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PROBABILISTIC MIXTURE-BASED IMAGE MODELLING

Michal Haindl, Vojtěch Havĺıček and Jiř́ı Grim

During the last decade we have introduced probabilistic mixture models into image
modelling area, which present highly atypical and extremely demanding applications for
these models. This difficulty arises from the necessity to model tens thousands corre-
lated data simultaneously and to reliably learn such unusually complex mixture models.
Presented paper surveys these novel generative colour image models based on multivari-
ate discrete, Gaussian or Bernoulli mixtures, respectively and demonstrates their major
advantages and drawbacks on texture modelling applications. Our mixture models are
restricted to represent two-dimensional visual information. Thus a measured 3D multi-
spectral texture is spectrally factorized and corresponding multivariate mixture models
are further learned from single orthogonal mono-spectral components and used to syn-
thesise and enlarge these mono-spectral factor components. Texture synthesis is based
on easy computation of arbitrary conditional distributions from the model. Finally single
synthesised mono-spectral texture planes are transformed into the required synthetic multi-
spectral texture. Such models can easily serve not only for texture enlargement but also
for segmentation, restoration, and retrieval or to model single factors in unusually complex
seven dimensional Bidirectional Texture Function (BTF) space models. The strengths and
weaknesses of the presented discrete, Gaussian or Bernoulli mixture based approaches are
demonstrated on several colour texture examples.

Keywords: discrete distribution mixtures, Bernoulli mixture, Gaussian mixture, EM al-
gorithm, multi-spectral texture modelling, BTF texture modelling
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1. INTRODUCTION

Generative visual texture models are useful not only for modelling physically cor-
rect virtual objects material surfaces in virtual or augmented reality environments
or restoring images but also for contextual recognition applications such as segmen-
tation, classification or image retrieval.

Texture synthesis approaches may be divided primarily into sampling and model-
based methods. Sampling methods [3, 5, 6, 20, 25, 26] rely on sophisticated sampling
from real texture measurements while the model-based techniques [1, 11, 14, 15,
23, 27] describe texture data using multidimensional mathematical models and their
synthesis is based on the estimated model parameters only. There are several texture
modelling approaches published and some survey articles are also available [7, 11].
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Most published texture models are restricted only to mono-spectral textures for few
models developed for multispectral (mostly colour) textures refer [1],[12] – [18]. We
introduced in our previous papers [14, 15] fast multiresolution Markov random field
(MRF) based models, which are very efficient for colour or even for substantially
more complex BTF [16] texture modelling, because they do not suffer with some
problems of alternative options (see [11] for details) and simultaneously they are
easy to analyze as well as to synthesise. However they cannot model well regular or
near-regular textures [17]. Nevertheless, such textures can be reliably represented
using discrete mixture [9], colour Gaussian mixture [13], hybrid colour Gaussian
mixture [12], subspace colour Gaussian mixture [10], or Bernoulli mixtures [18, 19]
models, respectively.

General static multispectral (e. g. colour) texture requires a three-dimensional
underlying mathematical models (for some fixed illumination and viewing angles)
for their comprehensive description. Although full 3D models allow unrestricted
spatial-spectral correlation modelling their main drawback is large amount of pa-
rameters to be estimated and in the case of some models (e. g. Markov models)
also the necessity to estimate all these parameters simultaneously. If we are willing
to sacrifice some spectral information, a 3D texture model can be approximated by
a set of simpler 2D texture models. The spectral factorization alternative (using
PCA decorrelation) accepted in this paper allows the independent spectral com-
ponent modelling approach and usage of simpler 2D data models with much less
parameters. This is extremely important because our mixture models have to be re-
liably learned from learning example images which are restrictive in view of the high
problem dimensionality. Note that, generally a 3D discrete distribution for typical
random vector of 1500 random variables each one having 256 possible values is diffi-
cult to learn from commonly available 512× 512 training image. Unfortunately real
data space can be decorrelated only approximately, hence this approach suffers with
some loss of spectral image information. A full 3D mixture model will be presented
elsewhere.

