 2.119 1.82
12 0.05 3.626 2.11 3.347 1.77 3.579 2.12
12 0.1 3.551 2.04 3.180 1.95 3.120 2.01
12 0.2 2.291 1.86 2.243 1.80 2.361 2.34
24 0.05 7.294 2.21 3.246 1.45 4.402 2.34
24 0.1 4.023 2.12 2.870 1.46 3.788 2.42
24 0.2 2.189 1.48 2.222 1.76 2.635 2.76

Tab. 1. Average out-of-sample RMSE and average ranking

of the three methods tested.

The average out-of-sample RMSE and the average ranking of the methods (1= best,
3= worst) are presented in Table 1. All the three methods seem to be relevant competi-
tors and can be recommended for testing in practice. The “Shifted indices” method is
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the best one in our simulation in most cases. However, also the classical Holt–Winters
method and the method with trigonometric functions generally work reasonably. The re-
sults surprisingly do not depend much on the parameter ν (except the case of p = 24).

One must beware that the results of the simulation study are probably far determined
by the particular generating model for the seasonal component, see (44). It is easy
to generate time series for which the particular method is optimal and to illustrate
the lack of performance of the remaining ones. But it is non-trivial to set up a neutral
generating model useful for the comparison of the methods.

6. REAL DATA EXAMPLES

Now we will illustrate the methods on real time series data. For this purpose, we have
downloaded five regular monthly time series (i. e. containing annual seasonality, p = 12)
from [9]:

1. AIR – Int. airline passengers, monthly totals in thousands, 1949-1960 (144 obser-
vations);

2. TEMP – New York City monthly average temperatures, 1946-1959 (168 observa-
tions);

3. GAS – Monthly residential gas usage in Iowa, 1971-1979 (106 observations);

4. LEVEL – Lake Erie, monthly levels, 1921-1970 (600 observations);

5. FLOW – Tree River, mean monthly flows, 1969-1976 (96 observations).

In addition to Section 5, we will test also the “Sparse indices” method from Sec-
tion 4.4. For AIR, GAS and FLOW we use a multiplicative seasonality, for TEMP
and LEVEL the additive seasonality is used in all four methods.

The smoothing constants α, γ and δ and (if needed) the number h of full harmonics
are optimized with respect to RMSE based on one-step-ahead forecasting errors through
the whole series. The same in-sample RMSE values are reported in Table 2, together with
the sample first order autocorrelation coefficients ρe of the forecasting errors. The table
also contains the optimal value of h for each series.

Classical H-W Shifted indices Sparse indices Trigonometric
Series RMSE ρe RMSE ρe RMSE ρe h RMSE ρe

AIR 10.69 .237 10.25 -.124 16.44 -.126 5 10.41 .203
TEMP 0.740 .180 0.693 .114 0.799 -.181 1 0.713 -.121
GAS 18.58 .385 16.99 .359 19.53 .168 3 16.92 .350

LEVEL 0.445 .333 0.424 .243 0.465 .100 2 0.440 .440
FLOW 15.02 .453 13.31 .200 14.85 .155 3 13.39 .314

Tab. 2. Achieved minimal RMSE and autocorrelation ρe for five real

time series.
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“Shifted indices” method is the best one for all time series except the GAS series.
The “sparse indices” method is the worst one in most cases. The classical Holt–Winters
method is always less accurate than the method with harmonics.

The optimal number h of full harmonics differs among the individual series. TEMP
series suffices with h = 1 (it is an optimal value) since the monthly average temperature
copies a simple sinusoidal curve. On the other hand, for AIR series the RMSE gradually
goes down as higher values of h are used. This decline stops at the optimal value h = 5.
It reflects the more complicated seasonal pattern of the series. The remaining three
series have h = 2 or 3 as their optimum.

See Figures 1, 2 and 3 for the original data, smoothed values and point predictions
for AIR, FLOW and TEMP series obtained by the method with trigonometric func-
tions (only the last four periods of data and one future period are displayed). We can see
that the method works reasonably – the prediction curves nicely extrapolate the data.
Even using h = 5 full harmonics for AIR series did not lead us to over-parametrization.

