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FUSION BASED ANALYSIS
OF OPHTHALMOLOGIC IMAGE DATA

Jiř́ı Jan, Radim Kolář, Libor Kubečka, Jan Odstrčiĺık and Jiř́ı Gazárek

The paper presents an overview of image analysis activities of the Brno DAR group
in the medical application area of retinal imaging. Particularly, illumination correction
and SNR enhancement by registered averaging as preprocessing steps are briefly described;
further mono- and multimodal registration methods developed for specific types of oph-
thalmological images, and methods for segmentation of optical disc, retinal vessel tree and
autofluorescence areas are presented. Finally, the designed methods for neural fibre layer
detection and evaluation on retinal images, utilising different combined texture analysis ap-
proaches and several types of classifiers, are shown. The results in all the areas are shortly
commented on at the respective sections. In order to emphasise methodological aspects,
the methods and results are ordered according to consequential phases of processing rather
then divided according to individual medical applications.
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1. INTRODUCTION

This paper provides a brief overview of the retinal image analysis activities of Brno
group working in frame of the research centre DAR (Data, Algorithms, Decision mak-
ing) coordinated by the Institute of Information Theory and Automation, Academy
of Sciences of the Czech Republic. The activities concerning ophthalmological ap-
plications of image analysis were initiated by scientific contacts with the Erlangen
university (Germany) already around 2000 [21]; here, the DAR-team activities per-
formed during the first DAR period (2005 – 2009) will be summarised.

There are several modalities nowadays available for imaging the interior of eye –
primarily the most common and widely accessible optical wide-angle fundus camera
imaging the retina, with many diagnostically important details (nerve bundle ter-
minal, so called optical disc (OD), vessel tree, macula, faintly also neural fibre layer
(NFL), possibly deceased areas of different kind, etc.), [8, 12]. Another today impor-
tant modality is the laser scanning tomography (LST) [27] providing 3D data on the
eye interior. This has a possibility to use different laser wavelengths thus enabling,
besides the most common infrared examination also excitation by blue laser light
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leading then to autofluorescence phenomena that have been recognised to have also
diagnostic importance. 2D projections of LST data are similar to fundus camera im-
ages, though carrying different information. Fusion of both these modalities brings
then an important enhancement to possibilities of detecting diagnostically important
features. Increasingly important is the new modality of optical coherence tomogra-
phy (OCT) [3], which enables to image depth scans of the eye interior, primarily of
the cross-sectional profiles of the retina, thus providing the objective evaluation of
the retinal layers, particularly of the thickness of the neural fibre layer. This offers,
during direct measurement on individual patients (though still expensive and not
widely available), the objective assessment of the estimates of the NFL status pro-
vided for the same patients in the fundus camera images. The image material from
all these modalities was provided for our group by the cooperating ophthalmological
institutions – the university eye clinic in Erlangen (Germany) and the outpatient
eye clinic in Zlin (Czech Republic). The task of the DAR team was generally to
increase the diagnostic potential of the data by finding suitable ways of processing
or analyse the data with the aim to support the medical diagnostics, and – in some
cases – to enable even mass screening via automating some steps that are so far too
time consuming, complex or tiresome for the medical experts to be applied in mass
scale. The results were concurrently summarised in [22, 23, 24].

Several medically defined problem areas were namely treated: first registration
and fusion of fundus camera images with the 2D LST images and consequently
the optical disc segmentation, possibly allowing conclusions on OD deformations
symptomatic for certain diseases. Another problem was segmentation of the vessel
tree on retinal fundus camera images, necessary as a preliminary step before neural
fibre layer (NFL) detection but also more generally useful. Another segmentation
task was autofluorescence (AF) areas detection and evaluation. Finally, the status
and contributions to the still very topical problem of detecting and evaluating the
NFL, substantial for early glaucoma diagnosis, is described.

With respect to the overview character of the paper, the discussion of results and
indications of possible future research are generally only very brief and are included
at the respective partial sections in the main body of the paper in chapter 2. Con-
sidering this character, also other problem areas worked on by the Brno DAR-group
should be mentioned: subtractive CT angiography aiming at substantial improve-
ment of vessels presentation in time series of 3D CT data, 3D image synthesis in
ultrasonic transmissive computed tomography (USCT) and fMRI image data anal-
ysis for neuroscience applications.

