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ROBUSTNESS OPTIMAL SPRING BALANCE WEIGHING
DESIGNS FOR ESTIMATION TOTAL WEIGHT

Bronis law Ceranka and Ma lgorzata Graczyk

In this paper we develop the theory of spring balance weighing designs with non-positive
correlated errors for that the lower bound of the variance of estimated total weight is
attained.
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1. INTRODUCTION

We consider the standard Gauss–Markoff model y = Xw + e, where y is the n× 1
observation vector, X ∈ Ψn×p, ξ(0, 1), w is a p × 1 vector representing unknown
parameters, e is an n × 1 random vector of errors having the following properties:
E(e) = 0n, E(ee′) = σ2G, where σ2 is the constant variance of errors, 0n is the
n × 1 vector of zeros, G is the n × n symmetric positive definite matrix of known
elements. Ψn×p, ξ(0, 1) for fixed ξ, denotes the class of available n× p matrices such
that

(i) X = (xij), xij = 0 or 1, i = 1, 2, . . . , n, j = 1, 2, . . . , p,

(ii) for given i, ξi =
∑p

j=1 xij , maxi{ξi} = ξ, ξ < p,

(iii) for every member of Ψn×p, ξ(0, 1), the total weight is estimable.

Following the usual terminology, the design matrix X ∈ Ψn×p, ξ(0, 1) is called the
weighing matrix and the experiment is called the spring balance weighing design.
(See, for example, [12].) Some optimality criterions and the existence conditions
determining such designs are given in [1, 8, 9].

Any spring balance weighing design is nonsingular if the matrix X′G−1X is nonsin-
gular. It is obvious that if G is the positive definite matrix then any spring balance
weighing design is nonsingular if and only if the matrix X′X is nonsingular and then
all parameters are estimable. Even X′G−1X is nonsingular, there exists a design
which estimates the total weight with a smaller variance than the design which is
most efficient for the estimation of individual weights. The examples of such designs
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are available in literature, see for instance [1]. When X′G−1X is singular, although
unknown measurements of all objects are not estimable, but some linear functions
of w may be estimable. One of the estimable function is the total weight (the sum
of measurements) of all objects, i. e. 1′pw, where 1p denotes the p×1 vector of ones.
Some examples of optimal singular spring balance weighing designs for estimated
total weight are given in [4].

Suppose that we omit the assumption ξ < p and we take ξ = p. Thus if X ∈
Ψn×p, p(0, 1) then all the objects are weighted simultaneously in all the weighings
and the design matrix X will contain only unities as its elements. Obviously such
design will enable the estimation of total weight with minimum variance. However,
due to practical limitation, it may be not possible to measure all objects together in
each measurement operation.

It is, therefore, assumed that at most ξ(< p) objects can be weighted simultane-
ously in each weighing. Under this restriction, a lower bound for variance of the
estimated total weight is obtained using a singular spring balance weighing design
permitting the estimation of total weight. Design for which the lower bound is at-
tainable have been called “optimum”.

In this paper we present the estimation of total weight of objects in the spring balance
weighing design assuming that the errors are equal non-positive correlated and they
have the same variance, i. e. for the random vector of errors e, E(ee′) = σ2G, where

G = g [(1− ρ)In + ρ1n1′n] , g > 0,
−1

n− 1
< ρ ≤ 0, (1)

In is n× n identity matrix. The matrix G has compound symmetry structure. The
compound symmetry correlation structure assumes equal correlation among all the
measurements. Some examples of applying such matrix are available in [6]. Let
note, for g > 0, −1

n−1 < ρ ≤ 0, the matrix G is positive definite and moreover

G−1 = 1
g(1−ρ)

[
In − ρ

1+ρ(n−1)1n1′n
]
.

For the case G = In, some problems concerned on the spring balance weighing
designs have been considered in literature: [1, 4]. For some patterns of G the
conditions determining optimal design for estimating total weight were given in [5].

2. OPTIMAL DESIGN

Assume that X ∈ Ψn×p, ξ (0, 1) and G is of (1). According to the literature (see for
example [8]) the following definition can be establish.

Definition 2.1. Any spring balance weighing design X ∈ Ψn×p, ξ(0, 1) with the
covariance matrix σ2G, where G is of (1), is said to be optimal for the estimated
total weight if the variance of its estimator attains the lower bound.



904 B. CERANKA AND M. GRACZYK

We will denote by (X′G−1X)− a generalized inverse (g-inverse) of X′G−1X, i. e.
X′G−1X(X′G−1X)−X′G−1X = X′G−1X. As mentioned in Section 1, a paramet-
ric function of interest is the total weight and this function will be estimable if and
only if there exists an n×1 vector a such that a′X = 1′p. This condition is equivalent
to the 1′p(X

′G−1X)−X′G−1X = 1′p.

The following lemma given in [5] will be required to prove the main result of next
theorem.

