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ON A CLASS OF ESTIMATORS
IN A MULTIVARIATE RCA(1) MODEL

Zuzana Prášková and Pavel Vaněček

This work deals with a multivariate random coefficient autoregressive model (RCA) of
the first order. A class of modified least-squares estimators of the parameters of the model,
originally proposed by Schick for univariate first-order RCA models, is studied under more
general conditions. Asymptotic behavior of such estimators is explored, and a lower bound
for the asymptotic variance matrix of the estimator of the mean of random coefficient is
established. Finite sample properties are demonstrated in a small simulation study.
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1. INTRODUCTION

Random coefficient autoregressive models belong to a broad class of conditional het-
eroscedastic time series models because of their varying conditional variance and as
such may be used in various applications.

We say that a process of random vectors Xt = (X1
t , . . . , X

m
t )′ ∈ Rm, t ∈ Z, follows

the multivariate first-order random coefficient autoregressive model, abbreviated as
RCA(1), if Xt for each t ∈ Z satisfies

Xt = (β + Bt)Xt−1 + Y t, (1)

where β is an m×m matrix of (unknown) parameters, {Bt, t ∈ Z} is a sequence of
m×m random matrices and {Y t, t ∈ Z} is an m× 1 random error process.

Equation (1) can be rewritten into

Xt = βXt−1 + ut (2)

with the new error process ut = BtXt−1 + Y t = (X ′
t−1⊗ I) · vec (Bt) + Y t, where

I is the m × m identity matrix, ⊗ denotes the Kronecker product and vec is the
matrix column operator (for definitions and properties of matrices operators see the
Appendix and Lemmas A.2 – A.4 there).

To specify model (1) in detail, we introduce the following assumptions.
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A1: The random coefficient matrix process {Bt, t ∈ Z} is a centered iid sequence
with a finite positive definite matrix Σ = E[vec (B0) · vec ′(B0)].

A2: All the eigenvalues of the matrix E(B0 ⊗B0) + (β ⊗ β) are less than unity in
modulus.

A3: The error process {Y t} is an ergodic and strictly stationary martingale dif-
ference sequence with respect to the filtration Ft = σ (Bs,Y s; s ≤ t), such that
E[Y tY

′
t|Ft−1] = G a.s. for all t, where G is a finite positive definite matrix.

A4: {Bt, t ∈ Z} and {Y t, t ∈ Z} are mutually independent.

The following theorem is of the fundamental importance.

Theorem 1.1. Under the assumptions A1 to A4, there exists a unique solution
to the stochastic difference equation (1) that is Ft-measurable, strictly stationary,
ergodic, and is of the form

Xt = Y t +
+∞∑
j=1

[
j−1∏
i=0

(β + Bt−i)

]
· Y t−j , (3)

where the sum in (3) converges (component-wise) in the quadratic mean and also
absolutely with probability one. Further, for all t ∈ Z,

EXt = 0, EXtX
′
t = M,

where

vec (M) =
∞∑

j=0

[E(B0 ⊗B0) + (β ⊗ β)]jvec (G)

= [I− (E(B0 ⊗B0) + (β ⊗ β))]−1vec (G).

P r o o f . The assertion summarizes results that were proved in [11], Chapter 2 (see
Theorem 2, Corollaries 2.2.1 and 2.2.2, and Theorem 2.7 there) with errors Y t being
iid random vectors. However, it can be shown that all the crucial steps in the proofs
remain valid under the assumptions A1 to A4. See also [16] for some details. �

Remark 1.2. A strictly stationary solution of (1) can be obtained under weaker or
modified assumptions then those considered in Theorem 1.1. Under the assumptions
that {(Bt,Y t), t ∈ Z} is strictly stationary and ergodic, that both E log+(||β+B0||)
and E log+(||Y 0||m) are finite and E log(||β+B0||) < 0, where x+ = max(x, 0), ||·||m
is any norm in Rm, and || · || denotes an operator norm defined for an m×m matrix
A by

||A|| = sup{||Ax||m/||x||m,x ∈ Rm,x 6= 0},
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we can prove that Xt in (3) converges absolutely almost surely and {Xt, t ∈ Z}
is the unique strictly stationary solution to (1), see [5] and [6]. In [6], necessary
and sufficient conditions for the existence of a non-anticipative, strictly stationary
solution of (1) were stated provided that (Bt,Y t) are iid pairs. Considering a
univariate RCA(1) process and the same assumptions as in [6], the authors of [1]
established minimal conditions to obtain finite moments of {Xt} of order ν ≥ 1.
For ν = 2, their conditions coincide with the moment assumptions in A1 – A3. In a
multivariate case, sufficient conditions for the existence of finite moments of {Xt}
of any even order ν were established in [8]. Conditions for the existence of finite
moments of order ν ≥ 1 can be established analogously as in [1], but will not be
considered here, see also Remark 2.2 below.