2. METHODOLOGY AND APPLICATIONS

The methods and results, obtained in the period 2005 – 2009 in the area of ophthal-
mologic application, are described in this chapter. Although they deal with the med-
ically defined problems as mentioned in the Introduction, they are organised here
differently to emphasise the methodological aspect – starting from preprocessing
stage, via registration and segmentation to classification of derived features. Except
preprocessing, the other stages utilise the fusion aspect in a certain degree, more or
less explicitly described. The fusion may concern multimodal data, or monomodal
data in time series, or both.
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2.1. Pre-processing of retinal images

Most of the processed image data require a certain degree of pre-processing before
they may be submitted to the fusion procedures. Mostly simple corrections are
needed, like histogram based contrast adjustment, certain degree of convolution
processing e. g. for edge enhancement etc. but in some cases, more sophisticated
and not readily available procedures are needed; in these cases applying original
approaches is necessary. Among them, an interesting problem was correcting the
uneven illumination of retina when imaged by fundus camera. Although illumination
correction has already been extensively treated in literature namely for MRI images,
e. g. [2, 10, 17, 48, 66, 71], the retinal problem turned out specific [6]; and compared
to MRI it required novel modifications as described in [40].

There, a method for correction of non-homogeneous illumination is presented,
based on optimization of a shading model (called here the bias field, reflecting the
terminology commonly used in processing of magnetic resonance (MR) images) with
respect to Shannon’s entropy. The evaluation of Shannon’s entropy is based [53]
on Parzen windowing method using spline-based shading model, which leads to
expressing the derivatives of the entropy criterion analytically, thus enabling efficient
use of gradient based optimization algorithms. The acquisition model (1) of image
s(x) supposes the multiplicative illumination model b(x),

s(x) = [(ρ(x) + ntiss(x))b(x)] ∗ h(x) + n(x) ≈ o(x)b(x) + n(x) (1)

where n(x) is external noise, ntiss(x) represents the useful texture around the local
mean ρ(x) corresponding to a particular type of tissue and h(x) is the impulse
response of the imaging system. In the right hand side simplification, o(x) is the
ideal image. Obviously, when the disturbances other than uneven illumination may
be neglected (which is the case), the image can be estimated as

ô(x) =
s(x)

b̂(x|Φ)
− n(x)

b̂(x|Φ)
≈ s(x)

b̂(x|Φ)
(2)

where Φ is the to be determined vector of parameters controlling the illumination
bias model. This model is based on extension of the Likar’s et al. approach [49], ap-
plying the modified algorithm for retrospective shading correction to retinal images.
The optimisation aiming at determining the optimum Φ is then based on a quality
criterion of illumination compensation based on Shannon’s entropy and on Parzen
windowing probability estimation. The idea is that the illumination represents ad-
ditional information added to the information of the original signal o(x) and as the
illumination bias is to be removed, the information content of the corrected image
should be lower than that of the distorted image s(x). Therefore, the Shannon’s
entropy H(.) of the resulting image ô(x),

H = −
∑

k

P (k) log (P (k)) , (3)

where P (k) is the probability of intensity k appearing at any x of the area Ω of
the ô(x), should be minimized. Although k is a discrete variable, it may be well
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approximated by a continuous variable κ with a probability density p(κ). Then, in
order to analytically derive the derivatives of the criterion, we may assume that the
amount of information can be described by the integral version of (3),

H = −
∫

κ

p(κ) log(p(κ)) dκ. (4)

However, the probability density p(κ) is not available explicitly and must be esti-
mated from the image data corrected by the bias estimate with the current param-
eters Φ, providing that the image has been generated by a homogeneous stochastic
field. For this purpose, the Parzen windows technique [53] has been used, in principle
using the information contained in the intensity histogram of the image. The prob-
ability density is thus estimated from intensity samples ô(x,Φ) of the transformed
image as

p(κ,Φ) =
1
Θ

∑
x∈Ω

β(3)

(
ô(x;Φ)

z
− κ

)
, (5)

where β(3) is 3rd order B-spline kernel of the model, z is the parameter analogue to
histogram bin size and Θ is a normalization coefficient assuring the integral of p(κ)
being equal to 1. For the derivatives of the criterion it is thus obtained

∂H(κ;Φ)
∂Φk

≈ −
∑

k

∂p(κ;Φ)
∂Φk

(log (p (κ;Φ)) + 1) . (6)

This approach allows, as a novelty, to derive analytical expressions for derivatives
of this criterion with respect to parameters of the used B-spline multiplicative illu-
mination model, which ease substantially the optimization calculations compared to
purely numerical evaluation of derivatives.