Lemma 2.2. For any symmetric positive definite n×n matrix G, any n×p matrix
X and any vector c 6= 0p satisfying c′(X′G−1X)−X′G−1X = c′,

c′(X′G−1X)−c ≥ (c′c)2

c′X′G−1Xc
. (2)

Equality holds in (2) if and only if c is eigenvector of X′G−1X.

Theorem 2.3. In any spring balance weighing design X ∈ Ψn×p, ξ(0, 1) with the
covariance matrix σ2G, where G is of (1), the variance of the estimator of total
weight is given as

Var
(
1̂′pw

)
≥ σ2p2g(1 + ρ(n− 1))

nξ2
. (3)

The design is optimal for the estimated total weight if and only if

(i) X′G−1X1p = µ1p and

(ii) ξi = ξ for all i = 1, 2, . . . , n,

where µ is non-negative scalar.

P r o o f . The proof falls naturally into two parts. Under the above assumptions and
considering Lemma 2.2 it would be noticed that
Var

(
1̂′pw

)
= Var

(
1′p(X

′G−1X)−X′G−1y
)

= σ21′p(X
′G−1X)−1p ≥ σ2p2

1′pX
′G−1X1p

.

The equality holds if and only if 1p is eigenvector of X′G−1X. Furthermore,

1′pX
′G−1X1p =

1
g(1− ρ)

(
1′pX

′X1p −
ρ

1 + ρ(n− 1)
1′pX

′1n1′nX1p

)

=
1

g(1− ρ)

 n∑
i=1

 p∑
j=1

xij

2

− ρ

1 + ρ(n− 1)

 n∑
i=1

p∑
j=1

xij

2


≤ 1
g(1− ρ)

(
n · ξ2 − ρ

1 + ρ(n− 1)
n2ξ2

)
=

nξ2

g(1 + ρ(n− 1))
.

The equality holds if and only if ξi = ξ for all i = 1, 2, . . . , n. Thus Var
(
1̂′pw

)
≥

σ2 p2g(1+ρ(n−1))
nξ2 , which completes the first part of the proof.
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Let note, u = G− 1
2 X1p and v = G− 1

2 X
(
X′G−1X

)−
1p. Applying the Cauchy–

Schwarz inequality on u and v we have (u′v)2 ≤ (u′u)(v′v). Equality holds if
and only if u = µv for some real scalar µ. Substituting for u and v the condition

u = µv reduced to G− 1
2 X1p = µG− 1

2 X
(
X′G− 1

2 X
)−

1p which is equivalent to

X′G−1X1p = µ1p. The proof is completed by showing that the equality in (3) is
attained if and only if ξi = ξ for all i = 1, 2, . . . , n, i. e. the (ii) is true. �

Also note the following remark.

Remark 2.4. For G = In Theorem 2.3 was given in [4], whereas in [2] was proved
under assumption G = diag(g1, g2, . . . , gn), gi > 0 for all i′s.

Theorem 2.5. In any spring balance weighing design X ∈ Ψn×p, ξ(0, 1) with the
covariance matrix σ2G, where G is of (1), the conditions (i) and (ii) of Theorem 2.3
are equivalent to

(i) X′G−11n = ϑ1p and

(ii) X1p = ξ1n,

where ϑ = µ
ξ .

P r o o f . To prove the theorem we first observe that from (ii) of Theorem 2.3 we
obtain X1p = ξ1n. Considering (i) of the theorem 2.3 we conclude ξX′G−11n = µ1p.
Next, it implies X′G−11n = µξ−11p. On the other hand, we assume the conditions
given in Theorem 2.5 are true. From X′G−11n = ϑ1p we have X′G−1ξ1n = ϑξ1p.
Taking X1p for ξ1n we obtain X′G−1X1p = ϑξ1p = µ1p. Moreover X1p = ξ1n is
equivalent to (ii) of Theorem 2.3 and we get the required result. �

Remark 2.6. In particular case G = In, the theorem 2.5 was given as Lemma 2.1
in [11].

Let note, for G in (1), G1n = α1n and G−11n = 1
α1n, where α = g(1 + ρ(n− 1)).

Corollary 2.7. In any spring balance weighing design X ∈ Ψn×p, ξ(0, 1) with the
covariance matrix σ2G, where G is of (1), the conditions (i) of Theorem 2.5 is
equivalent to X′1n = ω1p, where ω = µα

ξ .

Above consideration imply that X′1n = ω1p, i. e. the sum of elements in each co-
lumn of the design matrix X is the same. On the other hand X′1n = µα

ξ 1p, i. e.
the sum of elements in each column of the design matrix X depends on the matrix
G. Comparing equalities ω1p and µα

ξ 1p and place forms of α, µ, ξ and G−1 we
obtain identity. Here is way we conclude that the spring balance weighing design
X ∈ Ψn×p, ξ(0, 1) is optimal for the estimated total weight for any ρ, −1

n−1 < ρ ≤ 0,
i. e. this design is robust for different ρ. The results given in the above theorems
imply the next corollary.
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Corollary 2.8. Any spring balance weighing design X ∈ Ψn×p, ξ(0, 1) with the
covariance matrix σ2In is optimal for the estimated total weight if and only if such
design is optimal for the estimated total weight with the covariance matrix σ2G,
where G is of (1).

