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SPATIAL PREDICTION OF THE MARK OF
A LOCATION-DEPENDENT MARKED POINT PROCESS:
HOW THE USE OF A PARAMETRIC MODEL MAY
IMPROVE PREDICTION

Tomáš Mrkvička, François Goreaud and Joël Chadœuf

We discuss the prediction of a spatial variable of a multivariate mark composed of
both dependent and explanatory variables. The marks are location-dependent and they
are attached to a point process. We assume that the marks are assigned independently,
conditionally on an unknown underlying parametric field. We compare (i) the classical
non-parametric Nadaraya–Watson kernel estimator based on the dependent variable (ii)
estimators obtained under an assumption of local parametric model where explanatory
variables of the local model are estimated through kernel estimation and (iii) a kernel
estimator of the result of the parametric model, supposed here to be a Uniformly Minimum
Variance Unbiased Estimator derived under the local parametric model when complete and
sufficient statistics are available. The comparison is done asymptotically and by simulations
in special cases. The procedure for better estimator selection is then illustrated on a real-life
data set.

Keywords: kernel estimation, marked Poisson process, mean mark estimation, location-
dependent mark distribution, segment process
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1. INTRODUCTION

Marked point processes (X, L) are used to describe the position and characteristics
of objects randomly spread in space. They can be used, for example, in forestry
to describe the position X = (x1, . . . xn) and characteristics (height, diameter, . . . )
denoted as L = (l1, . . . ln) of trees, where li = (l(1)i , . . . , l

(k)
i ), k being the number of

characteristics observed. At a given point, these characteristics can be dependent
and may also depend on unobserved characteristics (soil properties for example).
For such point processes the marks are then location-dependent – depend on the
position of the point. Furthermore we assume that the marks are independent of
each other and of other points. Most of the literature deal with the stationary
marked point processes (e. g. [8, 18]) and study the dependence structure among
marks. Here we are interested in with the location-dependent varying of the marks
which are independent of other locations and other marks.
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Suppose one characteristic l(1) is of interest (e. g., the tree volume or tree height).
This characteristic can be analyzed by (i) looking at the univariate marked point
process (X, L(1)), or (ii) by using local models describing the dependence within
the vector of a mark if available, so as to use all information. Local models can be
available from prior biological or physical knowledge. (iii) In the case of local statis-
tical models, (ii) should be improved using Uniformly Minimum Variance Unbiased
estimators.

In the case (i), non-parametric estimation is widely used in order to take into
account the spatial non-stationarity, as in spatial epidemiology ([9, 10, 11]). Main
estimation procedures, focusing on local mean value estimation, are completely non-
parametric. The most classical example is the estimation of the mean value of marks
of a marked point process, where non-parametric Nadaraya–Watson kernel estima-
tors are used. In case (ii) explanatory variables at each location will be estimated
by using a kernel estimation of the observed explanatory variables (L(2), . . . , L(k))
and will be plugged into the local model. In case (iii), we propose to plug these
kernel estimates in the Uniformly Minimum Variance Unbiased estimators derived
from the local model.

The question arises then to know whether it is better (i) to estimate directly the
mean l(1) non-parametrically, or (ii) to estimate the explanatory variables l(2), . . . , l(k),
first non-parametrically and then estimate l(1) by pluging-in the estimated values in
the expectation formula. This question has been already formulated (see for example
[22] where it was reformulated recently in an environmental and agricultural con-
text), but the answer to this question is not known. At the moment, scientists invest
mainly on the local model by introducing as much physical components as possible.
For example, in [4] and [17] the physiology and bioclimatology in plan models in
order to predict potential yield or carbon release in atmosphere is introduced. Such
models are then used locally everywhere in the zone of interest, by interpolating the
explanatory variables, as can be seen for example in [2]. A better solution may also
be (iii) to estimate the complete and sufficient statistics of the local model obtained
under location-independent assumption by applying it locally, and then estimate l(1)

by plugging these statistics in the Uniformly Minimum Variance Unbiased (UMVU)
estimators for which better statistical properties are expected ([12, 13, 14, 15]).