Fig. 1. From left: retinal image highly corrupted by non-homogeneous illumination,

image after multiplicative correction by recovered bias field, the obtained normalized bias

field controlled by 3×3 spline parameters, intensity profiles along the indicated row before

and after correction.

Among the tested optimizers, the gradient based optimizer with varying step has
shown to have the fastest and most precise convergence to the criterion optimum.
The designed algorithm proved to suppress approximately 70% of the artificially
introduced non-homogeneous illumination. Consequently, the method was qualita-
tively tested on a set of 336 real retinal images and evaluated subjectively as there
is no golden standard available; it proved the ability of eliminating the illumination
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inhomogeneity substantially in most cases, as visible e. g. in Figure 1. The appli-
cation field of this method, though naturally particularly suitable in preprocessing
of retinal images, may be wider in preparation of generic image data for fusion or
other higher level processing.

Another often met problem is a low signal to noise ratio (SNR) in measured data
that in case of repetitive data (e. g. multiple scans) can be in principle improved
by averaging that may be considered a primitive fusion. This kind of preprocessing
requires total coherence among repetitions, which cannot be guaranteed in retinal
imaging due to eye movements between individual images and, in case of scanning
imaging as with scanning laser tomography (SLT), even during individual scans, so
that the scan lines become mutually shifted. To prevent these inconsistencies, the
images must be flexibly registered taking into account the characteristic types of
distortions ahead of averaging; this particular problem has been treated in [41] and
[42]. As the method belongs to the more generic area of retinal image registration, it
will be treated in section 2.2. An example of averaging without and after registration,
aimed at SNR improvement for detection of autofluorescence (AF) areas, is shown in
Figure 2. The quality improvement thanks to the preliminary registration is obvious.
In a series of cases, the average gain in SNR for averages of available groups of nine
images was approximately 4 dB, which corresponds well to the theoretical value
4,77 dB.

Wide spectrum of preprocessing methods has been used to arrive at the referred
to results, however only those with a methodological novelty were treated here in
a degree of detail. However, it should be mentioned that the way of using the
standard methods, like convolutional or non-linear operators for parametric image
derivation or edge enhancement, Perona-Malik’s anisotropic diffusion [62] or median
filtering for edge preserving smoothing etc., has not been always straightforward; a
part of the research always aims also at choosing the suitable preprocessing for a
particular type of images and adjusting it correspondingly by finding proper details
or parameters, as reported in the publications on individual problems.

Fig. 2. Comparison of averaged AF retina image without preliminary registration and

after the described flexible registration. Notice the level of detail and namely the better

detectability of the autofluorescence areas
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2.2. Retinal image registration

The registration of retinal images, as a preparatory step for fusion required for di-
agnostic purposes [6, 14, 54], iteB6, has certain particularities specific to individual
applications that must be taken into account when designing the registration meth-
ods for particular purposes, as in [33, 37, 41, 42]. All the registration methods
[52, 72] have a common approach – searching for a geometric transform T (α) that
best describes the spatial relationship between the details in the reference image
and the corresponding details of the registered image. The concrete shape of the
transform is determined by its parameter vector α, the optimal value of which is
found by the optimisation

α0 = arg
{

min
α

C(R(x), F (Tα(x)))
}

, (7)

where R(x) is the reference image and F (Tα(x)) is the floating image to be registered
to R(x) by the spatial transform T (α). Registration quality, corresponding to the
transform Tα = T (α), is evaluated by a chosen similarity criterion C. T (α0) is then
the optimal registering transform with respect to the criterion. The choice of C, of
type of the transform T , of the interpolation method used to find values of Tα(F )
on the pixel (voxel) grid of R, and of the optimisation algorithm to determine the
optimal α0 is crucial for successful registration of a particular type of images.

The registration problems solved in the DAR frame were both monomodal and
multimodal. In a series of papers [6, 37, 38, 39, 57, 65], gradual development of
bimodal registration method of fundus camera images with the 2D projections of
SLT image data is described. As the similarity criterion C, the mutual information
MI(. . .) is in principle used, as described e. g. in [25],

MI(R, Tα(F )) = H(R) + H(Tα(F ))−H(R, Tα(F )) (8)

where H(. . .) are marginal entropies of individual images, Tα(F )) is a short for
F (Tα(x)) and H(R, Tα(F )) denotes the joint entropy; all entropies are derived from
the joint histogram. However, this common criterion turned out having too expressed
side extremes, often even false global extremes. Therefore, modified criterion has
been suggested,

C(R, Tα(F )) = MI(R, Tα(F )) ·GI(R, Tα(F )) (9)

where GI(. . .) is mutual information among the respective gradient images,

GI(R, Tα(F )) = H(|∇R|) + H(|∇Tα(F )|)−H(|∇R|, |∇Tα(F )|).