The present paper targets such textures using a multivariate 2D mixtures texture
models with components defined as products of multivariate discrete (DM) or Gaus-
sian distributions (GM) or univariate Bernoulli distributions (BM). The multivariate
Bernoulli mixtures are used to model the local statistical texture properties sepa-
rately for individual bit planes of decorrelated mono-spectral image components. In
the application part we demonstrate advantages and weak points of the proposed
method on several colour textured images.

2. PROBABILISTIC MIXTURE MODEL

A digitized multispectral static texture image Ỹ is assumed to be defined on a finite
rectangular N1×N2× d lattice I3, r̃ = {r1, r2, r3} and r = {r1, r2} denotes a pixel
multiindex with the row, columns and spectral indices, respectively. The notation •
has the meaning of all possible values of the corresponding index. In this notation
a mono-spectral component of the original texture image can be viewed as a matrix
Y•,•,r3 ∈ KN1N2

r3
.

Our 2D mixture models require spectral factorization in the wavelength spectrum
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meaning. The Karhunen–Loeve expansion transforms the original centered data
space Ỹ defined on the rectangular N1 ×N2 finite toroidal lattice I into a new data
space with K-L coordinate axes Ȳ . Although we do not assume any data distribution
at this stage, we replace the unknown covariance matrix by its sampling estimate. It
allows us to significantly simplify the difficult 3D modelling task into 3 much simpler
2D learning and modelling subtasks. These new basis vectors are the eigenvectors of
the d×d second-order statistical moments matrix Φ = E{Ỹr,•Ỹ

T
r,•} The projection of

random vector Ỹr,• onto the K-L coordinate system uses the transformation matrix
T = [uT

1 , . . . , u
T
d ]T which has single rows uj that are eigenvectors of the matrix Φ.

Ȳr,• = T Ỹr,• (1)

Components of the transformed vector Ȳr,• (1) are mutually uncorrelated and if Ȳr,•
are Gaussian they are also independent hence each transformed mono-spectral factor
can be modeled independently of the remaining spectral factors. Although the Gaus-
sianity assumption generally does not hold, we assume this approximation to enable
important simplifying spectral space factorization. Besides, this approximation is
subsequently validated by our high quality experimental results.

Supposing now uncorrelated mono-spectral textures, we assume that each pixel
of the r3th mono-spectral image is described by a grey level taking on Kr3 (often
Kr3 = 256) possible values, i. e.,

Y·,·,r3 ∈ Kr3 , ∀ r̃ ∈ I3, Kr3 = {1, 2, . . . ,Kr3}, (2)

where Kr3 is the set of distinguished grey levels in the r3th transformed spectral
band. If Kr3 = 2 we denote this set B. Because the amount of information content
of each transformed spectral band is proportional to the eigenvalue corresponding to
the single transformation matrix row, the most descriptive and best model should
be used for the r3 = 1 spectral band. A reasonable approximation significantly
improving the numerical efficiency of the proposed models is therefore

card{K1} = K ≥ card{K2} ≥ card{K3} ≥ · · · ≥ card{Kd} ,

card{Ki}
card{Ki+1}

≈

{
λi

λi+1
if λi

λi+1
< 5

5 otherwise

and a re-quantized mono-spectral pixel is then

Yr1,r2,r3 = Ȳr1,r2,r3

Kr3

K
(3)

where K is the original number of quantization levels (assumed equal for all uncor-
related spectral bands Ȳ•,•,r3). To simplify notation we will neglect further on (Sec-
tions 3 – 6) the spectral component in the multiindices r, s because single sub-models
describe only decorrelated mono-spectral components of the original multi-spectral
texture and the lattice I will have only two dimensions.