The answer will depend on the mean value estimator which is used instead of the
sample mean and on how much are the estimator properties degraded when it is used
in a location-dependent case. Intuitively, it will depend on the estimator character-
istics and the characteristics of the spatial variability. In the location-independent
case, both the UMVU estimator and the sample mean being unbiased, the obvious
choice is the UMVU estimator. In the location-dependent case however, the more
spatial variability occurs, the more bias is expected from each estimator. Choosing
one or the other estimator in the location-dependent case will then depend, in par-
ticular, on how much bias each estimator generates. We compare the approaches
asymptotically in Section 2 for marked stationary Poisson point process. Progress
is made in the case where the parameters of the local model are expectations of
functions under this local model, θ = E(M(l)). This case is encountered, for exam-
ple, with distributions which have complete and sufficient statistic generated by the
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distribution moments. In this case, the marks (l(2)i , . . . , l
(k)
i ) = M(l(1)i ) will be such

functions of the mark l
(1)
i . Thus we will focus throughout the rest of the paper on

one dimensional marks l for the simplicity. But additional explanatory variables can
be also added. An example of this case is given in Section 3. In Section 4, we study
a less classical case, where the mark is uniformly distributed between two unknown
bounds and compare UMVU estimators to the direct non-parametric mean mark
estimator. At last, in the Section 5, we illustrate our method on a real-life data
from forestry.

2. GENERAL CASES

2.1. Statistical framework

We consider a point process X in IR2 with intensity λ and a marked point process
(X, L) obtained by attaching to each point x ∈ X a univariate random mark l(x) ∈R,
the marks being independent to each other and to the position of the other points
of the process ([21]). Let Px(l) = P (l(x) ≤ l) denote the distribution of a mark
attached to point x.

We consider that this distribution admits a density that can be expressed as a
parametric function dPx(l) = f(l, θ(x)) dl where θ(x) is the set of parameters of the
distribution at point x. For a given parameter θ(x), we can calculate the expectation
and the variance of the distribution of the mark at point x : the expectation is
g(θ) =

∫
l
lf(l, θ) dl and the variance is v(θ) =

∫
l
(l − g(θ))2f(l, θ) dl. Assume that

g(θ) is second order differentiable.

2.2. Problem description in the i.i.d. case

In this subsection, we describe the problem in the simpler case of the stationary
marked point process where the marks are not position-dependent (i. e. when marks
are i.i.d.). In the next subsection, we look at the same problem, but for marked
point process with position-dependent marks, as it was said in the Introduction.

Consider a sample of marks for a given location x, l(n) = (l1, . . . , ln) from the
distribution f(l, θ(x)). (i) A first simple estimator of the expectation of l(x) is
the classical mean m1(l(n)) = 1

n

∑
i li. Let consider another estimator taking into

account the knowledge of the distribution of marks, i. e., its distribution function
f(l, θ(x)). The parameter is not known but we may assume that we have a consistent
estimator θ̂(l(n)) of this parameter. (ii) We can then define a second estimator of the
expectation of l(x) : m2(l(n)) = g(θ̂(l(n))). (iii) Finally, these two estimators can be
compared to the UMVU estimator m3(l(n)), when available, for which by definition
E(m3(l(n))) = g(θ) and its variance is minimal among unbiased estimators.

Furthermore, assume, in the rest of this Section, that θ̂(l(n)) can be expressed as
the mean of functions of the li, θ̂(l(n)) = 1

n

∑
i M(li) so that var(θ̂(l(n))) = 1

nu(θ),
for a function u. A case encountered, for example, if the parameter is expressed as
moments of functions of li.

When n tends to infinity, mean and variance of these two estimators satisfy:
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• E(m1(l(n))) = g(θ) and n·var(m1(l(n))) = v(θ),

• E(m2(l(n))) = E(g(θ̂(l(n)))) → g(θ) and n ·var(m2(l(n))) → g′(θ)tu(θ)g′(θ)
where g′(u) is the gradient vector of g(x) at point x and vt is the transpose of
vector v and

• E(m3(l(n))) = g(θ) and var(m3(l(n))) ≤ var(m1(l(n))).

The ratio of the mean squared error of the two first estimators tends to g′(θ)tu(θ)g′(θ)
v(θ)

and using m2(l(n)) instead of m1(l(n)) can be of interest as soon as this ratio is less
than 1. But when dealing with non i.i.d. versions as will be the case henceforth,
there remains the question, whether the same estimators remain interesting as in
the i.i.d. case.

2.3. Problem description for position-dependent marks

The versions of these three estimators in the case of position-dependent marks are:
m1(x, h) =

P
i ωh(x−xi)liP
i ωh(x−xi)

([20]) and

m2(x, h) = g(θ̂(x, h)) = g
(P

i ωh(x−xi)M(li)P
i ωh(x−xi)

)
where ωh(x) = 1

h2 ω(x/h) is a two dimensional kernel with bandwidth h.