The criterion (9) proved very efficient for the given types of images.
The choice for type of T in this case was the affine transform that proved to allow

sufficiently precise registration, as statistically confirmed by extensive testing and
represented in an example in Figure 3. This result together with a high reliability of
a proper registration was also conditioned by a suitable choice of the interpolation
method and of optimisation algorithm correspondingly treating the complexity of the
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shape of the similarity criterion function. Among the tested optimisation algorithms,
two proved efficient – simulated annealing and controlled random search (CRS); the
latter was then found the most reliable under different circumstances. Therefore,
the CRS algorithm [68] has been used for optimisation in most of the registration
work described in this paper; only for final tuning of the transform parameter, i. e.
in the close neighbourhood of the optimum, more efficient Nealder–Mead method
could be used relying on local quadratic approximation of the criterion function.

Fig. 3. Example of to be registered retina images: left – colour fundus camera image,

middle – SLT 2D projection, right – result of the described registration method (edges of

fundus camera image overlaid on the SLT image).

In order to achieve high registration reliability, a multiresolution (pyramidal)
approach was used. The first pyramid layer is used for finding the optimal scale and
translational parameters using four-times subsampled images, while rough detection
of the optic disc position helps to initiate the search algorithm. Second pyramid
layer using results of the previous step determines the parameters of the used affine
transform still in four-times subsampled images; the used optimization approach was
the Controlled Random Search (CRS) algorithm [67]. In the third pyramid layer,
the parameters are refined by Nealder–Mead method utilising full resolution image
data. With this approach a high success rate was achieved – 96,5% of quality images
properly registered according to the statistical tests on clinical material.

Already mentioned preregistration of AF retinal images before averaging [34, 42]
used in principle the same approach based on eq. (7); however with some differences
crucial for successful registration of the SLT sequences [41]. The retinal images,
strongly corrupted by noise, non-homogeneous illumination and motion artefacts,
were acquired using a confocal scanning laser ophthalmoscope (Heildelberg Retina
Angiograph) in Fluorescein Angiography (FA) mode; a nine-image sequence was
taken for each patient to enable averaging. Although the registration problem is
monomodal, the variances in imaging conditions (namely illumination and its un-
evenness) preclude using standard monomodal similarity criteria like sum of absolute
or squared differences, or correlation based criteria. The only useful choice proved
to be the mutual information as the similarity metrics, however modified by two
regularization terms:

C(F, Tα(M)) = MI(F, Tα(M)) + wcompEcomp + wsmoothEsmooth, (10)
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where Ecomp is a term penalizing local compression or expansion of the image,
derived by summing determinant measures of local Jacobian of the transform T (. . .)
and Esmooth is a constraint term promoting smoothness, i. e. penalizing increase in
noise, based on integral of squared second derivative terms over the image support;
w are the respective weights to be determined experimentally.

The transformation compensating distortions due to eye movements during the
acquisition of HRA image sequence can be, in our model of geometric distortion,
separated into global and local motion components as follows:

T (. . .) = Tglobal(. . .) + Tlocal(. . .), (11)

where the first component reflects the global eye motion between subsequent scans
while the second one the movement of the patient’s eye within a single HRA scan (a
part of the scan is shifted with respect to other part(s)). The global part has been
sufficiently modelled by linear affine transform g(. . .) with 6 degrees of freedom,

gglobal(x1, x2, x3) =

 x′1
x′2
w

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
 x1

x2

1

 ,

(a31 = a32 = 0, a33 = 1), while the detailed local deformations are then modelled by
free-form deformation (FFD) based on B-splines,

Tlocal(X) = x +
∑

k

Φkβ(n)
(x

h
− k
)

,

where h is knot spacing, n is B-spline order and k = [k] is index vector of a control
point; Φ denotes the of control points separated by h. The number of parameters to
be determined in the final phase of registration depends on the grid density and may
reach up to 1922. Correspondingly, the registration process is formulated in pyrami-
dal way with gradually increasing resolution: starting with low 128× 128 resolution,
the rough translation is found, as the initiation for optimisation of affine transform
by CRS algorithm. Next, in the close vicinity of the optimum, the global transform
parameters are refined by Powell’s method. In these steps, no regularisation of the
C criterion was needed (wcom = wsmooth = 0). In the second phase, the FFD regis-
tration is performed with 256× 256 resolution, with the density of controlling points
gradually increasing from 11× 11 to 31× 31, which provides highly flexible possibil-
ities of coping with complex distortion due to fast eye movement. An intermediate
result of the grid deformation is shown in Figure 4.

