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ON THE CORE PROPERTY OF THE CYLINDER
FUNCTIONS CLASS IN THE CONSTRUCTION
OF INTERACTING PARTICLE SYSTEMS

Anja Voß-Böhme

For general interacting particle systems in the sense of Liggett, it is proven that the
class of cylinder functions forms a core for the associated Markov generator. It is argued
that this result cannot be concluded by straightforwardly generalizing the standard proof
technique that is applied when constructing interacting particle systems from their Markov
pregenerators.
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1. INTRODUCTION

Interacting particle systems (IPS) in the sense of Liggett [5] are Feller–Markov pro-
cesses on a space X = WS , where W is a compact metric space and S is a finite
or countably infinite set. IPS are specified by defining a family of transition rate
functions which are sufficiently local in the sense of Definition 2.2 below. Given the
transition rates, a Markov pregenerator is defined on some dense subspace D(X) of
the space C(X) of continuous functions on X. This operator is closable in C(X)
with respect to the supremum norm and the closure is a Markov generator which is
associated with a unique Feller–Markov process on X. Thus D(X) is a core for the
Markov generator of the IPS constructed in this way.

Definition 1.1. Let A be a closed linear operator on C(X) with domain ϑ(A). A
linear subspace D ⊂ ϑ(A) is a core for A, if A is the closure of its restriction to D,
that is A|D = A.

The class D(X) consists of continuous functions that are localized in a well de-
scribed sense, see (3) below. The class of cylinder functions, that are continuous
functions that depend only on finitely many coordinates, see (4) below, forms a
proper though dense subset of the localized functions. So it is natural to pose the
question wether the smaller class of cylinder functions is also a core. It is widely
assumed that this is true. See for instance [1, 2, 4]. However, an explicit proof of
this statement has not been provided in the literature yet.
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In this note, it is proven that the set of cylinder functions is rich enough to
form a core for the Markov generator of an IPS. The core property of the cylinder
functions class is derived from the core property of D(X) by approximation argu-
ments. Additional conditions on the transition rates are not necessary. It is argued
that a straightforward generalization of the proof technique applied by Liggett in
[5, Thm. I.3.9] when showing that D(X) is a core does not work without additional
conditions on the transition rates.

Clearly, the issue addressed here is nowhere near as interesting as the original
problem of existence and uniqueness of IPS. It is, nevertheless, a component to-
wards rounding off the theory of IPS. Cylinder functions are easier to work with
than the less localized functions within D(X). For instance, for finite range IPS, the
Markov generator applied to cylinder functions reduces to a finite sum instead of an
infinite one. The finding that the class of cylinder functions is actually a core allows
to consider only these nicer functions when studying problems such as ergodicity,
reversibility, duality or approximation of IPS. As IPS are increasingly used in ap-
plications, for instance in physics, finance or theoretical biology, it is expected that
the number of studies dealing with those issues is growing as well, thus giving any
contribution towards easier handling of the model additional weight.

2. NOTATION

Let S be a countable set of sites and take the symbol T for the set of all non-empty
finite subsets of S. For singletons in T , we usually write x instead of {x}. Suppose
that (W,d) is a compact metric space and denote by W the Borel σ-field on W .
Define the configuration space X := WS . For each T ⊂ S, the set S\T shall be
denoted by T c, XT = WT will represent the configuration space over T and

πT : X→ XT : πT (η) := (η(x))x∈T =: ηT

denotes the projection from X onto XT . Let be FT the σ-field given by FT :=
π−1

T

(⊗
x∈T W

)
. For u ∈ XT , η ∈ X, let τT (η, u) be the configuration where ηT is

replaced by u, that is

τT (η, u)(z) =

{
η(z), z ∈ T c

u(z), z ∈ T.
(1)

The set of continuous real functions on X equipped with the sup-norm ‖ · ‖ is
denoted by C(X). The closure of a set B ⊂ C(X) with respect to the sup-norm is
B. For f ∈ C(X), define

∆T (f) := sup{|f(η)− f(ζ)| : η, ζ ∈ X, ηT c = ζT c}, T ⊂ S; (2)
tm(f) := {x ∈ S : ∆x(f) > 0};

|||f ||| :=
∑
x∈S

∆x(f).