Suppose that there exists a function e of the complete and sufficient statistic
S(l1, . . . , ln) of the local model which constructs the UMVU estimator of the expec-
tation of l: e(S(l1, . . . , ln)). If S(l1, . . . , ln) can be written as

∑
i M(li) in the local

model (e. g. when marks are normally distributed or exponentially or lognormally,
. . . ), then for position-dependent marks the estimator can be defined as

m3(x, h) = e
(P

i ωh(x−xi)M(li)P
i ωh(x−xi)

)
and this version of the UMVU m3(x, h) can be handled in the same way as m2(x, h).

To study how these three estimators behave, we look at its asymptotic behaviour
in the stationary Poisson case.

2.4. Asymptotic behaviour of m1(x, h) and m2(x, h) in the stationary
Poisson case

Let us suppose, throughout this subsection, that (X, L) is the stationary marked
Poisson point process with location-dependent marks.

At each point x and each h, these two estimators can be written as F ( 1
n

∑
i(Ui, Vi))

where (Ui, Vi) are independent random vectors and F is two times differentiable.
Their asymptotic behaviour is then classically obtained by using first a central limit
theorem, then applying a Delta method ([5, Section 5.2.4]).

Point convergence of m1(x, h).

Lemma 2.1. Let us suppose that the number of points n tends to infinity in the
fixed window W ⊂ R2 and h tends to 0, then the asymptotic behavior of m1(x, h) is
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• m1(x, h)− g(θ(x)) = h2

2

∫
ω(y)ytAxy dy + o(h2),

• var(m1(x, h)) = 1
nh2 v(θ(x))

∫
y
ω2(y) dy

where Ax is the matrix of the second derivatives of g(θ(x)) at x.

P r o o f . Denote (Ui, Vi) = (ωh(x− xi)li, ωh(x− xi)). These vectors being i.i.d,

1
n

∑
i

(Ui, Vi) →
(∫

W

ωh(x− y)g(θ(y)) dy,

∫
W

ωh(x− y) dy

)
= (U∞, V∞)

and
√

n( 1
n

∑
i(Ui, Vi)− (U∞, V∞)) is asymptotically Gaussian with mean (0, 0)t and

variance matrix Σ defined by:

• Σ11 =
∫

y
ω2

h(x− y)(v(θ(y)) + g2(θ(y))) dy − (
∫

y
ωh(x− y)g(θ(y)) dy)2

• Σ12 = Σ21 =
∫

y
ω2

h(x− y)g(θ(y)) dy −
∫

y
ωh(x− y) dy

∫
y
ωh(x− y)g(θ(y)) dy

• Σ22 =
∫

y
ω2

h(x− y) dy − (
∫

y
ωh(x− y) dy)2.

Then m1(x, h) = F ( 1
n

∑
i(Ui, Vi)) with F ((u, v)) = u/v. F is two times differen-

tiable, bounded in a neighborhood of (u, v) as soon as v 6= 0 and the Delta method
([5, Section 5.2.4]) gives

• m1(x, h) →
R

y
ωh(x−y)g(θ(y)) dyR

y
ωh(x−y) dy

•
√

(n)
(
m1(x, h)−

R
y

ωh(x−y)g(θ(y)) dyR
y

ωh(x−y) dy

)
is asymptotically Gaussian with vari-

ance
1

(
R

y
ωh(x−y) dy)4

(
Σ11(

∫
y
ωh(x− y) dy)2

−2Σ12

∫
y
ωh(x− y) dy

∫
y
ωh(x− y)g(θ(y)) dy

+Σ22(
∫

y
ωh(x− y)g(θ(y)) dy)2

)
.

Thus letting h → 0 leads to the result. �

Point convergence of m2(x, h).

Lemma 2.2. Let us suppose that the number of points n tends to infinity in the
fixed window W and h tends to 0, then the asymptotic behavior of m2(x, h) is

• m2(x, h)− g(θ(x)) = h2

2 g′(θ(x))t
∫

ω(y)ytBxy dy + o(h2),

• var(m2(x, h)) = 1
nh2 g′(θ(x))tCxg′(θ(x))

∫
y
ω2(y) dy,

where g′(θ) is the vector of first derivatives of g(θ) at x, Bx = (∂2θk(x)
∂xi∂xj

) 1 ≤ i ≤ 2,
1 ≤ j ≤ 2, 1 ≤ k ≤ K the array of second derivatives of θ(x) with respect to x and
Cx is the covariance matrix of M(lx).
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P r o o f . In the same way as in the previous proof one gets that for n → ∞, if Wi

denotes the vector Wi = (ωh(x−xi), ωh(x−xi)M1(li), . . . , ωh(x−xi)MK(li))t, then
1
n

