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ONE BOOTSTRAP SUFFICES TO GENERATE SHARP
UNIFORM BOUNDS IN FUNCTIONAL ESTIMATION

Paul Deheuvels

We consider, in the framework of multidimensional observations, nonparametric func-
tional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel
density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators
([16, 22]). We evaluate the sup-norm, over a given set I, of the difference between the
estimator and a non-random functional centering factor (which reduces to the estimator
mean for kernel density estimation). We show that, under suitable general conditions, this
random quantity is consistently estimated by the sup-norm over I of the difference between
the original estimator and a bootstrapped version of this estimator. This provides a sim-
ple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The
present work generalizes former results of Deheuvels and Derzko [4], given in the setup of
density estimation in R.
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1. KERNEL DENSITY AND REGRESSION ESTIMATORS

Let (X,Y) be a random vector, with X = (X1, . . . , Xp) ∈ Rp and Y = (Y1, . . . , Yq) ∈
Rq. We denote the joint distribution function [df] of (X,Y) by F (x,y) = P(X ≤
x,Y ≤ y), for x ∈ Rp and y ∈ Rq. Here, for v′ = (v′1, . . . , v

′
r) ∈ Rr and v′′ =

(v′′1 , . . . , v
′′
r ) ∈ Rr, we set v′ ≤ v′′ whenever v′j ≤ v′′j for j = 1, . . . , r. Moreover, we

set, when v = (v1, . . . , vr) ∈ Rr,

(−∞,v] =
r∏
j=1

(−∞, vj ].

Let ψ : Rq → R be a measurable function. In this paper, we are primarily concerned
with the estimation of the conditional expectation (or regression) of Y := ψ(Y)
given X = x,

mψ(x) = E
(
Y|X = x

)
= E

(
ψ(Y)|X = x

)
, (1)



856 P. DEHEUVELS

whenever it exists. We will work under the following notation, borrowed from De-
heuvels and Mason [5]. We denote by I and J two fixed subsets of Rp such that

I =
p∏
j=1

[aj , bj ] ⊂ J =
p∏
j=1

[cj , dj ] ⊂ Rp, (2)

where
−∞ < cj < aj < bj < dj <∞ for j = 1, . . . , p. (3)

We assume that (X,Y) has a joint density fX,Y(x,y) = ∂p+q

∂x1...∂xp∂y1...∂yq
F (x,y) on

J× Rq, with respect to the Lebesgue measure dx× dy, and denote by

fX(x) =
∫

Rq

f(x,y) dy for x ∈ J, (4)

the density of X (which is only assumed to exist on J). We denote by {M(x) : x ≥ 0}
a nonnegative continuous function, increasing on [0,∞), and such that, for some
ρ > 2, ultimately as x ↑ ∞,

(i) x−ρM(x) ↓; (ii) x−1M(x) ↑ . (5)

For each t ≥M(0), we define Minv(t) ≥ 0 by M(Minv(t)) = t. We assume further
that:

(F.1) fX,Y is continuous on J× Rq;

(F.2) fX is continuous and bounded away from 0 on J;

(F.3) βM(ψ) := supx∈J E
(
M

(
|ψ(Y)|

)∣∣X = x
)
<∞.

Under (F.1–2–3), the regression function mψ(x) exists for x ∈ J, and fulfills the
equality

mψ(x) =
1

fX(x)

∫
Rq

ψ(y)fX,Y(x,y) dy =
rψ(x)
fX(x)

, (6)

where we set, for x ∈ J,

rψ(x) =
∫

Rq

ψ(y)fX,Y(x,y) dy. (7)

When combined with (5), (F.3) implies finiteness of the conditional variance σ2
ψ(x)

of ψ(Y) given that X = x, for x ∈ J. We have the relations, for x ∈ J,

σ2
ψ(x) = Var

(
ψ(Y)|X = x

)
=

1
fX(x)

∫
Rq

{
ψ(y)− rψ(x)

}2

fX,Y(x,y) dy. (8)
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Remark 1.1. The introduction of the function ψ(·) is motivated by (F.1–2–3),
which impose the existence of a density of (X,Y) on J × Rq. Since ψ(·) is pos-
sibly discontinuous, the existence of a density of (X,Y) = (X, ψ(Y)) will not be
required in our results.