Usually, β,Σ, and G are unknown parameters of the model. Estimators of pa-
rameters in univariate RCA models have been considered by many authors. The
least-squares estimators, their weighted versions, maximum and quasi-maximum
likelihood estimators were studied, e. g., in [1, 2, 3, 9, 11] under various model
assumptions. Adaptive estimators of β in a univariate RCA(1) were studied in [10].
Schick in [12] proposed a class of modified least-squares estimators in a univariate
RCA(1) model, indexed by a family of bounded measurable functions. The best
estimator in that class minimizing the asymptotic variance is asymptotically equiva-
lent to the conditionally weighted least-squares estimator, which coincides with the
quasi-maximum likelihood estimator. Statistical properties of the Schick-type esti-
mators in univariate RCA models were further developed and extended in [14] and
[16]. These estimators are computationally simpler than the conditionally weighted
least-squares estimators, do not require any prior knowledge of additional parame-
ters, and, as numerical studies performed in [16] show, they behave well under more
general conditions and better than the least-squares estimators.

Estimation in multivariate RCA models is more complicated due to increasing
number of unknown parameters. Asymptotic properties of the least-squares esti-
mators in multivariate RCA models with iid errors were studied in [11]. Maximum
likelihood estimating procedures were only briefly mentioned there without further
details.

In this paper, we study properties of the Schick-type estimators of parameters
in a multivariate RCA(1) model that satisfies assumptions A1 to A4 and generalize
and extend results published recently in [15].

The paper is further organized as follows. In Section 2 we introduce Schick-type
estimators and prove their strong consistency and asymptotic normality. In Section 3
we will continue with consistent variance matrices estimators of the parameter β
and find the lower bound for the asymptotic variance matrices. A small simulation
study is included in Section 4. Some necessary results from matrix theory and some
auxiliary assertions are given in the Appendix.
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2. MODIFIED LEAST-SQUARES ESTIMATOR

Let X0, . . . ,Xn be observations of process (1) that satisfy assumptions A1 to A4.
Then we have

E[Xt|Ft−1] = βXt−1 = (X ′
t−1 ⊗ I)vec (Bt),

var[Xt|Ft−1] = E
[
(Xt − E[Xt|Ft−1]) (Xt − E[Xt|Ft−1])

′ |Ft−1

]
= E[utu

′
t|Ft−1]

= E
[(

(X ′
t−1 ⊗ I)vec (Bt) + Y t

) (
(X ′

t−1 ⊗ I)vec (Bt) + Y t

)′ |Ft−1

]
= E

[
(X ′

t−1 ⊗ I)vec (Bt)vec ′(Bt)(Xt−1 ⊗ I)|Ft−1

]
+ E

[
Y tY

′
t|Ft−1

]
= (X ′

t−1 ⊗ I) ·Σ · (Xt−1 ⊗ I) + G. (4)

Using operators vec and vech and their properties as given in Lemmas A.3 and A.4,
we further get after some computations

vech (var[Xt|Ft−1]) = vech (E[utu
′
t|Ft−1]) = A′

t−1 · vech (Σ) + vech (G) (5)

where A′
t−1 = Hm(X ′

t−1 ⊗ I) ⊗ (X ′
t−1 ⊗ I)K ′

m2 and Hm and Km2 are the elim-
ination and duplication matrices from Lemma A.4. The least-squares estimator of
the parameter vec (β) (and β, respectively) can be obtained by minimizing

n∑
t=1

u′tut =
n∑

t=1

[Xt − (X ′
t−1 ⊗ I)vec (β)]′[Xt − (X ′

t−1 ⊗ I)vec (β)]

with respect to vec (β), which leads to the normal equation

n∑
t=1

(Xt−1 ⊗ I)[Xt − (X ′
t−1 ⊗ I)vec (β)] = 0

and to the estimator

vec (β̂LS) =

(
n∑

t=1

[Xt−1X
′
t−1 ⊗ I]

)−1 n∑
t=1

(Xt−1 ⊗ I)Xt, (6)

respectively,

β̂LS =

(
n∑

t=1

XtX
′
t−1

)
·

(
n∑

t=1

Xt−1X
′
t−1

)−1

. (7)

In [11], Section 7.2, the strong consistency and asymptotic normality of vec (β̂LS)
are proved under assumptions that the 4th moments of the components of the vector
Xt are finite.