∑
i Wi →(∫

y
ωh(x−y) dy,

∫
y
ωh(x−y)E(M1(l(y)) dy, . . . ,

∫
y
ωh(x−y)E(MK(l(y))) dy

)t

= W∞

and
√

n
(

1
n

∑
i Wi −W∞

)
→ N (0,Σ′) where

Σ′
j,j′ =

∫
y
ω2

h(x− y)(cov(Mj(ly),Mj′(ly)) + E(Mj(ly))E(Mj′(ly))) dy

−
∫

y
ωh(x−y)E(Mj(ly)) dy

∫
y
ωh(x−y)E(Mj′(ly)) dy, where 0 ≤ j, j′ ≤ K

and define M0 = 1.
Then using the variational theorem for m2(x, h) = g(W ) and letting h → 0, one

gets the result.
Note that, in the i.i.d. case, the variance of the second estimator verifies var(θ(x))

' 1
ng′(θ(x))tCxg′(θ(x)) when h → 0. �

Point convergence of m3(x, h).

Lemma 2.3. Let us suppose furthermore that m3(x, h) = e(
P

i ωh(x−xi)M(li)P
i ωh(x−xi)

) (see
Section 2.3), then the asymptotic behavior of m3(x, h) is

• m3(x, h)− e(θ(x)) = h2

2 e′(θ(x))t
∫

ω(y)ytBxy dy + o(h2),

• var(m3(x, h)) = 1
nh2 e′(θ(x))tCxe′(θ(x))

∫
y
ω2(y) dy,

where e′(θ) is the vector of first derivatives of e(θ) at x.

P r o o f . The proof is same as for m2(x, h) with changing g to e. �

Global comparison. As the UMVU derived estimator m3(x, h) is similar to
m2(x, h), we concentrate on the comparison between m1(x, h) and m2(x, h).

The integrated mean squared errors (IMSE) become:

IMSE1(h) = h4

4

∫
x
(
∫

ω(y)ytAxy dy)2 dx + 1
nh2

∫
x

v(θ(x))
∫

y
ω2(y) dydx

IMSE2(h) = h4

4

∫
x
(g′(θ(x))t

∫
ω(y)ytBxy dy)2 dx+ 1

nh2
t
g′(θ(x))Cxg′(θ(x))

∫
y
ω2(y) dy

for which the minimum values are:

• min1 = 2−4/3+2−1/3

n2/3

(∫
x
(
∫

ω(y)ytAxy dy)2 dx
)1/3

(∫
x

v(θ(x))
∫

y
ω2(y) dydx

)2/3

• min2 = 2−4/3+2−1/3

n2/3(∫
x

(
g′(θ(x))t

∫
ω(y)ytBxy dy

)2 dx
)1/3 (∫

x
g′(θ(x))tCxg′(θ(x))

∫
y
ω2(y) dy dx

)2/3

.

The ratio of these two values depends on the ratio of integrated variances,∫
x

g′(θ(x))tCxg′(θ(x))∫
x

v(θ(x))
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whose value measures how much the smaller variance of the second estimator im-
proves the IMSE and the ratio of integrated squared bias∫

x

(
g′(θ(x))t

∫
ω(y)ytBxy dy

)2 dx∫
x
(
∫

ω(y)ytAxy dy)2 dx

which measures the effect of the mark location-dependence on the bias of the two
estimators.

In particular, the ratio of minima of IMSE does not depend on n for large n.
Therefore, increasing n, although leading to a smaller bandwidth window, thereby
to less bias, does not lead to a preference for the second estimator systematically.
Choosing the first or the second estimator depends on the variance improvement
if one chooses the second estimator, but also to the characteristics of the mark
location-dependence which must remain small enough in order not to lose this gain
through the bias.

3. EXAMPLE WHEN M3(X, H) AND M2(X, H) ARE IN THE SAME FORM

In this section we look at one concrete case where θ̂(l(n)) = 1
n

∑
i M(li) and the

complete and sufficient statistic has also the same form S(l(n)) = 1
n

∑
i M(li). This

is the case of theoretical result showed in Section 2.4 for stationary Poisson point
process.

We look at the case of the log-normal distribution and consider the case of known
σ2 for the sake of simplicity. We then have a marked point process with independent
marks whose mark distribution follows a lognormal distribution with parameters
θ(x) = [log(m(x)) − σ2/2, σ2]. This choice gives the mean mark g(θ(x)) = m(x).
We focused on the estimation of g(θ(x)) either by m1(x, h) or by UMVU derived
estimator m3(x, h).