We now introduce a kernel function {K(x) : x ∈ Rp}, fulfilling the conditions (K.1–
2) below (see, e. g., §3.2 in the sequel, and p. 227 in Deheuvels and Mason [5]). Below,
we denote by |v| the Euclidian norm of v ∈ Rr for arbitrary r ≥ 1.

(K.1)
∫

Rp K(t) dt = 1.

(K.2) (i) K(·) is of bounded variation on Rp in the sense of Hardy and Krause,
meaning that K(dt) defines a totally bounded Lebesgue-Stieltjes signed measure on
Rp.

(K.2) (ii) We may decomposeK(dt) = µ+−µ− into the difference of two orthogonal,
compactly supported, non-negative (bounded) Radon measures on Rp, such that

‖dK‖ :=
∫

Rp

|K(dt)| = µ+(Rp) + µ−(Rp) <∞.

(K.2) (iii) We may write K = K+−K−, where K+(t) = µ+((−∞, t]) and K−(t) =
µ−((−∞, t]) are right-continuous on Rp.

The relevance of (K.1–2) with respect to our theorems will be discussed in §3.2.

We next consider a sequence {(Xi,Yi) : i ≥ 1} of independent and identically
distributed [iid] random copies of the random vector [rv] (X,Y). For each n ≥ 1,
and for each choice of the bandwidth h > 0, we define the kernel estimators

fX;n(x;h) =
1
nh

n∑
i=1

K

(
x−Xi

h1/p

)
, (9)

rψ;n(x;h) =
1
nh

n∑
i=1

ψ(Yi)K
(

x−Xi

h1/p

)
, (10)

and set

mψ;n(x;h) =


rψ;n(x;h)
fX;n(x;h) for fX;n(x;h) 6= 0,
1
n

∑n
i=1 ψ(Yi) for fX;n(x;h) = 0.

(11)

The above Akaike–Parzen–Rosenblatt kernel estimator fX;n(x;h) of fX(x) ([1, 18,
20]), and Nadaraya–Watson estimator mψ;n(x;h) of the regression function mψ(x)
([16, 22]), have been extensively studied in the literature (see, e. g., Deheuvels and
Mason [5], and the references therein). Introduce the non-random centering func-
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tions

EfX;n(x;h) =
1
h

E
{
K

(
x−X
h1/p

)}
, (12)

Erψ;n(x;h) =
1
h

E
{
ψ(Y)K

(
x−X
h1/p

)}
, (13)

Êmψ;n(x;h) =


Erψ;n(x;h)
EfX;n(x;h) for EfX;n(x;h) 6= 0,
1
n

∑n
i=1 Eψ(Yi) for EfX;n(x;h) = 0.

(14)

Under (F.1–2–3) and (K.1–2) (see, e. g., p. 1383 in [8]), for all x ∈ J, as h→ 0,

EfX;n(x;h) → fX(x), Erψ;n(x;h) → rψ(x), (15)
and

Êmψ;n(x;h) → mψ(x). (16)

The rate of convergence in (15)–(16) is a purely analytical problem which we will not
consider here. We will concentrate on the study of the random sup-norm deviations

Dn(I;h) := sup
x∈I

∣∣∣fX;n(x;h)− EfX;n(x;h)
∣∣∣, (17)

Dr;ψ;n(I;h) := sup
x∈I

∣∣∣rψ;n(x;h)− Erψ;n(x;h)
∣∣∣, (18)

Dm;ψ;n(I;h) := sup
x∈I

∣∣∣mψ;n(x;h)− Êmψ;n(x;h)
∣∣∣. (19)

Theorem 1.2 below is due to Deheuvels and Mason [5] for p = q = 1. The extension
of this result to arbitrary p ≥ 1 and q ≥ 1 will be discussed in the forthcoming § 3.
Introduce the following assumptions on the limiting behavior of h = hn as n→∞.