The corresponding example of the resulting fused (averaged) image without and
with the registration is in Figure 2, clearly demonstrating the necessity of precise
registration.

Quite different approach to registration [29] has been recently – for the sake of
simplicity and speed – applied to another ophthalmological application, requiring
to register monomodal images. It combines essentially two approaches: phase cor-
relation for preliminary registration by the rigid transform (determining both shift
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Fig. 4. Example of the controlling grid on a to be registered image before and after the

flexible registration transform specific for the particular image.

and rotation), and the landmark correspondence based approach that provides suf-
ficient number of linear equations to determine parameters of the refining quadratic
transform.

A similar problem to registration is the disparity analysis in a couple of fundus
camera images provided with different aspects that serve for stereo based reconstruc-
tion of the surface of the OD area [31].

2.3. Segmentation in retinal images

Automatic segmentation of medically important areas and objects in retinal images
is of prime importance for support of diagnosis of many serious diseases, particu-
larly, when screening methods are considered. Therefore much effort is generally
devoted to this area. On the other hand, the reliability of the segmentation, as the
shape, size, position and orientation etc. of the segmented objects concerns, is often
vital for the diagnosis and very high reliability is thus required, mostly not achiev-
able so far with contemporary fully automatic methods, although the symptomatic
features on the retinal appearance or image may be well recognised by experienced
ophthalmologist. That is why some of the approaches are still only semi-automatic
leaving the difficult decisions, concerning either the medical conclusions based on
the segmentation or the often vital initialisation of otherwise automatic algorithms,
on a medical expert. Definitely, the final results of even fully automatic procedures
must be always medically approved. Several directions of segmentation have been
treated in our group: the “classical” problem of optical disc (terminal of the optic
nerve bundle) segmentation, segmentation of the vessel tree in the fundus camera
images, alternative approach of segmenting the vessels from optical coherence to-
mography (OCT) data, and particular disease indicating regions, as autofluorescent
(AF) areas.

2.3.1. Optical disc segmentation

Segmenting the optical disc (OD) is a principal task in retinal image analysis and
some related work has been published previously [7, 14, 65]; the subject of our
reported research were the algorithms improving the segmentation by a kind of fusion
of fundus camera images and LST data. Papers [6, 57], published in cooperation
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with the Erlangen group summarize the achieved level before the DAR centre started.
These methods utilised bimodal imaging – fundus camera and LST images in which
the segmentation was done individually after registration of both images. This
OD segmentation method by Chrastek was based on a specialised type of flexible
contours, controlled by so called anchors respecting the prior anatomical knowledge;
the contours were initiated by applying Hough transform on edge representation of
each of the fused images. The fusion was then done at the level of results of individual
OD segmentations with obvious improvement in reliability and precision compared to
segmentation from only single modality. Newer contribution [37] tries to improve the
segmentation further by first fusing both images registered by procedures described
in section 2.1.2 while the segmentation is performed subsequently in the derived
scalar image. The conversion of the fused vector-valued image to the corresponding
scalar-valued one is made as in [64] using a formal 2D dyadic wavelet transform
applied to both images. The obtained discrete wavelet spectra are coefficient-wise
combined based on strictly formal rules thus providing the fused spectrum, which
is then converted back to the original domain, yielding a scalar-valued image. The
resulting image is expected to carry the decisive information, which should enable
well defined and hopefully better segmentation.

Fig. 5. (from left) – SLT image with superimposed edges from fundus camera image,

fused colour fundus camera image (each colour band is fused with SLT image), scalar

fused image (three bands of fundus camera image and SLT image are fused into a scalar

image) with segmented inner and outer optic nerve head contours.

An example of using this approach is in Figure 5, showing the registered images,
colour representation of partially (by colour bands) fused fundus image with the
SLT image and finally the fused scalar image with the segmented inner and outer
contours of the optical disc. The segmentation has been done by the modified
Chrastek’s method [6].

2.3.2. Vessel tree segmentation

A classical problem is segmentation of vessel tree on retinal images, needed primar-
ily for diagnosing diseases that are manifested by characteristic changes, namely
diabetes, and newly also for personal identification.