Note that the latter sum can take values in [0,∞]. Define further

D(X) := {f ∈ C(X) : |||f ||| < ∞} (3)
T (X) := {f ∈ C(X) : tm(f) ∈ T ∪ {∅}}. (4)
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The elements of T (X) are called local functions or cylinder functions.
One easily finds that

T (X) ⊂ D(X) ⊂ C(X).

In addition, C(X) is the uniform closure of T (X). Indeed, T (X) is a linear subspace
of C(X) containing the constant functions. If f, g ∈ T (X), then f · g ∈ T (X). In
addition, T (X) separates points by the following consideration. Given η, ζ ∈ X, η 6=
ζ, there exists x ∈ S with η(x) 6= ζ(x). For f := 1π−1

x (η(x)) ∈ T (X) one finds that
f(η) 6= f(ζ). Thus, according to the Stone-Weierstrass Theorem, T (X) is dense in
C(X).

Definition 2.1. Suppose that we are given a family c = (cT )T∈T of non-negative
functions cT : X × FT → [0,∞). Then c is a family of transition rate functions, if
the following conditions are satisfied.

(i) For each T ∈ T , η ∈ X, the map cT (η, ·) is a finite positive measure on
(XT ,FT ).

(ii) For each T ∈ T , the function η 7→ cT (η, ·) is a continuous map from X to the
space M(XT ,FT ) of finite measures on (XT ,FT ) with respect to the topology
of weak convergence.

Given a family c = (cT (·, ·))T∈T of transition rate functions, define

cT (x) := sup {‖cT (η, ·)− cT (ζ, ·)‖tv : η, ζ ∈ X, ηxc = ζxc} , x ∈ S, T ∈ T , (5)

where ‖ · ‖tv is the total-variation norm on M(XT ,FT ). Let be

cT := sup
η∈X

cT (η,XT ) , T ∈ T ,

and
γ(x, z) :=

∑
T∈T ,
T3x

cT (z), x, z ∈ S, x 6= z, γ(x, x) = 0, x ∈ S. (6)

Definition 2.2. A family c = (cT )T∈T of transition rate functions is admissible, if

K := sup
x∈S

∑
T3x

cT < ∞, (7)

and
M := sup

x∈S

∑
z∈S

γ(x, z) < ∞. (8)

Remark 2.3. The two conditions (7) and (8) for transition rate functions to be
admissible are exactly those stated in [5, I(3.3) and I(3.8)]. They are standard
assumptions in the construction of IPS.

Suppose a family c = (cT (., .))T∈T of admissible transition rates is given. Define
an operator A : D(X) → C(X) by

Af(η) =
∑
T∈T

∫
XT

cT (η, dv)[f(τT (η, v))− f(η)], η ∈ X, f ∈ D(X). (9)
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According to [5, Prop. I.3.2], A is well-defined if c is admissible. The operator A is
called associated to the family c. By [5, Thm. I.3.9], the closure A of A is a Markov
generator which generates a Markov semigroup (Tt)t≥0 on C(X). The corresponding
Markov process with rcll-trajectories is called stochastic interacting particle system
(IPS) generated by A.

3. MAIN RESULTS

Theorem 3.1. Suppose that c = (cT (·, ·))T∈T is an admissible family of transition
rate functions with associated generator A. Then T (X) is a core for A.

Corollary 3.2. Suppose that c = (cT (·, ·))T∈T is an admissible family of transition
rate functions. Then the operator A0 : T (X) → C(X) given by

A0f(η) =
∑
T∈T

∫
XT

cT (η, dv)[f(τT (η, v))− f(η)], η ∈ X, f ∈ T (X), (10)

is a Markov pregenerator whose closure is a Markov generator.

P r o o f o f T h e o r e m 3.1. Define A0 := A|T (X). The operator is a Markov
pregenerator in the sense of Liggett [5, Def. I.2.1], since

1. 1 ∈ T (X) and A01 = 0, where 1(η) = 1, η ∈ X;

2. T (X) is dense in C(X);

3. If f ∈ T (X) and f(η) = minζ∈X f(ζ), then

A0f(η) =
∑
T∈T

∫
XT

cT (η, dv) [f(τT (η, v))− f(η)]︸ ︷︷ ︸
≥0

≥ 0.