(H.1) hn → 0 as n→∞;

(H.2) nhn/ log n→∞ as n→∞;

(H.3) nhn
{

logn
Minv(n)2

}
→∞ as n→∞.

Theorem 1.2. Under (F.1–2–3), (K.1–2) and (H.1–2–3), we have, as n→∞

Dn(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2 {
sup
x∈I

fX(x)
∫

Rp

K(t)2dt
}1/2

, (20)

Dr;ψ;n(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2 {
sup
x∈I

fX(x)σ2
ψ(x)

∫
Rp

K(t)2dt
}1/2

, (21)

Dm;ψ;n(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2
{

sup
x∈I

σ2
ψ(x)
fX(x)

∫
Rp

K(t)2dt

}1/2

. (22)
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The right-hand sides of (20), (21) and (22) are difficult to evaluate in practice. Not
only they depend upon unknown distributional factors, but also upon the scale-
dependent coefficient log(1/hn). This motivates the resampling approach to this
problem presented in § 2.

2. RESAMPLED ESTIMATORS

Bootstrap and resampling methods have been used for decades in nonparametric
functional estimation, starting with Efron [7], Härdle and Bowman [13], Härdle and
Marron [12], Hall [11], and Li and Datta [14] (see, e. g., Claeskens and van Keilegom
[3]). Deheuvels and Derzko [4] have introduced a bootstrap methodology to override
the difficulty of evaluating Dn(I;hn). We will extend their results to Dr;ψ;n(I;hn)
and Dm;ψ;n(I;hn). We define random weights {Wi,n : 1 ≤ i ≤ n}, independent of
{(Xi,Yi) : 1 ≤ i ≤ n}, via either one of the resampling schemes (R.1) or (R.2)
below.

(R.1) As in the Mason and Newton [15] bootstrap, we introduce an auxiliary iid
sequence Z = Z1, Z2, . . . of real-valued rv’s, independent of {(Xi,Yi) : i ≥ 1}, and
such that

(A.1) E(Z) = 1; E(Z2) = 2;
(A.2) For some ε > 0, E(etZ) <∞ for all |t| ≤ ε.

Setting Tn = Z1 + . . . + Zn we define the {Wi,n : 1 ≤ i ≤ n}, by setting, for
i = 1, . . . , n,

Wi,n =


Zi
Tn

=
Zi∑n
j=1 Zj

when Tn > 0,

1
n

when Tn ≤ 0.

(R.2) As in the Efron [7] multinomial bootstrap, we let (Z1, . . . , Zn) denote a mul-
tinomial Mult( 1

n , . . . ,
1
n ;n) rv, independent of {(Xi,Yi) : i ≥ 1}, and such that, for

each n-uple {k1, . . . , kn} of nonnegative integers fulfilling k1 + . . .+ kn = n,

P(Z1 = k1, . . . , Zn = kn) =
n−nn!

k1! . . . kn!
.

We then define the {Wi,n : 1 ≤ i ≤ n}, by setting

Wi,n =
Zi
n

=
Zi∑n
j=1 Zj

for i = 1, . . . , n.

Under either (R.1) or (R.2), we define resampled or bootstrapped versions of fX,n(x;h),
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rψ;n(x;h) and mψ;n(x;h), by setting, for each h > 0 and x ∈ Rp,

f∗X;n(x;h) =
1
h

n∑
i=1

Wi,nK

(
x−Xi

h1/p

)
, (23)

r∗ψ;n(x;h) =
1
h

n∑
i=1

Wi,nψ(Yi)K
(

x−Xi

h1/p

)
, (24)

m∗
ψ;n(x;h) =


r∗ψ;n(x;h)
f∗X;n(x;h) for f∗X;n(x;h) 6= 0,∑n
i=1Wi,nψ(Yi) for f∗X;n(x;h) = 0.