Let us suppose that the natural homogeneous texture image represents a real-
ization of a random vector with a probability distribution P (Y•,•). The concept



Probabilistic mixture-based image modelling 485

of texture intuitively implies some degree of homogeneity. In other words we may
assume that the local statistical properties of a texture as observed, e. g., within a
small moving window should be invariant with respect to the window position. In
this sense we can describe the statistical properties of interior pixels of the moving
window by a joint probability distribution and that the properties of the texture can
be fully characterized by statistical dependencies on a sub-field, i. e., by a marginal
probability distribution of grey levels on pixels within the scope of a window centered
around the location r and specified by the index set Ir.

Ir = {r + s : |r1 − s1| ≤ α ∧ |r2 − s2| ≤ β} ⊂ I (4)

where α, β are some chosen constants and | .| is the absolute value. Ir depends on a
modeled visual data and can have other than this rectangular shape. If we denote
Y{r} the corresponding vector containing all Ys in some fixed order arrangement
such that s ∈ Ir, Y{r} = [Ys ∀ s ∈ Ir], Y{r} ⊂ Y , η = card{Ir} and P (Y{r})
is the corresponding marginal distribution of P (Y ) then the marginal probability
distribution on the “generating” window Ir is assumed to be invariant with respect
to arbitrary shifting within the original image, i. e.,

P (Y{r}) = P (Y{s}) , ∀ s, r ∈ I, s 6= r .

Thus, e. g., for a rectangular window of size η = 20 × 30 pixels we have to esti-
mate a 600-dimensional probability distribution P (Y{r}). The marginal distribution
P (Y{r}) is assumed to contain sufficient information to synthesise the modeled tex-
ture. The distribution P (Y{r}) is assumed to has the mixture probability form:

P (Y{r}) =
∑

m∈M
P (Y{r} |m) p(m) (5)

Y{r} ∈ Kη M = {1, 2, . . . ,M} where p(m) are probability weights and∑
m∈M

p(m) = 1 .

The component distributions P (· |m) are factorizable, i. e., we can write

P (Y{r} |m) =
∏
s∈Ir

ps(Ys |m) Ys ∈ Y{r} . (6)

ps(Ys |m) are univariate (component-specific) probability distributions. It can be
seen that, by Eqs. (5), (6) the variables {Ys : ∀ s ∈ Ir} are conditionally independent
with respect to the index variable m. From the theoretical point of view, this
assumption is not restrictive. It can be easily verified that, in discrete case Y{r} ∈ Kη,
the class of finite mixtures

P (Y{r}) =
∑

m∈M
p(m)

∏
s∈Ir

ps(Ys |m) , (7)

is complete in the sense that any discrete probability distribution on Kη can be
expressed in the form (7) for sufficiently large M .
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3. EM ALGORITHM

The underlying structural model of conditional independence is estimated from a
data set S obtained by step-wise shifting the contextual window Ir within the original
texture image, i. e., for each location r one realization of Y{r}.

S = {Y{r} ∀ r ∈ I, Ir ⊂ I} Y{r} ∈ Kη , (8)

where K =

{
Kr3 for DM, GM
B for BM

. The unknown parameters of the approximating

mixture can be estimated by means of the iterative EM algorithm [4, 8]. In order to
estimate the unknown distributions ps(· |m) and the component weights p(m) we
maximize the likelihood function corresponding to (8)

L =
1
|S|

∑
Y{r}∈S

log

[ ∑
m∈M

P (Y{r} |m) p(m)

]
(9)

by means of the EM algorithm. The related iteration equations can be expressed as
follows:

q(t)(m| Y{r}) =
P (t)(Y{r} |m) p(t)(m)∑
j∈M P (t)(Y{r} | j) p(t)(j)

, (10)

p(t+1)(m) =
1
|S|

∑
Y{r}∈S

q(t)(m | Y{r}), (11)

P (t+1)(. |m) = arg max
P (. |m)

 ∑
Y{r}∈S

q(t)(m | Y{r}) logP (Y{r} |m)

 . (12)

The mixture parameters are initialized by random numbers. The iteration process
is stopped when the criterion increments are sufficiently small. The iteration scheme
(10) – (12) has the monotonic property: L(t+1) ≥ L(t), t = 0, 1, 2, . . . which implies
the convergence of the sequence {L(t)}∞0 to a stationary point of EM algorithm (local
maximum or a saddle point of L). However, the ML estimates may be negatively
influenced by the fact that the observations in S are not independent, because the
standard ML estimate assumes the independent observations of modelled data. The
assumption which is clearly violated in our task, because the contextual windows
Y{r} are partly overlapping for neighbouring locations r.