By [5, Prop. I.2.5], the operator A0 has a closure A0. Note that A0 is again a Markov
pregenerator. To show that A0 coincides with the closure A of A, it is sufficient to
verify that D(X) belongs to the domain ϑ(A0) of A0. To check this, one has to
prove that for given g ∈ D(X), there are cylinder functions gn such that gn → g
and Agn → Ag. This will be done in the following. Fix g ∈ D(X). Let Sn be finite
sets that increase to S. Choose a configuration ξ0 ∈ X and denote, for each η ∈ X,
by ηn := τSn

(ξ0, η) the configuration that agrees with η on Sn and is equal to ξ0 off
Sn. Denote by gn the cylinder approximation to g which is given by gn(η) = g(ηn).
It holds that

|gn(η)− g(η)| = |g(ηn)− g(η)| ≤ ∆Sc
n
(g), η ∈ X,

where ∆T (g), T ∈ T , is defined in (2). One finds that

∆T (g) ≤
∑
x∈T

∆x(g), T ⊂ S. (11)
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Indeed, suppose that T = {x1, x2, . . .} and consider η, ζ ∈ X with ηT c = ζT c . Define
η0 := η, ηk := τxk

(ηk−1, ζ(xk)), k = 1, 2, . . . Then |g(ηk−1)− g(ηk)| ≤ ∆xk
(g), hence

|g(η)− g(ζ)| ≤
n∑

k=1

|g(ηk−1)− g(ηk)|+ |g(ηn)− g(ζ)|

≤
n∑

k=1

∆xk
g + |g(ηn)− g(ζ)|, n ∈ N.

Since limn→∞ ηn = ζ in the product topology on X and g is continuous, one obtains
(11) by letting n converge to infinity.

It follows from (11) that

||gn − g|| ≤ ∆Sc
n
g ≤

∑
x6∈Sn

∆x(g) −→
n

0. (12)

For any η ∈ X and any finite V ⊂ S, one finds

|Agn(η)−Ag(η)|

≤
∑

T :T∩V 6=∅

∫
XT

cT (η, dv) [|gn(τT (η, v))− g(τT (η, v))|+ |gn(η)− g(η)|]

+
∑

T :T∩V =∅

∫
XT

cT (η, dv) [|gn(τT (η, v))− gn(η)|+ |g(τT (η, v))− g(η)|]

≤ 2||gn − g||
∑

T :T∩V 6=∅

cT +
∑

T :T∩V =∅

cT (∆T (gn) + ∆T (g)),

where cT is defined in (5). By (7) and considering that ∆x(gn) ≤ ∆x(g), the latter
sum can be estimated as follows∑

T :T∩V =∅

cT (∆T (gn) + ∆T (g)) ≤
∑

T :T∩V =∅

cT

∑
x∈T

(∆x(gn) + ∆x(g))

≤ 2
∑
x6∈V

∆x(g)
∑

T3x,T∩V =∅

cT

≤ 2
∑
x6∈V

∆x(g)
∑
T3x

cT

≤ 2K
∑
x6∈V

∆x(g).

Note that by (7) ∑
T :T∩V 6=∅

cT ≤
∑
x∈V

∑
T3x

cT ≤ K|V |,

hence

||Agn −Ag|| ≤ 2K

|V | ||gn − g||+
∑
x6∈V

∆x(g)

 .
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Given ε > 0, there exists a finite set V0 ⊂ S such that∑
x6∈V0

∆x(g) < ε/2,

since g ∈ D(X). By (12), it holds for each sufficiently large n that

2K|V0|||gn − g|| ≤ ε/2.