(25)

We next consider the resampled sup-norm deviations

D∗n(I;h) := sup
x∈I

∣∣∣f∗X;n(x;h)− fX;n(x;h)
∣∣∣, (26)

D∗r;ψ;n(I;h) := sup
x∈I

∣∣∣r∗ψ;n(x;h)− rψ;n(x;h)
∣∣∣, (27)

D∗m;ψ;n(I;h) := sup
x∈I

∣∣∣m∗
ψ;n(x;h)−mψ;n(x;h)

∣∣∣. (28)

The following result extends Theorem 13.1.1 of Deheuvels and Derzko [4] (which
yields the limiting statement (29) when p = q = 1).

Theorem 2.1. Under (F.1–2–3), (K.1–2), (H.1–2–3), and, either (R.1) or (R.2),
we have, as n→∞

D∗n(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2 {
sup
x∈I

fX(x)
∫

Rp

K(t)2dt
}1/2

, (29)

D∗r;ψ;n(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2 {
sup
x∈I

fX(x)σ2
ψ(x)

∫
Rp

K(t)2dt
}1/2

, (30)

D∗m;ψ;n(I;hn) = (1 + oP(1))

×
{

2 log(1/hn)
nhn

}1/2
{

sup
x∈I

σ2
ψ(x)
fX(x)

∫
Rp

K(t)2dt

}1/2

. (31)

A direct consequence of Theorems 1.2 and 2.1 is stated in the following corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, we have, as n→∞

Dn(I;hn) = (1 + oP(1))D∗n(I;hn), (32)
Dr;ψ;n(I;hn) = (1 + oP(1))D∗r;ψ;n(I;hn), (33)
Dm;ψ;n(I;hn) = (1 + oP(1))D∗m;ψ;n(I;hn). (34)
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The application of Corollary 2.2 is pretty much obvious. By performing just a
single resampling (or bootstrap), one evaluates D∗n(I;hn) (resp. D∗r;ψ;n(I;hn) or
D∗m;ψ;n(I;hn)) when one seeks to estimate fX(·)) (resp. rψ(·) or mψ(·)). Making
use of either (32), (33), or (34), we so obtain sharp asymptotic certainty bands, for
the unknown quantities EfX;n(x;h), Erψ;n(x;h), or Êmψ;n(x;h). This notion will
be discussed below, in the setup of density estimation. The applications of this
methodology are similar in the case of Nadaraya–Watson regression estimation with
the formal change of (32) by (34).

By a uniform asymptotic certainty band on I for EfX;n(x;h), is meant a (possibly
non-random) statistic θn = θn(X1, . . . , Xn) ≥ 0, such that, for each 0 < ε < 1, as
n→∞,

P
(

sup
x∈I

|fX;n(x;h)− EfX;n(x;h)| ≤ θn(1 + ε) + ε
)
→ 1, (35)

and
P

(
sup
x∈I

|fX;n(x;h)− EfX;n(x;h)| ≤ θn(1− ε)− ε
)
→ 0. (36)

Remark 2.3. The qualification of certainty bands is used here, rather than that
of confidence bands, since the above θn does not depend on a confidence level α ∈
(0, 1). Some authors (see, e. g., Härdle and Marron [12]) have used the concept of
simultaneous error bars, which is not quite equivalent to the present definitions.
Our approach also differs from that of Bickel and Rosenblatt [2] (see, e. g., Giné,
Koltchinskii and Sakhanenko [9]), who evaluate limiting distributions for weighted
sup-norms of |fX;n(x;h)− EfX;n(x;h)|. The convergence of such statistics to their
limit laws is, unfortunately, so slow as to render their application problematic for
“ordinary” sample sizes. The methodology we follow should appear, therefore, less
refined, but more applicable to the “usual” statistical data sets.