I.i.d. case. For an i.i.d. sample l(n) = (l1, .., ln) issued from the lognormal dis-
tribution with parameters [µ, σ2], the empirical mean is unbiased with the variance
var(m1(l(n)))=

1
n exp(2µ+σ2)(exp(σ2)−1).

The UMVU estimator of the mean m expressed as

m3(l(n)) = exp(
∑

i log li
n

+
n− 1

n

σ2

2
)

has the variance var(m3(l(n))) = exp(2µ + σ2)(exp(σ2/n)− 1).

The variance ratio between these two estimators is n(exp(σ2/n)−1)
exp(σ2)−1 → σ2

exp(σ2)−1 .

For σ2 = 0.75, this limit is equal to 0.67.

Location-dependent case. In the location-dependent case, the UMVU derived
estimator becomes

m3(x, h) = exp
(∑

i ωh(x− xi) log(li)∑
i ωh(x− xi)

+
n− 1

n

σ2

2

)
,
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where n is the number of points for which ωh(x− xi) > 0.

In practice, minimum of IMSE cannot be explicitly computed so we can not com-
pare the estimators directly. Thus we have to rely on simulations. When the above
estimators are applied the bandwidth has to be selected. Several methods are used
to choose an optimal bandwidth, one of the most popular being the cross-validation
method. Consider now an estimator m(x, h). Let m̂(x, h) = 1

n

∑
i m̃(i, x, h), where

m̃(i, x, h) is the estimator same as m(x, h) but which omits the ith mark and n is the
number of all points visible in the observation window. For example: m̃(i, x, h) =P

j 6=i ωh(x−xj)ljP
j 6=i ωh(x−xj)

for classical non-parametric kernel estimator. Then the mean inte-

grated square error (MISE) of the estimator m̂(x, h), is E(
∫

W
(m(x)−m̂(x, h))2 dx) =∫

W
m2(x) dx + E(C(h)), where C(h) =

∫
W

m̂2(x, h) dx− 2 1
n

∑
i lim̃(i, xi, h). Thus,

it is necessary to minimize C(h) for finding an optimal bandwidth of the estimator
m̂(x, h) by cross-validation method. We will use then m̂(x, h) with selected band-
width instead of m(x, h).

To illustrate this, we considered the following simulation example. We simulated
stationary marked Poisson point process with intenzity λ = 200 in the unit square
window. The mark location-dependence was given by m(x) = sin(4π(x1+x2))a/80+
1/20 with a = 1 for large variation, a = 2 for smaller variations, and m(x) =
(x1 + x2 + 1)/40 for small variations. σ2 was chosen to be equal to 0.75 and the
Epanatchnikov kernel ωh was used in the estimation. The corresponding surfaces of
the location-dependence are shown in Table 1 (first row), examples of realizations in
Table 1 (second row). On the pictures of realizations the points correspond to the
point process X and the segments attached to the points show the size of the mark
l(x). Orientation is random and brings no information relative to the marked point
process. As usual with such distributions, one can observe some large mark values
which can perturb direct mean estimation.

Table 1 (fourth row) shows the estimated means with the classical non-parametric
Nadaraya–Watson kernel estimator for a particular realization. Corresponding in-
tegrated square errors are shown in the third row. Table 1 (sixth row) shows the
estimated means with the proposed estimator for same realization as above. Corre-
sponding integrated square errors

∫
W

(m(x)−m̂(x, h))2 dx are shown in the fifth row.
For each model we have generated 100 simulations and we computed the integrated
square error for every realization. Means, standard deviations and histograms for
the integrated square error are displayed in Table 2. It is displayed for the classical
non-parametric Nadaraya–Watson kernel estimator in the first, second and third row
respectively and for the proposed estimator in the fourth, fifth and sixth row. In the
last row in Table 2 there are the ratios of means of integrated square errors for the two
tested estimators (MISE(m3)/MISE(m1)). These numbers show the efficiencies
of the estimator m3 with respect to the classical non-parametric Nadaraya–Watson
kernel estimator m1.

We can see from Table 2 that the tested estimator has lower MISE in all our cases
of non-stationarity structure for the case of log-normal distribution.

To see, whether the non-stationarity of the points influence the performances of
the tested estimators, we simulate also the non-stationary Poisson marked point
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processes with intensity function r(x) = sin(4π(x1 + x2))/4 + 1 (the multiple of the
function m(x) which gives the mark location-dependence in the large variation case).
The expected number of points in the observation window is equal to 200. All other
parameters of the simulation were left same as for the stationary case. Table 3 shows
the results of this simulations. The results do not reveal any significant difference
with respect to the stationary case, except a slight increase of the inaccuracy of both
estimators.