The other parameters of the model, variance matrices Σ and G, can be esti-
mated from the regression equation (5), when we use estimated residuals ût =
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Xt − β̂LSXt−1. The least-squares estimators are then as follows:

vech (Σ̂LS) =

(
n∑

t=1

(
At−1−A

)(
At−1−A

)′)−1( n∑
t=1

(
At−1−A

)
· vech

(
ûtû

′
t

))
,

vech (ĜLS) =
1
n

n∑
t=1

vech
(
ûtû

′
t

)
−A

′ · vech (Σ̂LS), (8)

where A = 1
n

∑n
t=1 At−1. Under higher moment conditions on the process {Xt}

such estimators are strongly consistent (one requires finite 4th moments of the com-
ponents of the vector Xt) and asymptotically normal (finite 8th moments), see [11],
Theorem 7.2.

In [12] Schick considered estimators of parameters in a univariate RCA(1) model
with iid errors as a solution of modified normal equations and studied asymptotic
properties of these estimators without additional moment assumptions. We gener-
alize the Schick method and propose an extension of the least-squares estimators of
β into a class of estimators that solve the equation

n∑
t=1

(φ(Xt−1)⊗ I)[Xt − (X ′
t−1 ⊗ I)vec (β)] = 0 (9)

where φ is a measurable function φ : Rm → Rm. Thus, we define estimator

vec (β̂φ) =

(
n∑

t=1

φ(Xt−1)X ′
t−1 ⊗ I

)−1

·
n∑

t=1

(φ(Xt−1)⊗ I)Xt, (10)

respectively,

β̂φ =

(
n∑

t=1

Xtφ(Xt−1)′
)
·

(
n∑

t=1

Xt−1φ(Xt−1)′
)−1

. (11)

The following theorem reveals basic properties of this estimator.

Theorem 2.1. Consider a multivariate RCA(1) model as in (1) that satisfies as-
sumptions A1 to A4. Let φ : Rm → Rm be a measurable function. Denote
P = φ(X0)X ′

0⊗I and Q = φ(X0)⊗I, and assume that the matrix E(φ(X0)X ′
0)

is finite and invertible, and E(PΣP ′ + QGQ′) is finite. Then vec (β̂φ) defined by
(10) is a strongly consistent and asymptotically normal estimator of the parameter
vec (β). The asymptotic variance matrix of

√
n · vec

(
β̂φ − β

)
is given by

V (φ) = (EP )−1 · E
(
QGQ′ + PΣP ′

)
· (EP ′)−1. (12)

Remark 2.2. The choice φ(x) = x leads to the least-squares estimator of β and
fulfills the finite matrices assumptions provided that {Xt} has finite fourth moments.
If φ is bounded, this assumption reduces to the finiteness of the second moments
of {Xt}.
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P r o o f . According to definition (10) and using Lemma A.3, we have

vec (β̂φ−β) =

( 1
n

n∑
t=1

φ(Xt−1)X ′
t−1

)−1

⊗ I

[ 1
n

n∑
t=1

(
φ(Xt−1)⊗ I

)
ut

]
. (13)

Strict stationarity and ergodicity of Xt guarantee strict stationarity and ergodicity of
both sequences {φ(Xt−1)X ′

t−1⊗I, t ∈ Z} and {(φ(Xt−1)⊗I)ut, t ∈ Z}. Moreover,
the components of the latter sequence form a martingale difference sequence with
zero mean value, which can be seen by choosing an arbitrary α ∈ Rm2

and noticing
that

E[α′(φ(Xt−1)⊗ I)ut|Ft−1] = α′(φ(Xt−1)⊗ I)E[ut|Ft−1] = 0.

The ergodic theorem (see, e. g., [7], Theorem 13.12) tells us that, almost surely, the
first term on the r.h.s. in (13) converges to (E(φ(X0)X ′

0))
−1⊗I = (EP )−1 and the

second term converges to zero, which implies that vec (β̂φ − β) → 0 almost surely
as n→ +∞.