Hence ||Agn − Ag|| < ε for each sufficiently large n and therefore Agn → Ag in
supremum norm. �

P r o o f o f C o r o l l a r y 3.2. As is argued in the proof of Theorem 3.1, the closure
A0 of the operator A0 exists and is a Markov pregenerator in the sense of Liggett
[5, Def. I.2.1]. In addition, A0 agrees with the closure A of the operator A that
is defined in (9). By [5, Thm. I.3.9], A = A0 is a Markov generator of a Markov
semigroup on C(X). �

Remark 3.3.

1. If condition (7) is replaced by the slightly weaker condition∑
T3x

cT < ∞ for each x ∈ S, (13)

then the operator A0 given by (10) is still well-defined. Indeed, adjusting the
arguments in the proof of [5, Thm. I.3.2] slightly, one finds

|A0f(η)| ≤
∑
T∈T

cT ∆T (f) ≤
∑
T∈T

cT

∑
x∈tm(f)∩T

∆x(f)

≤
∑

x∈tm(f)

∆x(f)
∑
T3x

cT , η ∈ X, f ∈ T (X).

The last sum is finite since it consists of a finite number of finite summands,
therefore the series defining A0f converges uniformly and defines a continuous
function. This fact has been stated already in [5, § I.6], but without detailed
argument.

It is also clear from the proof of Theorem 3.1 that A0 is a Markov pregenerator
if only (13) is assumed for the transition rates. In [5, § I.6], it was was
shown that a solution to the the martingale problem for A0 exists under (13).
If this solution to the martingale problem is unique, then the corresponding
Markov process is a Feller process whose Markov generator is an extension
of A0 [5, Th. I.6.8]. In general, particularly without condition (8), it remains
open wether T (X) is a core in this case.

2. Condition (8) is required to prove that, under (7), the closure of A is a Markov
generator, see next section. It was argued in [5, § I.7] that (7) alone is not
sufficient for this.
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3. It becomes clear in the proof of Theorem 3.1 that condition (7), which is
stronger than condition (13) in that it requires a uniform bound on the total
rate at which a given coordinate can change, ensures that D(X) ⊂ ϑ(A0) and
A0|D(X) = A. If one drops condition (8) but additionally assumes that the
martingale problem for A0 has a unique solution, then A0 can be uniquely
extended to a Markov generator, see [5, Thm. 6.8]. If moreover D(X) is a core
of that Markov generator, then the proof of Theorem 3.1 shows that T (X) is
a core, as well.

4. DISCUSSION: THE STRAIGHTFORWARD GENERALIZATION OF THE
STANDARD PROOF TECHNIQUE FAILS

An alternate way to show that the closure of A0 is a Markov generator could be
to prove that there exists a λ > 0 such that R(λI − A0) is dense in C(X), see [3,
Ch. 1,Prop. 3.1]. This idea was pursued in the construction of IPS from the Markov
pregenerator A specified on D(X) [5, Thm. I.3.9]. If this attempt is successful, then
the domain T (X) of the pregenerator A0 is directly a core for the Markov generator
A0.

In this section, the arguments in the proof of [5, Thm. I.3.9] shall be outlined
and adapted to pregenerators A0 : T (X) → C(X). The domain T (X) of these
pregenerators is smaller than that of the pregenerators A : D(X) → C(X) considered
in the original work. It will be discussed what the essential generalization step is
and which additional assumptions have to be imposed. By means of an example, it
is shown that the standard proof technique fails if this assumption is dropped.

Firstly, A0 is approximated by bounded Markov generators. As in [5], suppose
that (Sn)n∈N is an increasing sequence of finite sets exhausting S. Fix n ∈ N and
define

c
(n)
T (·, ·) =

{
cT (·, ·), T ⊂ Sn

0, T ∈ T , T 6⊂ Sn.
(14)

Then c(n) =
(
c
(n)
T (·, ·)

)
T∈T

is a family of transition rate functions. It satisfies

c
(n)
T = sup

η∈X
c
(n)
T (η,XT ) ≤ sup

η∈X
cT (η,XT ) = cT < ∞, (15)

since c = (cT (·, ·)) is admissible. Further, c
(n)
T (x) = 0 for x ∈ S, T ∈ T , T 6⊂ Sn and

c
(n)
T (x) = cT (x) for x ∈ S, T ⊂ Sn, hence

γ(n)(x, z) =
∑

T⊂Sn,
T3x

cT (z) ≤ γ(x, z), x, z ∈ S. (16)

Consequently, c(n) is admissible, because c is admissible. Note that∑
T∈T

c
(n)
T =

∑
T∈T

T⊂Sn

cT < ∞, (17)
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since the latter sum consists of a finite number of summands. Denote by A(n) the
operator which is associated to c(n), that is

A(n)f(η) :=
∑
T∈T

∫
XT

(f(τT (η, v))− f(η))c(n)
T (η, dv), f ∈ C(X), η ∈ X.