4. EXAMPLE WHEN M3(X, H) AND M2(X, H) ARE NOT THE SAME

We look at the case of the uniform distribution of the marks of a marked point
process. In such a case the complete and sufficient statistics consist of min and max
functions which are not of the shape 1

n

∑
i M(li) (for details about complete and

sufficient statistics see [12]. We focus again on comparison of the mean estimators
m1(x, h) and m3(x, h).

I.i.d. case. For an i.i.d. sample l(n) = (l1, . . . , ln) issued from the uniform dis-
tribution with parameters [A,B], the empirical mean is unbiased with the variance
var(m1(l(n))) = 1

n
1
12 (B −A)2.

The UMVU estimator of the mean m, expressed as m3(l(n)) =
max li + min li

2
has the variance var(m3(l(n))) = 1

2(n+1)(n+2) (B − A)2. The variance ratio between
these two estimators is 6n

(n+1)(n+2) .

Location-dependent case. In the location-dependent case consider the following
example. Assume a stationary Poisson marked point process with the intensity 200
and with independent marks whose mark distribution follows a uniform distribution
with parameters θ(x) = [0.2m(x), 1.8m(x)] on the unit square. This choice gives
again g(θ(x)) = m(x). Location-dependence was given in the same way as in the
lognormal example. Examples of realizations are shown on Figure 4 (first row).

For the middle variation location-dependence structure, the average number of
points in the window [0, 2b]2 is 14. Here b is the optimal bandwidth obtained by
cross-validation. The above ratio is equal to 0.35 for n = 14. Thus one could expect
that the efficiency computed as in the lognormal case will be a bit above 0.35. In fact,
preliminary studies showed that the estimator m3(x, h) = (max{i:xi−x∈[−h,h]2} li +
min{i:xi−x∈[−h,h]2} li)/2 is not robust with respect to the location-dependence.

Modification in the location-dependent case. Since the m3(x, h) is not robust
with the location-dependence, we propose a modification which should admit the
properties of the complete and sufficient statistic but which is more robust with
respect to location-dependence.

One possibility is to approximate the complete and sufficient statistic (min li,max li)
by a kernel estimator

(m̂in(x), m̂ax(x)) =
(∑

i ωh(x− xi)N1(x, li)
ωh(x− x1)

,

∑
i ωh(x− xi)N2(x, li)

ωh(x− x1)

)
,



Spatial prediction of the mark of a location-dependent marked point process 705

Slow gradient middle variations large variations

expected
mean 0

0.2
0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0
0.2

0.4

0.6

0.8

1

simulated
example

ISE 0.000033 0.00015 0.00025

estimated
mean by
classical
estimator

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

ISE 0.000027 0.00011 0.00020

estimated
mean by
tested
estimator

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

10
20

30

40

50

10

20

30

40

50

0.02

0.04

0.06

0.08

10
20

30

40

50

Tab. 1. Comparison of the estimators m1 and m3 for one realization.
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Slow gradient middle variations large variations
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Tab. 2. Comparison of the estimators m1 and m3 for 100

realizations.

Slow gradient middle variations large variations
mean for m1 0.000047 0.000165 0.000464
SD for m1 0.0000294 0.0000632 0.0001583
mean for m3 0.000037 0.000138 0.000372
SD for m3 0.0000201 0.0000450 0.0001088
efficiency 0.79 0.84 0.80

Tab. 3. Comparison of the estimators m1 and m3 for 100 realizations

of non-stationary Poisson point process.
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where N1(x, li) = min{li −min{j:||x−xj ||<||x−xi||} lj , 0},
N2(x, li) = max{li −max{j:||x−xj ||<||x−xi||} lj , 0} and x1 is the nearest point to X.
Roughly speaking every mark adds to the maximum the difference between the mark
and the maximum of marks closer to x (if it is positive), but with weight dependent
on the distance from x. The proposed estimator of the mean is then

m4(x, h) =
(∑

i ωh(x− xi)N1(x, li)
ωh(x− x1)

+
∑

i ωh(x− xi)N2(x, li)
ωh(x− x1)

)
/2.

As the weighting function, we chose the Gaussian function with parameters (0, h).
Tables 4 and 5 compare the classical non-parametric Nadaraya–Watson kernel

estimator with the proposed estimator m4(x, h). The comparison is done in the
same way as in Tables 1 and 2.

Here the tested estimator has slightly lower MISE in all cases.
The non-stationary case was performed here in the same way as in the log-normal

case. Table 6 shows the results of this simulations. The results are varying here,
therefore it is necessary to check which estimator is more accurate in practice for a
real data. One possible check is described in the next Section.