Further notice that

var
(
α′(φ(Xt−1)⊗ I)ut

)
= E

(
E
[
(α′(φ(Xt−1)⊗ I)ut)

2 |Ft−1

])
= E

(
E[α′(φ(Xt−1)⊗ I)utu

′
t(φ(Xt−1)′ ⊗ I)α|Ft−1]

)
= E

(
α′(φ(Xt−1)⊗ I) · E[utu

′
t|Ft−1] · (φ(Xt−1)′ ⊗ I)α

)
= E

(
α′(φ(Xt−1)⊗ I) ·

[
(X ′

t−1 ⊗ I)Σ(Xt−1 ⊗ I) + G
]
· (φ(Xt−1)′ ⊗ I)α

)
= α′E

(
(φ(Xt−1)X ′

t−1 ⊗ I)Σ(Xt−1φ(Xt−1)′ ⊗ I)
)

α

+ α′E
(
(φ(Xt−1)⊗ I)G(φ(Xt−1)′ ⊗ I)

)
α

= α′E(PΣP ′ + QGQ′)α. (14)

We know that, due to Lindeberg–Lévy theorem for martingales, see [4], for any
α ∈ Rm2

, 1√
n

∑n
t=1 α′

(
φ(Xt−1)⊗ I

)
ut has an asymptotic normal distribution

with zero mean and variance (14). Since

√
n·vec (β̂φ−β) =

( 1
n

n∑
t=1

φ(Xt−1)X ′
t−1

)−1

⊗ I

·[ 1√
n

n∑
t=1

(
φ(Xt−1)⊗ I

)
ut

]
,

the rest of the proof easily follows by using the previous considerations and the
Cramér–Wold device. �

To obtain estimators of the remaining parameters Σ and G, we can use the
regression (5) again, now with residuals ût = Xt − β̂φXt−1, and define modified
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least-squares estimators

vech (Σ̂h) =

(
n∑

t=1

(
h(At−1)−h

) (
At−1−A

)′)−1( n∑
t=1

(
h(At−1)−h

)
· vech

(
ûtû

′
t

))
,

vech (Ĝh) =
1
n

n∑
t=1

vech
(
ûtû

′
t

)
−A

′ · vech (Σ̂h), (15)

where
h(At−1) = [Hm(h(Xt−1)′ ⊗ I)⊗ (h(Xt−1)′ ⊗ I)K ′

m2 ]′,

h = 1
n

∑n
t=1 h(At−1), and h is a measurable function h : Rm → Rm. The choice

h(x) = x leads to the least-squares estimators (8).

Theorem 2.3. Consider a multivariate RCA(1) model as in (1) that satisfies as-
sumptions A1 to A4. Let φ, h be bounded measurable functions from Rm to Rm

and let the matrix E[(h(A0) − Eh(A0))(A0 − EA0)′] be invertible. Then the esti-
mators vech (Σ̂h) and vech (Ĝh) defined in (15) are strongly consistent estimators
of vech (Σ) and vech (G), respectively.

P r o o f . We give only the main steps of the proof. Obviously, both {h(At)} and
{At} are strictly stationary and ergodic and thus, as n→∞,

1
n

n∑
t=1

(h(At−1)− h)(At−1 −A)′ → Eh(A0)A′
0 − Eh(A0)(EA0)′

almost surely. Further,

vech (ûtû
′
t) = vech (utu

′
t) + vech [(β − β̂φ)Xt−1X

′
t−1(β − β̂φ)′]

+ vech ((β − β̂φ)Xt−1u
′
t) + vech [(β − β̂φ)Xt−1u

′
t)]
′

and

vech [(β − β̂φ)Xt−1X
′
t−1(β − β̂φ)′] = A′

t−1vech [vec (β − β̂φ)(vec (β − β̂φ))′].

Then, from the strict stationarity and ergodicity, strong consistency of β̂φ, and the
martingale difference properties of {Xt−1u

′
t} we conclude that

1
n

n∑
t=1

vech (ûtû
′
t) → Evech (u0u

′
0) = EA0vech (Σ) + vech (G)

almost surely. In the same way, we get

1
n

n∑
t=1

h(At−1)vech (ûtû
′
t) → Eh(A0)A′

0vech (Σ) + Eh(A0)vech (G)

almost surely. Combining all these results we complete the proof. �
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3. ASYMPTOTIC VARIANCE MATRIX

In this section we deal with the asymptotic variance matrix of the estimator vec (β̂φ).
First, ve suggest a consistent estimator of V (φ).

Theorem 3.1. Consider a multivariate RCA(1) model as in (1) that satisfies as-
sumptions A1 to A4. Let φ : Rm → Rm be a measurable function such that
the assumptions of Theorem 2.1 are satisfied. Let Ĝn and Σ̂n be strongly con-
sistent estimators of G and Σ, respectively. Denote P t = φ(Xt−1)X ′

t−1 ⊗ I and
Qt = φ(Xt−1)⊗ I.
Then

V̂ n(φ) = n

(
n∑

t=1

P t

)−1

·
n∑

t=1

(
QtĜnQ′

t

)
·

(
n∑

t=1

P ′
t

)−1

+ n

(
n∑

t=1

P t

)−1

·
n∑

t=1

(
P tΣ̂nP ′

t

)
·

(
n∑

t=1

P ′
t

)−1

is a strongly consistent estimator of the asymptotic variance matrix V (φ) given
by (12).