4. PROBABILISTIC DISCRETE MIXTURE MODEL

The parameters of the mixture model (7) are probabilistic component weights p(m)
and the univariate discrete distributions of grey levels are simply defined by a vector
of probabilities:

ps(· |m) = (ps(1 |m), ps(2 |m), . . . , ps(Kr3 |m)) . (13)
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Fig. 1. Natural (left) and synthetic BM (middle) carpet (upper) and

jute (bottom) textures compared with their synthetic (right)

alternatives generated using Gaussian MRF models.

The M step (12) of the EM algorithms is

p(t+1)
s (ξ |m) =

1
|S| p(t+1)(m)

∑
Y{r}∈S

δ(ξ, Ys) q(t)(m |Y{r}), ξ ∈ Kr3 . (14)

The total number of mixture (7), (13) parameters is thus M(1+NKr3) – confined
to the appropriate norming conditions. Note that the form of the univariate discrete
distributions (13) is fully general without any constraint. In contrast to different
parametric models (e. g., normal) the K-dimensional vector ps(· |m) can describe
arbitrary discrete distribution. This fact is one of the main arguments for the choice
of the discrete mixture model (7), (13). Another strong motivation for the condi-
tional independence model (7) is a simple switch-over to any marginal distribution
by deleting superfluous terms in the products P (Y{r} |m). On the other hand the
number of parameters included became very large with negative consequences for
the reliable model learning.

5. BERNOULLI DISTRIBUTION MIXTURE MODEL

Supposing now uncorrelated mono-spectral textures, we assume that each pixel of
the image is described by Kr3 possible grey level values, where Kr3 is the set of
distinguished grey levels. Single mono-spectral images are further decomposed into
separate binary bit planes (8 for |Kr3 | = 256) of binary variables ξ ∈ B, B = {0, 1}
which are modeled separately. These binary plane Bernoulli mixture models can be
reliably learned from much smaller training texture than the full gray scale discrete
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mixture models. Single sub-models describe only single bit planes from decorrelated
mono-spectral components of the original multi-spectral texture.

Let us suppose that a bit plane of a mono- spectral textured image component
represents a realization of a random vector with a probability distribution P (Y•,•)
and that the properties of the texture can be fully characterised by a marginal prob-
ability distribution of binary levels on pixels within the scope of a window centered
around the location r and specified by the index set Ir ⊂ I. The sub-vector Y{r}
has binary components, i. e. Y{r} ∈ Bη and P (Y{r}) is the corresponding marginal
distribution of P (Y ). The distribution P (Y{r}) is assumed to be multivariable
Bernoulli mixture in the form (5), where the component distributions P (· |m) (6)
are multivariable Bernoulli

ps(Ys |m) = θYs
m,s(1− θm,s)1−Ys . (15)

The parameters of the mixture model (7) include probabilistic component weights
p(m) and the univariate discrete distributions of binary levels. They are simply
defined by one parameter θm,s as a vector of probabilities:

ps(· |m) = (θm,s, 1− θm,s) . (16)

The EM solution is again (10), (11) and

p(t+1)
s (ξ |m) =

1
|S| p(t+1)(m)

∑
Y{r}∈S

δ(ξ, Ys) q(t)(m |Y{r}), ξ ∈ B . (17)

The total number of mixture (7), (16) parameters is thus M(1+ η) – confined to the
appropriate norming conditions. Again the advantage of the multivariable Bernoulli
model (16) is a simple switch-over to any marginal distribution by deleting super-
fluous terms in the products P (Y{r} |m).