The practical interest of asymptotic certainty bands appears through the plots of

(fX;n(x;h)− θn) ∨ 0 and (fX;n(x;h) + θn) ∨ 0,

over x ∈ I. In view of Corollary 2.2, we recommend the choice of θn = D∗n(I),
which fulfills (35)–(36). These limiting statements show that the centering factor
EfX;n(x;h) should, with probability tending to 1, be, for all x ∈ I in between or
close to (up to a factor tending to 1, in the sense of (35)–(36)) the lower (resp.
upper) certainty bound

(fX;n(x;h)− θn) ∨ 0, (resp. (fX;n(x;h) + θn) ∨ 0).

In view of (15), we would like to replace EfX;n(x;h) by fX(x) in the above state-
ments. This, however, would require the non-random bias fX(x)−EfX;n(x;h) to be
negligible with respect to θn. As mentioned earlier, this condition imposes additional
rate conditions on h = hn and regularity assumptions on fX(x) (see, e. g. [5]). The
same observation holds for the other kernel functional estimators considered above.
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3. PROOFS

3.1. The general setup

When p = q = 1, Theorem 1.2 reduces to Theorem 1.1 of Deheuvels and Mason
[5]. The extension of this result to arbitrary p ≥ 1 and q ≥ 1 is mostly a matter of
book-keeping, with minor changes. The proof relies on the study of the oscillations
of the process

Wλ,n(x, ψ) :=
n∑
i=1

(
c(x)ψ(Yi) + d(x)

)
K

(
x−Xi

λh
1/p
n

)
−

−nE
{(
c(x)ψ(Y) + d(x)

)
K

(
x−X

λh
1/p
n

)}
, (37)

where c(x) and d(x) are continuous functions of x ∈ J. Theorem 1.1 of [5] turns
out to follow from the limit law stated in (38)–(39) below (see, e. g., Theorem 3.1 of
[5]). Under the assumptions of the theorem, for any 0 < λ1 ≤ λ2 <∞, as n→∞

sup
λ1≤λ≤λ2

∣∣∣∣{2hn log(1/hn)}−1/2 sup
x∈I

{
±Wλ,n(x, ψ)

}
− σ(ψ)

∣∣∣∣ = oP(1), (38)

where
σ2(ψ) = sup

x∈I

{
E

((
c(x)ψ(Y) + d(x)

)2∣∣X = x
)
fX(x)

}∫
Rp

K2(t) dt. (39)

To establish (38)–(39) for arbitrary p ≥ 1 and q ≥ 1, we rely on the technical
arguments in §3 of Einmahl and Mason [8], where the properties of the process (37)
are investigated for x ∈ Rp and y ∈ Rq. Our assumptions on K(·) are slightly
different from that of [8], and this point is discussed in § 3.2 below. Given these
remarks, the remaining details of the proof are readily derived from §4 of [5].

We now turn to Theorem 2.1. We first consider the resampling scheme (R.1), and
introduce the resampled version of the process (37) given by

W ∗
λ,n(x, ψ) :=

n∑
i=1

(
c(x)Ziψ(Yi) + d(x)

)
K

(
x−Xi

λh
1/p
n

)
−nE

{(
c(x)Zψ(Y) + d(x)

)
K

(
x−X

λh
1/p
n

)}
.

We observe that W ∗
λ,n(x, ψ) reduces to a process of the form Wλ,n(x, ψ∗), for a suit-

able measurable ψ∗, and after some easy changes. Without loss of generality, we set
Z = Q(U) and Zi = Q(Ui) for i = 1, . . . , n, where U and U1, . . . , Un are independent
rv’s, with a uniform distribution on (0, 1), and independent of {(Xi,Yi) : 1 ≤ i ≤ n}.
This allows us to define a measurable function ψ∗(·) on Rq+1, and a rv Y∗, by

Y∗ =
[
U Y1 . . . Yq

]′ ∈ Rq+1 and ψ∗(Y∗) = Q(U)ψ(Y) = Zψ(Y).