Let us consider any ρu, −1
n−1 < ρu ≤ 0, u = 1, 2, ρ1 6= ρ2. It is worth pointing

out that the design X ∈ Ψn×p, ξ(0, 1) satisfying Theorem 2.5 is optimal for the
estimated total weight in the sense of attaining minimal variance of the estimator
of total weight for the covariance matrix σ2G for ρ1 and for ρ2. Simutaneously the
lower boud of variance given in (3) is not the same for different numbers of ρ. For a
deeper discussion of robustness optimal designs we refer the reader to [7].

3. CONSTRUCTION OF THE DESIGN MATRIX

Let N denote the usual v× b binary incidence matrix of block design where v and b
mean the number of treatments and number of blocks, respectively. Let N1b = r1v

and N′1v = k1b, where r is the number of replications of the ith treatment and k is
the size of jth block, i = 1, 2, . . . , v, j = 1, 2, . . . , b.

Theorem 3.1. Any spring balance weighing design X ∈ Ψn×p, ξ(0, 1), X = N
(or X = N′) with the covariance matrix σ2G, where G is of the form (1), is optimal
for estimated total weight of p = b (or p = v ) objects in n = v (or n = b)
weighings.

P r o o f . Let note, if X = N then ξ = r, if X = N′ then ξ = k. Taking a = 1
k1v

(or a = 1
r1b ) it is clear that condition a′N = 1′p is satisfied for X = N (or X = N′).

The condition given in Corollary 2.7 and the condition (ii) of Theorem 2.5 follow
from the equalities N1b = r1v and N′1v = k1b. �

Remark 3.2. Following the standard notation given, for example in [3, 9, 10], it is
clear that N could be the incidence matrix of the balanced incomplete block design
or one of partially balanced incomplete block design with two associated classes:
(i) group divisible design consisting of three subtypes: singular, semi-regular, regular,
(ii) triangular,
(iii) Latin square types,
(iv) cyclic,
(v) partial geometry,
(vi) miscellaneous.
Moreover, if N is the incidence matrix of α− resolvable block designs, (α1, α2, . . . , αt)−
resolvable block designs, singular group divisible designs or semi-regular group di-
visible designs, appropriate constructions are given in [2].

As counter-example let as consider the experiment in which we determine total
weight of p = 3 objects in n = 6 measurements operations. Let us consider design
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matrix X ∈ Ψ6×3,2(0, 1) and the covariance matrix σ2G for g = 1, where

X =



1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1


, G =



1 − 1
7 − 1

7 − 1
7 − 1

7 − 1
7

− 1
7 1 − 1

7 − 1
7 − 1

7 − 1
7

− 1
7 − 1

7 1 − 1
7 − 1

7 − 1
7

− 1
7 − 1

7 − 1
7 1 − 1

7 − 1
7

− 1
7 − 1

7 − 1
7 − 1

7 1 − 1
7

− 1
7 − 1

7 − 1
7 − 1

7 − 1
7 1


.

We have α = 2
7 , X13 = 2 · 16 hence ξ = 2, X′16 = 4 · 13 thus ω = 4, X′G−116 =

14 · 13 and ϑ = 14. Since X′G−1X13 = 28 · 13, then µ = 28 and 4 = ω = µα
ξ .

Moreover, for the design X with G, Var
(
1̂′3w

)
= 0, 107σ2. It is easy to see that for

covariance matrix of errors σ2G, the design X that satisfies Theorem 2.5 is optimal
for estimation of the total weight.
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[6] M. Krzyśko and M. Skorzybut: Dysciminant analysis of multivariate repeated mea-
sures data with Kronecker product structured covariance matrices. Statist. Papers
50 (2009), 817–835.

[7] J. Masaro and C. S. Wong: Robustness of A-optimal designs. Linear Algebra Appl.
429 (2008), 1392–1408.

[8] F. Pukelsheim: Optimal Design of Experiment. John Wiley and Sons, New York
1993.

[9] D. Raghavarao: Constructions and Combinatorial Problems in designs of Experi-
ments. John Wiley Inc., New York 1971.



908 B. CERANKA AND M. GRACZYK

[10] D. Raghavarao and L. V. Padgett: Block Designs, Analysis, Combinatorics and
Applications. Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte.
Ltd., 2005

[11] B. K. Sinha: Optimum spring balance weighing designs. In: Proc. All India Conven-
tion on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.

[12] K.R. Shah and B. K. Sinha: Theory of Optimal Designs. Springer-Verlag, Berlin
1989.

Bronis law Ceranka, Department of Mathematical and Statistical Methods, Poznań Univer-
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