6. GAUSSIAN MIXTURE MODEL

If we assume the joint probability distribution P (Y{r}), Y{r} ∈ Kη in the form of a
normal mixture

P (Y{r}) =
∑

m∈M
p(m)P (Y{r} |µm, σm), Y{r} ⊂ Y , (18)

where p(m) are probability weights and the mixture components are defined as
products of univariate Gaussian densities

P (Y{r} |µm, σm) =
∏

s∈I{r}

ps(Ys |µms, σms) , (19)

ps(Ys |µms, σms) =
1√

2πσms

exp
{
− (Ys − µms)2

2σ2
ms

}
,

i. e., the components are multivariate Gaussian densities with diagonal covariance
matrices.
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Obviously, assuming the Gaussian densities (19), we ignore the discrete nature of
the variables Ys (typically Ys ∈ {0, 1, . . . , 255}). On the other hand we need only 2
parameters to specify the density ps(Ys|µms, σms) in contrast to 255 parameters to
be specified in case of a general discrete distribution ps(Ys |m) as used in [9].

The maximum-likelihood estimates of the parameters p(m), µms, σms can be com-
puted by the means of the EM algorithm [9]. Anew we use a data set S obtained
by pixel-wise shifting the observation window within the original texture image

S = {Y (1)
{r} , . . . , Y

(K)
{r} }, Y

(k)
{r} ⊂ Y. (20)

The corresponding log-likelihood function

L =
1
|S|

∑
Y{r}∈S

log

[ ∑
m∈M

p(m)P (Y{r}|µm, σm)

]
(21)

is maximized by the EM algorithm (m ∈M, n ∈ N , Y{r} ∈ S)

q(t)(m |Y{r}) =
p(t)(m)P (t)(Y{r} |µm, σm)∑
j∈M p(t)(j)P (t)(Y{r} |µj , σj)

, (22)

p(t+1)(m) =
1
|S|

∑
Y{r}∈S

q(t)(m | Y{r}) , (23)

µ(t+1)
m,n =

1∑
Y{r}∈S q

(t)(m |Y{r})
∑

Y{r}∈S
Yn q(m |Y{r}) , (24)

(σ(t+1)
m,n )2 = −(µ(t+1)

m,n )2 +

∑
Y{r}∈S Y

2
n q

(t)(m |Y{r})∑
Y{r}∈S q(m|Y{r})

. (25)

Let us remark that in practical experiments the resulting parameters µm are
visually well interpretable. They correspond to the typical (smoothed) variants of
the mono-spectral texture pieces occurring in the observation window. In our case
the dimension of the estimated distribution is not too high (η ≈ 101 − 102) and the
number of the training data vectors is relatively large (|S| ≈ 104−105). Nevertheless
the window should always be kept reasonably small and the sample size as large as
possible.

7. TEXTURE SYNTHESIS

The statistical description of the local texture properties naturally suggests the
possibility of texture synthesis by local prediction. We assume that in a general
situation, at a given position of the observation window, some part of the synthesised
texture is already specified.

Let Ir be a fixed position of the generating window. If Y{ρ} is a sub-vector of all
of Y{r} pixels previously specified within this window and Iρ ⊂ Ir the corresponding
index subset, then the statistical properties of the remaining unspecified variables
are fully described by the corresponding conditional distribution. In view of the
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advantageous properties of our mixture model we can easily compute any univariate
conditional distribution pn | ρ:

pn | ρ(Yn |Y{ρ}) =
M∑

m=1

Wm(Y{ρ}) pn(Yn |m) , (26)

where Wm(Y{{ρ}) are the a posteriori component weights corresponding to the given
subvector Y{ρ}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} |m)∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (27)

Pρ(Y{ρ} |m) =
∏
n∈ρ

pn(Yn |m) .