Letting (Xi,Y∗
i ), i = 1, 2, . . ., denote iid random copies of (X,Y∗), it is readily

checked that {(Xi,Y∗
i ) : 1 ≤ i ≤ n} and ψ∗(·) fulfill the general assumptions imposed
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upon {(Xi,Yi) : 1 ≤ i ≤ n} and ψ(·) in Theorem 1.2. We may therefore write the
version of (38)–(39) holding in this case. Namely, for each 0 < λ1 ≤ λ2 < ∞, as
n→∞

sup
λ1≤λ≤λ2

∣∣∣∣{2hn log(1/hn)}−1/2 sup
x∈I

{
±W ∗

λ,n(x, ψ)− σ∗(ψ)
}∣∣∣∣ = oP(1), (40)

where
σ2
∗(ψ) = sup

x∈I

{
E

((
c(x)Zψ(Y) + d(x)

)2∣∣X = x
)
fX(x)

}∫
Rp

K2(t) dt. (41)

By recopying the arguments of [5], we infer readily (29)–(31) from (40)–(41), which
completes the proof of Theorem 2.1 under (R.1). As in [4], a Poisson approximation
argument takes care of the (R.2) resampling scheme. The corresponding details will
be given elsewhere.

3.2. Technical conditions on the kernel

Following Einmahl and Mason [8], we set K = {K((x−·)/h1/p) : h > 0, x ∈ Rp}. One
of the major ingredients in our proofs relies on the assessment that K constitutes an
appropriate VC-class with integrable envelope function (see, e. g., Appendix A in [5]).
In particular, we require K to fulfill the entropy condition (42) below. As on p. 1381
of [8], for each ε > 0, we define N(ε,K) as the supremum, over all Borel probability
measures Q on Rp, of the minimal number of balls of dQ-radius ε necessary to cover
K, where dQ denotes the L2(Q) metric induced by Q. We need to assume (see,
e. g., (K.iii), p. 1383 of [8]) the existence of a C > 0 and a ν > 0, such that, for all
0 < ε < 1,

N(ε,K) ≤ Cε−ν . (42)

To establish (42) requires analytical arguments which are avoided in most of the
papers dealing with these methods.The appropriate details are to be found in §4.7
of Dudley [6], Examples 26 and 38, and Exercise 29 in Pollard [19], Lemma 22
in Nolan and Pollard [17], Definition 2.3.3, Example 2.3.5, Theorem 2.5.2 in van
der Vaart and Wellner [21], and the Appendix A in Deheuvels and Mason [5]. As
mentioned in the proof of Lemma 22 in Nolan and Pollard, (42) holds whenever K(·)
is a linear combination of two multidimensional df’s, this condition being implied
by (K.2)(i). An example is obtained when K(·) is a product kernel, of the form

K(t) =
p∏
j=1

Kj(tj),

with Kj(·) being, for each j = 1, . . . , p, a function of bounded variation on R.
Another example is given p. 1381 of Einmahl and Mason [8], and on pp. 1111–1112
of Giné and Mason [10], who show that K(t) = Ψ(P(t)) fulfills (42) when Ψ(·) is
a function of bounded variation on R, and P(·) is either a real polynomial, or the
αth power of the absolute value of a real polynomial for some α > 0. Our theorems
remain valid when (K.2)(i) is replaced by this last assumption, or more generally,
when K fulfills (42).
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A second condition to be imposed upon K is that this set must be a pointwise
measurable class (see, e. g., Appendix A in Deheuvels and Mason [5] and Example
2.3.4 in van der Vaart and Wellner [21]), meaning that there exists a countable
K0 ⊆ K, such that, for each g ∈ K, there exists a sequence {gn} ⊆ K0, with

gn(z) → g(z) for z ∈ Rd.

This condition is fulfilled, under (K.2)(i-ii) (when K(·) is right-continuous, see,
e. g., p. 1382 in Einmahl and Mason [8]). Finally, the integrable envelope function is
provided for K by (K.2)(ii), which requires the kernel K(·) to be uniformly bounded
and compactly supported.

Remark 3.1. In view of the preceding arguments, it is quite obvious that our the-
orems may be written in the setup of uniform in bandwidth kernel estimation. This
will be considered elsewhere.
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