P r o o f . The process {Xt, t ∈ Z} is strictly stationary and ergodic which implies
that {P t, t ∈ Z}, {Qt, t ∈ Z}, {P tΣP ′

t, t ∈ Z}, and {QtGQ′
t, t ∈ Z} are strictly

stationary and ergodic. According to the ergodic theorem, 1
n

∑n
t=1 P t

a. s.−→ EP and
1
n

∑n
t=1 Qt

a. s.−→ EQ as n → +∞, where P and Q are defined in Theorem 2.1.
Consistency of the estimators Ĝn, Σ̂n, and Lemma A.5 complete the proof. �

We are interested in an optimal choice of the generating function φ for the esti-
mator β̂φ. Optimality of an estimator could be defined using its asymptotic variance
matrix. We say that the estimator β̂(ψ) defined by equation (10) is optimal if its
asymptotic variance matrix V (ψ) defined by (12) satisfies V (φ)−V (ψ) ≥ 0 for any
estimator β̂φ with variance matrix V (φ), i. e., the difference of the variance matrices
is a positively semi-definite matrix.

We have performed an analysis of the asymptotic variance matrix for the uni-
variate higher-order RCA models, see [16]. In that case, the optimal choice of the
function φ leads to the estimator of β that is formally equivalent to the conditionally
weighted least-squares estimator when the remaining parameters are known. In the
multivariate first-order case, we can only establish a lower bound for the asymptotic
variance matrix of the estimators defined by (10).

Theorem 3.2. Let {Xt, t ∈ Z} be a multivariate RCA(1) model as in (1) that
satisfies assumptions A1 to A4 such that the matrix

J = E
(
(X0 ⊗ I) · [w(X0)]−1 ·

(
X ′

0 ⊗ I
))

(16)

is nonsingular, where for any z ∈ Rm,

w(z) = (z′ ⊗ I) ·Σ · (z ⊗ I) + G. (17)
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Then the matrix J−1 is a lower bound of the asymptotic variance matrix for all
estimators β̂φ such that E

(
φ(X0)X ′

0

)
is finite and invertible, and E(PΣP ′ +

QGQ′) is finite.

P r o o f . Consider the m2-dimensional random vectors

T 1 =
n∑

t=1

(
φ(Xt−1)⊗ I

)
· (Xt − β′Xt−1) =

n∑
t=1

(
φ(Xt−1)⊗ I

)
· ut,

T 2 =
n∑

t=1

(
Xt−1 ⊗ I

)
· [w(Xt−1)]−1 · (Xt − β′Xt−1)

=
n∑

t=1

(
Xt−1 ⊗ I

)
· [w(Xt−1)]−1 · ut,

where w(z) is defined by (17).
Since both sequences {(φ(Xt−1) ⊗ I) · ut} and {(Xt−1 ⊗ I) · w(Xt−1)−1 · ut}

are martingale differences w.r.t. Ft, it immediately follows that ET 1 = 0, ET 2 = 0
and the variance matrix of the vector T 1 equals

ET 1T
′
1 = E

(
n∑

t=1

(
φ(Xt−1)⊗ I

)
ut

)
·

(
n∑

s=1

u′s

(
φ(Xt−1)′ ⊗ I

))

=
n∑

t=1

E
((
φ(Xt−1)⊗ I

)
utu

′
t

(
φ(Xt−1)′ ⊗ I

))
=

n∑
t=1

E
((
φ(Xt−1)⊗ I

)
· E[utu

′
t|Ft−1] ·

(
φ(Xt−1)′ ⊗ I

))
= n · E

((
φ(X0)⊗ I

)
·w(X0) ·

(
φ(X0)′ ⊗ I

))
= n · E

((
φ(X0)⊗ I

)
·
(
(X ′

0 ⊗ I) ·Σ · (X0 ⊗ I) + G
)
·
(
φ(X0)′ ⊗ I

))
= n · E

((
φ(X0)X ′

0 ⊗ I
)
·Σ ·

(
X0φ(X0)′ ⊗ I

))
+ n · E

((
φ(X0)⊗ I

)
·G ·

(
φ(X0)′ ⊗ I

))
= n · E

(
PΣP ′ + QGQ′) , (18)

as follows from Lemma A.2 and the notation defined in Theorem 2.1. As a direct
analogue we can infer that