The binary level yn can be randomly generated by means of the conditional distribu-
tion pn | ρ(Yn |Y{ρ}) whereby Eqs. (26) can be applied to all the unspecified variables
n = η − card{ρ} given a fixed position of the generating field. The starting pixel
(e. g., left upper corner) is generated from the corresponding unconditional marginal.
Simultaneously, each newly generated binary level yn can be used to upgrade the
conditional weights Wm(Y{ρ}). In the next step, the generating field is shifted to
a new position and the conditional distribution (26) has to be computed for a new
subset of the specified pixels in ρ. In our experiments we have used a regular left-to-
right and top-to-down shifting of the generating window. Specific mixture models
(5) synthesise single bit planes of the decorrelated mono-spectral components. The
synthesised mono-spectral textures for Bernoulli models are composed from combin-
ing corresponding bit planes into three (several for a general multi-spectral texture)
synthesised mono-spectral images. Finally the resulting synthesised multi-spectral
texture is obtained from the set of synthesised mono-spectral images by inverting
the decorrelation process (the inverse K-L transformation):

Ỹr,• = T−1Ȳr,• . (28)

8. STATISTICALLY OPTIMIZED SAMPLING

We assume a mixture model to represent texture frequency (i. e. to control sampling
process) but not to represent any spectral information. Hence it is enough to use
simpler mono-spectral normal mixture model. The texture synthesis procedure as
described in Sec. 7 has been applied to different texture images with satisfactory
results (cf. [13]). Nevertheless, the synthesised textures sometimes appear to be too
“smooth” or “filtered” with the high frequency details missing. In order to obtain
the texture with all high frequency details the component means are replaced by the
most similar pieces of source colour, multi-spectral or BTF texture in the synthesis
phase.

For this reason we have replaced in the synthesis phase the mean vectors µm of
the mixture components by the most similar target texture “centroids” from the
source texture subspace, i. e. by measured pieces of the original real textures.
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measurement GM synthesis synthesis

Fig. 2. Rattan, leather and carpet examples and their synthetic

results.

For each vector µm we have found the corresponding mono-spectral centroid cm

by minimizing the Euclidean distance ‖Y{r} − µm‖ over all possible positions of
the observation window Y{r} in the mono-spectral version of the source (colour,
multispectral, BTF) image:

cm = (c1, c2, . . . , cη) = arg min
Y{r}

{‖Y{r} − µm‖} . (29)

Given the position of the optimal centroid cm, we have chosen the corresponding
piece of the measured texture subspace for the synthesis phase.
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Let us recall that in this way the target texture synthesised by means of the esti-
mated normal mixture is used only as a “draft layout” for the final texture subspace
image set which is entirely composed of small pieces of the original texture mea-
surements. (The last step includes also some smoothing of the boundaries between
the neighbouring centroids.) The resulting synthesised texture is actually a mosaic
of the original texture pieces controlled by the separately synthesised draft layout.
The last version of the modelling method has been applied to different textures. In
the experiments we have obtained very realistic texture images (cf. Figure 2) for
the rattan and leather examples. The main reason for the carpet example failure
(Figure 2 bottom) is the insufficiency of the learning texture example. The learning
window Ir had to be kept too small to reliable represent all needed low frequencies
in the texture.

For this reason the conditional distributions indicate only basic structure, but
the majority of conditional pixel marginals are uniform.

It can be seen that in the final version the texture synthesis is much similar
to standard sampling methods. By using the estimated component means µm we
choose from the original texture image a fixed set of texture “centroids” playing
the role of tiles. The synthesis based on a local mono-spectral prediction controls
the tilling in a statistically optimal way by using statistically optimized set of the
texture tiles.

9. BIDIRECTIONAL TEXTURE FUNCTION MODELS

Visual textures typically represent visual properties of surface materials. However
physically correct reflectance model (RM) is sixteen-dimensional

RM(λi, xi, yi, zi, ti, θi, ψi, λv, xv, yv, zv, tv, θv, ψv, θi,T , θv,T ) .