5. EXAMPLE DATA: THE LOCAL ESTIMATION OF TREE’S MEAN HEIGHT

In this section, we will show, how to use approach described above in practice. As an
illustrative example, we study a data set composed of the position and height of 232
trees which fell during two large wind gusts (1967 and 1990) in the west of France
([19]). The studied area is a biological reserve preserved for at least four centuries,
so that there has been hardly no human influence for a long time ([6]). The forest
stand follows an almost natural dynamics, and corresponds to an uneven-aged Beech
stand, with only a few old oaks.

The trees that have fallen during these events usually lead to gap openings of
variable size. Therefore all trees of different heights and status are concerned by these
storm damages (from young and dominated trees in the understorey to dominant
trees in the canopy). Therefore, the height of fallen trees can be considered as a
good representation of the local variability of the height of the stand.

Soil conditions in this stand are known to present some heterogeneity ([1]). In-
deed, the soil can be leached, and has a variable depth of 0.5 to 2m. These soil
conditions highly influence the local fertility, and thus tree height growth. There-
fore, mean height of fallen trees can be a good way to look at variation in soil
characteristics.

The position of the fallen trees is indicated as a black dot on Figure 1, their
height is corresponding to the length of the attached segment. As no theoretical
distribution for local height was available, we chose the uniform distribution. It
corresponds to the idea that these trees heights are randomly distributed between a
minimum height, for trees in the understorey, and a maximum height, for dominant
trees in the canopy. We consider that this maximum height depends on local soil
potentiality, better soil conditions leading to locally higher trees. The assumption of
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Tab. 4. Comparison of the estimators m1 and m4 for one realization.
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Slow gradient middle variations large variations
mean for m1 0.0000177 0.000101 0.000202
SD for m1 0.0000087 0.0000420 0.0000619
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Tab. 5. Comparison of the estimators m1 and m4 for 100

realizations.

Slow gradient middle variations large variations
mean for m1 0.000023 0.000146 0.000279
SD for m1 0.0000134 0.0000692 0.0001107
mean for m4 0.000024 0.000107 0.000246
SD for m4 0.0000196 0.0000273 0.0000541
efficiency 1.07 0.74 0.88

Tab. 6. Comparison of the estimators m1 and m4 for 100 realizations

of non-stationary Poisson point process.
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the uniform length distribution of the trees was tested in [16] and it was not rejected
by all tests studied there.

Fig. 1. The fallen trees data observed in the non-rectangular area with dimensions 720

× 480 meters.

The position of the fallen trees do not fit with stationary Poisson point process,
thus the comparison of the described estimators can not be done asymptotically by
Lemma 1 and 2. The position of the fallen trees fit with non-stationary Poisson point
process ([16]), therefore the comparison of the described estimators is necessary to
be done by further simulations.

Estimating the mean length. We assumed that the length distribution has
locally uniform distribution with parameters [A(x), B(x)] and we estimated the mean
length using either a classical kernel method or our proposed method. The optimal
bandwidth in this case is rather small thus there exist areas with no points within
the Epanetchnikov kernel range and thus the mean length is not estimable for such
areas. Therefore we choose a Gaussian kernel, which has infinite range, instead
of Epanetchnikov. Thus we will compare the standard Gaussian kernel estimator
m1(x, h) with the kernel estimator m4(x, h) described in the previous section. For
the two estimates, the variances of the Gaussian kernel are estimated through the
cross-validation procedure and are equal to σ2 = 182 for the classical estimator and
σ2 = 100 for the proposed one. The two mean value estimates are mapped on Figure
2. The global variations are similar for the two estimates. Differences between the
two surfaces are mainly local, the classical kernel estimate being smoother than the
one we propose.
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Fig. 2. Estimates of height density of the fallen trees. Left: by the standard Gaussian

kernel estimator m1(x, h), right: by the tested estimator m4(x, h). The darker colours

corresponds to the higher value of estimate.

Cross-validation leads to estimators presenting good asymptotic properties ([7])
and avoids the calculus of the IMSE. On the other hand, the MISE is a natural
statistics to compare the two methods, but this supposes to know the true mean
value. We propose to approximate it by a common mean value estimation and
then compute the MISEs by simulation in the case of such chosen mean value.
Common mean value estimation is obtained in the following way. First we estimate
the parameter field (A(x), B(x)) by both approaches. We used the moment method
in the Gaussian kernel approach

(Â(x), B̂(x)) =
(

m1(x)−
√

3 ∗ (m2
1(x)−(m1(x))2),m1(x)+

√
3 ∗ (m2

1(x)−(m1(x))2)
)