ET 2T
′
2 = n · E

((
X0 ⊗ I

)
· [w(X0)]−1 ·

(
X ′

0 ⊗ I
))

. (19)
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The cross-covariance matrix of T 1 and T 2 can be computed as follows:

ET 1T
′
2 = E

((
n∑

t=1

(
φ(Xt−1)⊗ I

)
· ut

)
·

(
n∑

s=1

u′s · [w(Xs−1)]−1 ·
(
X ′

s−1 ⊗ I
)))

=
n∑

t=1

E
((
φ(Xt−1)⊗ I

)
· E[utu

′
t|Ft−1] · [w(Xt−1)]−1 ·

(
X ′

t−1 ⊗ I
))

=
n∑

t=1

E
((
φ(Xt−1)⊗ I

)
·w(Xt−1) · [w(Xt−1)]−1 ·

(
X ′

t−1 ⊗ I
))

= n · E
((
φ(X0)⊗ I

)
·
(
X ′

0 ⊗ I
))

= n · E
(
φ(X0)X ′

0 ⊗ I
)

= n · EP .

(20)

The variance matrix of the 2m2-dimensional random vector (T ′1,T
′
2)
′ is equal to(

ET 1T
′
1, ET 1T

′
2

ET 2T
′
1, ET 2T

′
2

)
where the block elements were computed in (18) – (20). Lemma A.6 tells us that, if
the block elements ET 1T

′
2 and ET 2T

′
2 are invertible matrices, then(

ET 1T
′
2

)−1

·
(
ET 1T

′
1

)
·
(
ET 2T

′
1

)−1 −
(
ET 2T

′
2

)−1 ≥ 0

⇐⇒ (EP )−1 · E
(
PΣP ′ + QGQ′

)
· (EP ′)−1 −

(
ET 2T

′
2

)−1 ≥ 0

⇐⇒ V (φ)−
(
E
(
(X0 ⊗ I) · [w(X0)]−1 ·

(
X ′

0 ⊗ I
)))−1 ≥ 0,

where V (φ) is the asymptotic variance matrix of the general estimator β̂φ. Thus(
E
(
(X0 ⊗ I) · [w(X0)]−1 ·

(
X ′

0 ⊗ I
)))−1

= J−1

is a lower bound of the asymptotic variance matrix for all functional β̂φ such that

E
(
φ(X0)X ′

0 ⊗ I
)

and J are invertible. �

There are a few special cases when we can compute the optimal estimator ex-
plicitly. If Σ = 0 for instance, which corresponds to the classical AR model, and
G = σ2I for some σ2 > 0, we have w(z) = σ2I. Then the lower bound equals

J−1 =
(
E
(
(X0 ⊗ I) · [w(X0)]−1 ·

(
X ′

0 ⊗ I
)))−1

= σ2
(
E
(
X0X

′
0 ⊗ I

))−1

,

and the asymptotic variance matrix of the estimator β̂φ with φ(z) = z attains this
lower bound, whereas such estimator corresponds to the least-squares estimator. In
a general RCA(1) model, however, the lower bound for the asymptotic variance of
the least-squares estimator is not attained.
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If Σ = Σ̃⊗I, where Σ̃ is an m×m positive definite matrix, and G = σ2I, σ2 > 0,
then w(z) = (z′Σ̃z + σ2)I,

J−1 =

[
E

(
X0X

′
0

X ′
0Σ̃X0 + σ2

)]−1

⊗ I

and this lower bound is attained with the function φ(z) = z(z′Σ̃z + σ2)−1 =
w(z)−1z which corresponds to the conditionally weighted estimator. Like in the
univariate case, such choice, of course, depends heavily on the matrix Σ̃ and the
parameter σ2 that are usually unknown.

If we assume that Σ = I,G = I, then the function φ(z) = z(1 + z′z)−1 leads to
the optimal estimator with the asymptotic variance

V (φ) = J−1 =
(
E((X0X

′
0 ⊗ I)(1 + X ′

0X0)−1)
)−1

.

In a simulation study we show that this choice of φ provides a reasonable estimator
even with other values of variance matrices G and Σ. The advantage of this estimator
is that it does not depend on nuisance parameters and seems to be more stable then
the least-squares estimator.