RM describes incident light with spectral value λi illuminating surface location
xi, yi, zi in time ti under spherical reflectance angle θi, ψi and observed at time
tv from surface location xv, yv, zv under spherical reflectance angle θv, ψv and spec-
trum λv. θi,T , θv,T are the corresponding transmittance angles. The model height
parameters zi, zv indicate that even radiance along light rays is not constant but
depends on the height. Such a RM model is too complex and there neither exist any
measurement of such data nor any mathematical representation allowing its synthe-
sis. One of the early compromised attempts to capture real material appearance
was done by Nicodemus et al. [22] and later elaborated by Dana et al. [2] in the
form of Bidirectional Texture Function (BTF). Even if a BTF model assumes several
simplifying assumptions [7, 16] its measurement, compression and synthesis is on the
leading edge of current mathematical modelling and technological capabilities.

BTF is a seven-dimensional function which considers not only measurement de-
pendency on planar material position and spectral channel but also its dependence
on illumination and viewing angles:

BTFθi,φi,θv,φv (r̃) (30)

where θ, φ are elevation and azimuthal angles of illumination and view direction



Probabilistic mixture-based image modelling 493

Fig. 3. Relationship between illumination and viewing angles within

texture coordinate system.

Fig. 4. Light vector trajectory above the sample. The light starts at

the top.

vector (see Figure 3), the multiindex r̃ = [r1, r2, r3] specifies planar horizontal and
vertical position in a material sample image and r3 is the spectral index.

The BTF measuring is very time consuming and such systems require high pre-
cision measuring setup hence only few such systems exist up to now [2, 21, 24].
These systems are, similarly to BRDF (spatially averaged BTF) measurement sys-
tems, based on light source, video / still camera and material sample moving using
a robot arm. The main difference between individual BTF measurement systems is
in the type of measurement setup (Figure 4) allowing four degree of freedom and the
type of measurement sensor (CCD, video, etc.). The main requirements for BTF
measurements are the accurate image rectification, i. e., aligning texture normal with
view vector, mutual registration of single BTF measurements and sample visual and
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illumination source constancy during the several hours long data acquisition. BTF
appropriately measured from real material samples offers enough information about
material properties, e. g., anisotropy, masking or self-shadowing. In contrast to a
regular multispectral static 3D texture or even to BRDF, BTF is high-dimensional
and involves large amounts of data. To render BTF on graphics hardware, its com-
pact representation is needed. The best currently available BTF [24] takes up about
1.2GB of storage space per sample. Thus BTF database even for simple VR scenes
requires enormous data space (TB). Some compression and modelling method of
these huge data sets is inevitable. Such a method should provide compact para-
metric representation and preserve main visual features of the original BTF, while
enabling its fast rendering taking advantage of contemporary graphics hardware.

All our proposed mixture models can be applied also to BTF modelling (Figure 5)
if the BTF model separately synthesise single fixed view BTF subspace factors. A
2D mixture model can then synthesise either the corresponding image or parametric
factors. Such a BTF model is on top of that very complex. It contains several
hundreds of combined elemental 2D mixture models and its details are out of scope
of this paper.

In this paper demonstration we use the Bonn University data [24] which have 81
measurements per fixed view BTF subspace and 81 such subspaces. The reason for
this is the optimal mutual registration for all different illumination BTF measure-
ments for a fixed view angle. All recently available BTF measurements [2, 21, 24] do
not enable the errorless mutual registration of different view texture images. Single
BTF sets differ in their image rectification accuracy but even the best one has sev-
eral pixels error. This rectification error caused clearly visible flaw when we tried to
model several view-dependent BTF subspaces using a sole Gaussian mixture model.

Single BTF measurements (Figure 5 odd rows) are at first geometrically trans-
formed using the corresponding inverse perspective projection. The gray scale ver-
sion of the image with perpendicular illumination is selected as the data source for
the statistical vector sampler. This vector sampler is controlled by the primary
image Gaussian mixture model.