,

where m2
1(x) =

P
i ωh(x−xi)l

2
iP

i ωh(x−xi)
. And in our approach we estimated the parameters

fields directly by an estimator

(Ã(x), B̃(x)) =
(

m̂in(x)
n(x)− 1

n(x)
, m̂ax(x)

n(x) + 1
n(x)

)
,

where n(x) =
P

i ωh(x−xi)

ωh(x−x1)
. Then we had made the averages of the parameter fields

over the two approaches
(
A(x), B(x)

)
=

( bA(x)+ eA(x)
2 ,

bB(x)+ eB(x)
2

)
. Then we simulated

the lengths of trees from the averaged parameter fields
(
A(x), B(x)

)
and estimated a

new mean length by m1(x, h) and m4(x, h). And we computed the integrated square

errors of these two estimates with respect to chosen mean value (A(x)+B(x))
2 . We

performed 100 simulations and computed the mean integrated square errors (MISE)
of the estimates m1(x, h) and m4(x, h) with respect to chosen mean value.

MISE(m1(x, h)) = 3.0389× 106, MISE(m4(x, h)) = 2.7781× 106.

This leads to a mean square error at a random location of about 11.9 for m1 and 10.8
for m4. These MISE’s are computed under the model of uniform height distribution
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with parameters
(
A(x), B(x)

)
. This is a model which is certainly close to the reality,

thus we choose the estimator m4(x, h) in this example as a more precise estimator
of the mean height.

6. CONCLUSIONS

Measuring the effect of interpolation strategies on non-linear predictors with ex-
planatory variables, which are spatially location-dependent, is a recurrent question
(see for example [22] for a recent reformulation). The problem we addressed is in
fact only a small part of it, but the question remains the same: shall we (i) inter-
polate the model results obtained locally, in our case estimate directly the mean
non-parametrically or (ii) interpolate the explanatory variables and then use as pre-
dictor the model output computed on the interpolated variables? Even in our simple
case, the answer is not known beforehand, as it is dependent on both model predictor
statistical properties and non-stationary properties of the random field.

The simulations showed significant increase of the accuracy when the UMVU
estimators, derived from the local model, are used with respect to the classical non-
parametric Nadaraya–Watson kernel estimator. The significant increase was shown
for the case where the complete and sufficient statistic of the local model is expressed
in the form S(l(n)) = 1

n

∑
i M(li).

UMVU estimators are a natural choice to build non-parametric estimators in the
proposed framework. Being unbiased and with minimum variance, one hopes that
these properties will be transmitted to the non-parametric estimator. However, the
UMVU estimator has also to be robust or the optimal properties of the UMVU may
be lost in the location-dependent context. In such a case, one has to find some
more robust version as the one we proposed for the case of the uniform distribution
for which the complete and sufficient statistic is not expressed in the form S(l(n)) =
1
n

∑
i M(li). In this case the simulations showed only a slight increase of the accuracy

when the UMVU estimator is used with respect to the classical non-parametric
Nadaraya–Watson kernel estimator.

The estimation quality, which can be approached through MISE values, did not
increase much in the real data example, the MISE of the proposed estimator being
only 10% less than the MISE of the classical non-parametric estimator. Judging if
10% justifies the use of specific estimators will depend on the question addressed by
the data set. On the other hand, the proposed estimator, as it takes explicitly
into account a local model, can lead locally to different prediction shapes than
the classical estimator. In our case, the classical estimator leads to a smoother
prediction. If sharp changes of the random field are expected, the proposed estimator
may be better in the neighborhood of these changes.

If the interest is not on the expectation of the mark, as was the case in our
examples, but on the expectation of a non-linear function of the mark, (as, for
example, the square of the mark, which can be of interest in variance estimation)
UMVU estimates are much more efficient ([3], [15]).

Note that, the asymptotic properties of the described estimators were shown
under the assumption of the stationary Poisson point proces. It pointed out the
major qualities which influence which estimator to use. But the final decision should
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be made after more concrete studies, as it was shown for the real data example. Such
studies are not bounded by the Poisson assumption.
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Joël Chadœuf, INRA-Biométrie, Domaine St Paul,84914 Avignon, cedex 9. France.

e-mail: joel@avignon.inra.fr


	INTRODUCTION
	General cases
	Statistical framework
	Problem description in the i.i.d. case
	Problem description for position-dependent marks
	Asymptotic behaviour of m1(x,h) and m2(x,h) in the stationary Poisson case

	Example when m3(x,h) and m2(x,h) are in the same form
	Example when m3(x,h) and m2(x,h) are not the same
	Example Data: the local estimation of tree's mean height
	Conclusions