Remark 3.3. Notice that any one-dimensional RCA process of order p,

Xt =
p∑

i=1

(βi +Bti)Xt−i + Yt, (21)

where βi and Bti, i = 1, . . . , p, are constant and random components of the vector
random coefficient, can be written as a multivariate RCA(1) model of form (1) with
Xt = (Xt, Xt−1, . . . , Xt−p+1)′,Y t = (Yt, 0, . . . , 0)′, and

β =


β1 β2 . . . βp−1 βp

1 0 . . . 0 0
...
0 0 . . . 1 0

 , Bt =


Bt1 . . . Btp

0 . . . 0
...
0 . . . 0

 . (22)

Then the role of Σ and G is played by E(BtB
′
t) and E[Y 2

t |Ft−1], respectively, where
Bt = (Bt1, . . . , Btp)′. The least-squares estimator of the parameter β = (β1, . . . , βp)′

is

β̂LS =

(
n∑

t=1

Xt−1X
′
t−1

)−1 n∑
t=1

Xt−1Xt

and the Schick-type estimator is of the form

β̂φ =

(
n∑

t=1

φ(Xt−1)X ′
t−1

)−1 n∑
t=1

φ(Xt−1)Xt

where φ denotes a measurable function φ : Rp → Rp. The asymptotic behavior of
β̂φ was studied in detail in [16].
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4. SIMULATION STUDY

In this short study we compare the least-squares estimator to a particular choice
of the Schick-type estimator. We simulated 100 observations from a 2-dimensional
RCA(1) model given by(

X1
t

X2
t

)
=
((

0.2 0.1
0.3 0.4

)
+
(
B11

t B12
t

B21
t B22

t

))
·
(
X1

t−1

X2
t−1

)
+
(
Y 1

t

Y 2
t

)
(23)

where both random coefficients Bt and error process Y t are mutually independent
and identically normally distributed with Σ = var(vec Bt) = 0.2 · I and G =
varY t = I. Notice that assumption A2 is fulfilled, because the matrix E(B0 ⊗
B0) + (β ⊗ β) has eigenvalues 0.583, 0.064 ± 0.03i, 0.050 that are less than one in
the modulus.

Then we estimated the parameter β using both β̂LS given by equation (7) and
β̂φ given by (10) with φ(z) = z

1+z′z . We ran the simulation 1000 times. The results
of the simulation study are displayed in Figure 1 and in Table below. The estimators
are compared using sample means and density estimations of the 1000 estimated
values of the true parameters β11, β12, β21 and β22 (we used the default density
estimation procedure in the R programming language). We can see that the least-
squares estimator β̂LS always underestimates the true value, especially for β11 and
β21 whereas the estimator β̂φ is closer to the true values. The density estimation
also reveals bias for the least-squares estimator. These results are in accordance
with previous simulations made for univariate RCA processes, see [16].

parameter true value LS est. φ(z) = z
1+z′z

β11 0.2 0.163 0.182
β12 0.1 0.088 0.098
β21 0.3 0.257 0.278
β22 0.4 0.391 0.401

Tab. 1. Average values of estimated parameters in simulated

model (23).

We also simulated 500 observations of the one-dimensional RCA process of second
order given by

Xt = (0.4 +Bt1)Xt−1 + (0.2 +Bt2)Xt−2 + Yt. (24)

The random coefficients Bt = (Bt1, Bt2)′ were independent identically normally
distributed with zero mean and diagonal variance matrix Diag[σ2

1 , σ
2
2 ], where σ2

1 , σ
2
2

will be specified below, and {Yt} was a sequence of iid random errors with standard
normal distribution, independent of {Bt}.
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Fig. 1. Density of estimated values of the parameters (solid line for

the least-squares estimator, dotted line for Schick-type estimator) in

simulated 2-dimensional RCA(1) process (23).

In our case,

β =
(

0.4 0.2
1 0

)
, Bt =

(
Bt1 Bt2

0 0

)
and for σ2

1 , σ
2
2 ∈ (0; 0.05; 0.10; . . . ; 0.35), all the eigenvalues of E(B0 ⊗B0) + β ⊗ β

are in the unit circle and thus the assumption A2 is satisfied. We estimated the
parameter β = (β1, β2)′ using β̂LS and β̂φ with φ(z) = z

1+z′z , respectively, and
compared the mean square errors. The results are displayed in Figures 2 and 3 as
functions of σ2

1 for a fixed level of σ2
2 . The estimators β̂LS and β̂φ with φ as above

behave similarly when the random coefficients have low variances, however, β̂LS

underestimates the true value of the parameter when the variances increase. On the
other hand, β̂φ is stable no matter how large the variances of the random coefficients
are and the estimated values do not vary so much even if only 100 repetitions are
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used.
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Fig. 2. Estimates of true parameter β = (0.4, 0.2)′ in simulated

model (24). Upper panels stand for estimation of β1, lower for β2, left

for the least-squares estimator, right for the Schick-type estimator.