10. EXPERIMENTAL RESULTS

The implementation of EM algorithm is simple but there are some well known com-
putational problems, e. g., the proper choice of the number of components, the exis-
tence of local maxima of the likelihood function an the related problem of a proper
choice of the initial parameter values. The above difficulties are less relevant if the
sample size is sufficiently large. In our case the dimension of the estimated distri-
bution is not too high (η ≈ 101 − 102) and the number of the training data vectors
relatively large (|S| ≈ 104 − 105). The number of grey levels to be distinguished is
|K| = 256 and therefore the estimated distribution becomes considerably complex.
For these reasons the generating window should always be kept reasonably small
and the sample size as large as possible. All BM models used the contextual window
size 21 × 21 pixels, M = 40 components and about 10 iterations of the EM algo-
rithm. The computation was rather time-consuming it took several hours in total
on standard PC computer. The time needed for texture synthesis is comparable
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Fig. 5. Cushion fabric and foil BTFs examples (odd rows) for three

different illumination angles and their synthetic (even rows) results.
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with one iteration step of the EM algorithm. The examples Figures 1, 7, 6 illustrate

Fig. 6. Synthetic (BM) gingham texture mapped on a snail shell

model.

properties of our BM model on natural colour textures. The carpet texture on Fig-
ure 1 or gingham texture on Figure 6 represent relatively regular texture which is
notoriously difficult for some alternative texture models like for example Gaussian
Markov random field models (Figure 1 – top right) but the presented model pro-
duced very good synthesis result (Figure 1 – top middle). Similarly the jute example
(Figure 1 – bottom) or the buckram texture (Figure 7 – top) demonstrate very good
performance of the presented model.

Similarly as all other known texture models also our mixture models have their
strong as well as weak sides. While they can realistically synthesise natural or
man-made textures with strong periodicity, which are notoriously difficult for most
of other alternative approaches, their major weakness is lesser robustness than the
Markovian models family. The computationally most efficient Markovian models
are much faster than the presented BM or DM models, but general Markovian
models which require Markov chain Monte Carlo methods for their analysis as well
as synthesis are comparable.

Both DM and BM models have strong tendency either to produce high quality
synthetic texture or to completely fail with resulting noise field, but the BM model
is slightly more robust. Markovian models in these cases demonstrate clear effort to
grasp at least some of the difficult texture features. A GM model is easier to learn
and does not produce noisy failures but it is less general than DM.
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Fig. 7. Natural and synthetic BM (right) textile textures.
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The dimension of the sample space is relatively high (η = 200 − 400) and the cor-
responding sample size appears to be often insufficient, mainly for DM models.
Moreover, the data vectors obtained by shifting the window are overlapping and
therefore not independent as it is assumed in the likelihood criterion.

11. CONCLUSION

The application of the EM algorithm to colour, multi-spectral or BTF visual texture
modelling has some specific features. Regular or near-regular textures, such as the
presented gingham and fabric textures, are notoriously difficult for Markovian tex-
ture models. Currently there is no mathematical alternative for their reliable and
accurate representation than our probabilistic mixture models. However, the dimen-
sion of the sample space is generally relatively high and the corresponding sample
size appears to be usually insufficient for adequate model parameters learning. More-
over, the data vectors obtained by shifting the window are not independent as it is
assumed in the likelihood criterion. For these and other reasons the estimation of
the texture model in the form of set of multivariate Bernoulli or general discrete mix-
tures is a difficult task. A Gaussian mixture model is easier to learn and less prone
to produce noisy failures but also less general than general discrete mixture model.
Our extensive discrete or Bernoulli mixtures models simulations suggest that often
these models require a relatively large training data set and powerful computing re-
sources to successfully reproduce any given natural texture. A hybrid mixture model
using the statistically optimized sampling seems to be a reasonable compromise in
situations of limited learning data available. While the computational complexity is
going to be less important in near future and on top of that these models are ideal
for parallelization and hence for multicore processors or GPU, the requirement for
large learning data set is more difficult to overcome and can be restrictive in some
texture modelling or recognition applications.
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