Kybernetika 47 no. 6, 880-892, 2011

Estimation of summary characteristics from replicated spatial point processes

Zbyněk Pawlas

Abstract:

Summary characteristics play an important role in the analysis of spatial point processes. We discuss various approaches to estimating summary characteristics from replicated observations of a stationary point process. The estimators are compared with respect to their integrated squared error. Simulations for three basic types of point processes help to indicate the best way of pooling the subwindow estimators. The most appropriate way depends on the particular summary characteristic, edge-correction method and also on the type of point process. The methods are demonstrated on a replicated dataset from forestry.

Keywords:

point process, $K$-function, nearest-neighbour distance distribution function, non-parametric estimation, replication

Classification:

60G55, 62G05, 62M30

References:

  1. A. J. Baddeley and R. Gill: Kaplan-Meier estimators of distance distributions for spatial point processes. Ann. Statist. 25 (1997), 263-292.   CrossRef
  2. A. J. Baddeley, R. A. Moyeed, C. V. Howard and A. Boyde: Analysis of a three-dimensional point pattern with replication. J. Roy. Statist. Soc. Ser. C 42 (1993), 641-668.   CrossRef
  3. M. L. Bell and G. K. Grunwald: Mixed models for the analysis of replicated spatial point patterns. Biostatistics 5 (2004), 633-648.   CrossRef
  4. P. J. Diggle: Statistical Analysis of Spatial Point Patterns. 2nd edition. Arnold, London 2003.   CrossRef
  5. P. J. Diggle, N. Lange and F. M. Beneš: Analysis of variance for replicated spatial point patterns in clinical neuroanatomy. J. Amer. Statist. Assoc. 86 (1991), 618-625.   CrossRef
  6. P. J. Diggle, J. Mateu and H. E. Clough: A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns. Adv. in Appl. Probab. (SGSA) 32 (2000), 331-343.   CrossRef
  7. K.-H. Hanisch: Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point patterns. Statistics 15 (1984), 409-412.   CrossRef
  8. J. Illian, A. Penttinen, H. Stoyan and D. Stoyan: Statistical Analysis and Modeling of Spatial Point Patterns. John Wiley \& Sons, Chichester 2008.   CrossRef
  9. A. A. Philimonenko, J. Janáček and P. Hozák: Statistical evaluation of colocalization patterns in immunogold labeling experiments. J. Struct. Biol. 132 (2000), 201-210.   CrossRef
  10. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2010. URL: \texttt{http://www.R-project.org}.   CrossRef
  11. D. Stoyan: On estimators of the nearest neighbour distance distribution function for stationary point processes. Metrika 64 (2006), 139-150.   CrossRef
  12. C. G. Wager, B. A. Coull and N. Lange: Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging. J. R. Statist. Soc. B 66 (2004), 429-446.   CrossRef