Horizontal axis stands for variance σ2
1 , curves correspond to various

choices of variance σ2
2 .

A. APPENDIX

Definition A.1. We introduce the following notions.

1. Let A be an m× n matrix. Then the mn-component vector vec(A) is defined
as stacking the columns of A, one on top of the other in order from left to
right.
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Fig. 3. MSE of estimates of parameters β in simulated model (24).

Upper panels for β1, lower for β2, left panels for least-squares

estimator, right for the Schick-type estimator. Horizontal axis stands

for variance σ2
1 , curves correspond to various choices of variance σ2

2 .

2. Let A be an n× n symmetric matrix. Then the n(n+ 1)/2-component vector
vech(A) is defined as stacking those parts of the columns of A on and below
the main diagonal, one on top of the other in order from left to right.

3. Let A be an m × n matrix and B be a p × q matrix. Then the Kronecker
product A⊗B of A and B is the mp× nq matrix whose (i, j)th block is the
p× q matrix ai,j ·B, where ai,j is the (i, j)th element of A.
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Lemma A.2. Let Ai and Bi, i = 1, 2, . . . , n, be any matrices. Then(
n∏

i=1

Ai

)
⊗

 n∏
j=1

Bj

 =
n∏

i=1

(Ai ⊗Bi) .

P r o o f . See [13], Paragraph 3 in Chapter 7. �

Lemma A.3. Let A, B and C be any matrices and u, v be any vectors such that
the expressions below are well defined. Then

(a) vec (ABC) = (C ′ ⊗A) · vec (B)

(b) Au = (u′ ⊗ I) · vec (A)

(c) vec (A ·B) = (B′ ⊗ I) · vec (A)

(d) vec (uv′) = (v ⊗ I) · u.

P r o o f . Properties (a) and (b) are proved in [13], Paragraph 5 in Chapter 7. Prop-
erties (c) and (d) are direct applications of property (a). �

Lemma A.4. Let A be an n × n symmetric matrix. Then there exist constant
(n(n+ 1)/2)× n2 matrices Kn and Hn for which

vech (A) = Hnvec (A)
vec (A) = K ′

nvech (A)

such that HnK ′
n = In(n+1)/2. Matrices Hn and Kn are sometimes called the

elimination and duplication matrices, respectively.

P r o o f . See Theorem A.1.3 in [11]. �

Lemma A.5. Let {An, n ∈ N} and {Bn, n ∈ N} be random r × r-dimensional
matrix processes. Assume that {Bn} is ergodic with finite second moments and
that An

a. s.−→ A as n→ +∞ where A ∈ Rr×r is a finite constant matrix. Then

1
n

n∑
t=1

BtAnB′
t

a. s.−→ E(B1AB′
1) as n→ +∞.

P r o o f . We prove the convergence of the correspondent components using ergod-
icity and vec operator:

vec

(
1
n

n∑
t=1

BtAnB′
t

)
=

1
n

n∑
t=1

vec
(
BtAnB′

t

)
=

1
n

n∑
t=1

Bt ⊗Bt · vec (An)

a. s.−→ E
(
B1 ⊗B1

)
· vec (A) = E

(
vec

(
B1AB′

1

))
= vec

(
E
(
B1AB′

1

))
.

�
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Lemma A.6. Consider block matrix

M =
(

A B
B′ C

)
,

where A, B, C are p × p-dimensional matrices. Let M ≥ 0, B be a invertible
matrix, and C be a symmetric invertible matrix. Then

B−1AB′−1 −C−1 ≥ 0.

P r o o f . We will prove that A−BC−1B′ ≥ 0 from which the result could be ob-
tained by multiplication of matrices B−1 and B′−1, respectively. Choose arbitrary
x ∈ Rp and y ∈ Rp. Matrix M is positively semi-definite which means that

(x′,y′)M
(

x
y

)
= x′Ax + y′B′x + x′By + y′Cy = x′Ax + y′Cy + 2x′By ≥ 0.

We want to prove that for any x ∈ Rp,

x′Ax− x′BC−1B′x ≥ 0.

Comparing the previous two inequalities we conclude that it suffices to find y ∈ Rp

such that
y′Cy + 2x′By = −x′BC−1B′x.

Denote z = B′x. Then y has to satisfy the elliptical equation

y′Cy + 2z′y + z′C−1z = 0

and y = −C−1z solves the latter equation which completes the proof.
�
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