Fig. 1. AIR series: multiplicative Holt–Winters method with 5 full

harmonics.

7. SUMMARY

General seasonality modeling concept was suggested in the framework of Holt–Winters
method. The multiplicative version is received from the additive one simply by putting
logarithms and exponentials in certain formulas. Several particular settings are sug-
gested.

Interpolated seasonal indices can be used routinely to handle general irregular time
series. They can also be used to reduce the number of seasonal indices used or to improve
the forecasting accuracy by a certain shift of the time axis. Alternatively trigonometric
functions (h full harmonics) can be used. This is automatically applicable also for irregu-
lar time series and also for regular series it provides a relevant competitor to the classical
Holt–Winters method.
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Fig. 2. FLOW series: multiplicative Holt–Winters method with 3

full harmonics.

Fig. 3. TEMP series: additive Holt–Winters method with 1 full

harmonic.

The suggested methods were successfully tested via simulation study and on real
data. In general, seasonal indices outperform trigonometric functions where seasonal
jumps, peaks and dips are present. On the other hand, in the case of a smooth seasonal
pattern, trigonometric functions (with suitable h) can do better. Sometimes even h = 1
can give good results, usually h = 2 or 3 is optimal. One should beware of using values
h � 5. Anyway, it usually turns out that the seasonal indices are better choice when
the optimal value of h tends to be too large.

In the context of Holt–Winters method the more general and complex model of sea-
sonality does not automatically bring better accuracy even of in-sample forecasts (out-
of-sample forecasts do not surprise us). This is caused by the adaptivity of the seasonal
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amplitudes. If we make use of a specific shape of the seasonal pattern (e. g. it is a sinu-
soidal curve), we can anticipate the next future seasonal component based on the last
observed one. This can help us to improve our forecasts.

ACKNOWLEDGEMENT

The work was supported by the grant SVV 261315/2011.

(Received August 7, 2010)

R E FER E NCE S

[1] M. Aldrin and E. Damsleth: Forecasting non-seasonal time series with missing observa-
tions. J. Forecasting 8 (1989), 97–116.

[2] C. Chatfield and M. Yar: Holt–Winters forecasting: some practical issues. The Statisti-
cian 37 (1988), 129–140.

[3] T. Cipra and T. Hanzák: Exponential smoothing for irregular time series. Kybernetika
44 (2008), 385–399.

[4] T. Cipra, J. Trujillo, and A. Rubio: Holt–Winters method with missing observations.
Management Sci. 41 (1995), 174–178.

[5] E. S. Gardner: Exponential smoothing: The state of the art. J. Forecasting 4 (1985),
1–28.

[6] E. S. Gardner: Exponential smoothing: The state of the art – Part II. Internat. J.
Forecasting 22 (2006), 637–666.

[7] T. Hanzák: Improved Holt method for irregular time series. In: WDS’08 Proc. Con-
tributed Papers, Part I – Mathematics and Computer Sciences, Matfyzpress, Prague
2008, pp. 62–67.

[8] C. C. Holt: Forecasting seasonals and trends by exponentially weighted moving averages.
Internat. J. Forecasting 20 (2004), 5–10.

[9] R. J. Hyndman: Time Series Data Library, www.robhyndman.info/TSDL. Accessed on
26 June 2010.

[10] R. J. Hyndman, A.B. Koehler, R. D. Snyder, and S. Grose: A state space framework for
automatic forecasting using exponential smoothing methods. Internat. J. Forecasting 18
(2002), 439–454.

[11] T. Ratinger: Seasonal time series with missing observations. Appl. Math. 41 (1996),
41–55.

[12] J. W. Taylor: Short-term electricity demand forecasting using double seasonal exponential
smoothing. J. Oper. Res. Soc. 54 (2003), 799–805.

[13] J. W. Taylor: A comparison of univariate time series methods for forecasting intraday
arrivals at a call center. Management Sci. 54 (2008), 253–265.

[14] P. R. Winters: Forecasting sales by exponentially weighted moving averages. Management
Sci. 6 (1960), 324–342.

[15] D. J. Wright: Forecasting data published at irregular time intervals using extension
of Holt’s method. Management Sci. 32 (1986), 499–510.
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