By (17), A(n) is a bounded operator, hence

R
(
I − λA(n)

)
= C(X), λ > 0, n ∈ N. (18)

Secondly, it will be verified that for n ∈ N, g ∈ T (X), λ > 0, there exists fn ∈
T (X) such that

fn − λA(n)fn = g. (19)
This is the essential generalization step and the point were the following additional
assumption is necessary. Note that this assumption is in particular satisfied if S = Zd

and the transition rates are of finite range in the sense of [5, Def. I.4.17].

Assumption 4.1. Suppose that the family c = (cT )T∈T of admissible transition
rate functions is local in the sense that

{x : cT (x) > 0} ∈ T , T ∈ T .

In the original work it was shown that for g ∈ D(X) there exists fn ∈ D(X) such
that fn − λA(n)fn = g. However, as it will become apparent in the next step, it
is necessary that fn belongs to the domain of the pregenerator. To prove (19), fix
n ∈ N, g ∈ T (X) and λ > 0. By (18), there exists a function fn ∈ C(X) such that
fn − λA(n)fn = g. It remains to show that fn ∈ T (X). Suppose that x ∈ S\Sn.
Then for all T ∈ T with x ∈ T it holds that T 6⊂ Sn. This implies that

c
(n)
T (u) = 0, u ∈ S, T ∈ T , T 3 x.

Therefore
γ(n)(x, u) =

∑
T∈T
T3x

c
(n)
T (u) = 0, u ∈ S, x ∈ S\Sn. (20)

By [5, Lemma I.3.4.(b)],

∆u(fn) ≤ ∆u(g) + λ
∑
x∈S

γ(n)(x, u)∆x(fn), u ∈ S. (21)

Hence, by (20) and (6),

∆u(fn) = ∆u(g) + λ
∑

x∈Sn

∑
T∈T ,
T3x

c
(n)
T (z)∆x(fn)

= ∆u(g) + λ
∑

x∈Sn

∑
T⊂Sn,

T3x

cT (u)∆x(fn)

= ∆u(g) + λ
∑

T⊂Sn

cT (u)
∑
x∈T

∆x(fn)

≤ ∆u(g) + λ

(∑
x∈Sn

∆x(fn)

) ∑
T⊂Sn

cT (u), u ∈ S.
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Thus
∆u(fn) = 0, u /∈ tm(g) ∪

⋃
T⊂Sn

{y : cT (y) > 0}.

Since c = (cT (·, ·))T∈T is local,
⋃

T⊂Sn
{y : cT (y) > 0} ∈ T . Hence tm(fn) ∈ T and

therefore fn ∈ T (X) = ϑ(A0).
In the last step, define

gn := fn − λA0fn = (I − λA0)fn ∈ R(I − λA0).

It was shown in the proof of [5, Thm. I.3.9.],1 that for g ∈ T (X)

lim
n→∞

‖g − gn‖ = 0,

if λ is sufficiently small. Since gn ∈ R(I − λA0), n ∈ N, it follows that g is in the
closure of R(I − λA0). Hence

T (X) ⊂ R(I − λA0)

for sufficiently small λ > 0. Since T (X) is dense in C(X) it follows that

R(I − λA0) = C(X),

which proves the theorem. �

If the Assumption 4.1 is dropped, the standard proof technique fails. This can
be seen with the help of the following example. It is conceivable that with a more
elaborate cut-off in the construction of A(n) the scheduled proof technique could still
work. However, since Theorem 3.1 covers the issue in its generality, the problem of
alternate cut-off mechanisms is not further followed up here.

Let be S = Zd with d = 1, 2, . . ., and W = {0, 1}. Suppose that N : N→ S is a
bijection. Define

f(η) :=
∞∑

n=1

η(N(n))2−n, η ∈ X.

One finds easily that
∆x(f) = 2−N−1(x) > 0, x ∈ S.

Hence f ∈ D(X)\T (X). The family c = (cT (·, ·))T∈T of transition rate functions
shall be given by

cT (η, u) :=

{
c(x, η), T = {x}, u = 1− η(x)
0, otherwise,

where
c(x, η) = f(θxη), x ∈ S, η ∈ X.

1In [5, Thm. I.3.9.], functions g ∈ D(X) are considered. Recall that T (X) ⊂ D(X). It is for this
property that condition (8) has to be imposed on the transition rates.
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Here, the shift operators θx : X→ X are defined for x ∈ S by θxη(z) = η(z +x), z ∈
Zd.

Fix x ∈ S, x 6= 0. For η, ζ ∈ X with ηxc = ζxc , it holds that

‖c0(η, ·)− c0(ζ, ·)‖tv = |c0(η, 0)− c0(ζ, 0)|+ |c0(η, 1)− c0(ζ, 1)|
= |c(0, η)− c(0, ζ)|
= |f(η)− f(ζ)|.

Hence c0(x) = ∆x(f), x ∈ S, x 6= 0. Since c is translation-invariant, it follows that

cy(x) = ∆x−y(f), x, y ∈ S, x 6= y.
Obviously,

cT (x) = 0, T ∈ T , |T | 6= 1.

Further,
γ(x, z) =

∑
T∈T
T3x

cT (z) = cx(z) = ∆z−x(f), x, z ∈ S, x 6= z.

In particular,
sup
x∈S

∑
T3x

cT = sup
x∈S

∑
T3x

(
sup
η∈X

cT (η,XT )
)

= sup
η∈X

c0(η, W )

= sup
η∈X

f(η)

= 1,

and sup
x∈S

∑
z∈S

γ(x, z) = sup
x∈S

∑
z∈S

∆z−x(f)

= sup
x∈S

∑
z∈S

2−N−1(z−x)

=
∑
n∈N

2−n

= 1,

therefore c = (cT (·, ·))T∈T is admissible but non-local. Concerning the proof of
Theorem 3.1, one finds that for sufficiently large n ∈ N the function fn which solves
the equation

fn − λA(n)fn = g,

with respect to some g ∈ T (X), λ > 0, is not a cylinder function. Indeed, choose n
such that Sn ⊃ tm(g). By (21) and the subsequent considerations, it holds that

∆u(fn) ≤ ∆u(g) + λ
∑

T⊂Sn

cT (u)
∑
x∈T

∆x(fn)

= ∆u(g) + λ
∑

z∈Sn

cz(u)∆z(fn)

= ∆u(g) + λ
∑

z∈Sn

∆u−z(f)∆z(fn), u ∈ S.
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If g is non-constant, then the case ∆x(fn) = 0, x ∈ Sn is excluded. Therefore we
can assume that ∆x(fn) > 0 for some x ∈ Sn. Then

λ
∑

z∈Sn

∆u−z(f)∆z(fn) > 0, u ∈ S,

hence ∆u(fn) > 0, u ∈ S, and thus fn 6∈ T (X).

(Received October 29, 2010)

R E FER E NCE S

[1] C. Bernardin: Fluctuations in the occupation time of a site in the asymmetric simple
exclusion process. Ann. Probab. 31 (2004), 1B, 855–879.

[2] J. Chen: Extremality of invariant measures and ergodicity of stochastic systems.
J. Phys. A 32 (2002), 2, 229–238.

[3] S. N. Ethier and T. G. Kurtz: Markov Processes: Characterization and Convergence.
Wiley, 1986.

[4] P. Jung: The noisy voter-exclusion process. Stoch. Proc. Appl. 115 (2005), 12, 1979–
2005.

[5] T. M. Liggett: Interacting Particle Systems. Springer-Verlag, 1985.
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