This area has been covered by many publications, as e. g. [5, 9, 15, 28, 44, 58,
59, 70]; our results [26, 60] are bringing a novel approach based on 2D matched
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filtering. The analysed material is formed by high resolution fundus camera images of
3504× 2336 pixels, enabling to follow intensity profiles of even thin vessels. Although
the input to the procedure is a single image, the method utilises fusion concept
when nonlinearly combining derived parametric images. This approach is based
on multiple use of 2D directional matched filtering locally evaluating occurrence of
vessel segments of a particular width and orientation. The filter masks have been
derived based on measured and averaged brightness profiles of vessel segments of
five different width classes, from narrow to wide. The masks for the 2D matched
filtering were then designed by plain parallel back-projection of the averaged profiles
pi(τ) over the 2D masks Mi(x, y),

Mi,j(x, y) = pi(τ(x, y, ϕj)) = pi(x cos ϕj + y sinϕj)

in 12 directions, thus providing the corresponding mask matrices Mi,j , i ∈ 〈0, 4〉 ,
j ∈ 〈0, 11〉.

Every averaged profile generates 12 differently oriented masks – i. e. discrete point
spread functions (PSFs) of the filters (Figure 6).

Fig. 6. Examples of masks of the matched filters for narrow (top ) to wide (bottom).

By convolving I(x, y) with each of the masks Mi,j(x, y), in matrix notation

Pi,j = Mi,j ∗ I, (12)

60 parametric images Pi,j are obtained that individually quantify the local presence
of the respective vessel section for each pixel in the input image I.

Results of the filtering – the respective 2D parametric images – are then processed
and combined first into the rough description of the vessel structure including the
width and orientation information, as follows. Twelve parametric images Pi,j for a
particular width range i are then pixel-wise fused into the intensity image Ri

Ri(k, l) = max
j

Pi,j(k, l), ∀k, l,

discarding the orientation information. This way, five fused parametric images Ri

for individual vessel width ranges i are obtained. Each of the images Ri is then
individually thresholded using an adaptive threshold determined by maximization
of local entropy. This way, five binary images indicating primarily the locations of
vessels of ith width range, are provided. Finally, the rough binary vessel image S is
fused as

S(k, l) =
⋃
i

Ri(k, l). (13)
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Individual vessel pixels in S may be additionally labelled according to the maximum-
response width range,

W(k, l) = arg max
i

Ri,j(k, l),

by which the rough vessel map W is provided carrying the width information. An
example is shown in Figure 7 (left – colour code from red through to blue for i =
0,. . ., 4); in the detail the wider segment traces are composed typically of central
line indicating the segment width surrounded by responses to vessel walls as narrow
structures but the total width of the vessel is well represented by the resulting trace.

Fig. 7. (from left) Rough width map W of the vessel tree, a detail showing the local

width representation, corresponding directional map.

The directional map D (Figure 7 right) indicating the local vessel orientation can
be derived as

D(k, l) = arg max
j

(∀iPi,j(k, l)) .

The width and orientation maps W and D can be used for a consistence check of
the resulting vessel tree and for the following connectivity improvement of the rough
binary vessel tree S. This is done by a set of heuristics improving connectivity
in S by complementing the obviously missing short sections of continuous vessels
and cleaning disconnected elements appearing due to noise, thus providing the final
binary vessel tree image (Figure 8).

Fig. 8. Resulting vessel tree map.



Fusion based analysis of ophtalmologic image data 467

The efficiency of the segmentation method has been primarily evaluated using the
international database DRIVE of retinal images segmented manually by medical ex-
perts. In this test, our method, though working satisfactorily for thick and medium
vessels, omits some of the thinnest ones due to low resolution of the database im-
ages as the 2D matched filtering cannot detect the vessels of single-pixel or sub-pixel
width that nevertheless can often be detected visually by an expert. However, with
the higher resolution clinical images, the automatically derived results are well com-
parable with what can be discovered visually, including the narrowest vessels; by
comparison with published results (though on different images) it may be concluded
that no better automatic segmentation approach is available. The designed method
thus represents one of important results.

Different vessel tree segmentation or rather reconstruction approach [16] aims at
localizing individual OCT scan-lines (B-scans, Figure 9) in the corresponding fundus
camera image. It utilises fusion of individual B-scans of the 2D OCT scan structure
provided be scanning the retina along parallel lines thus providing coverage of a
rectangular image area. In the B-scans, the vessels cause vertical shadows that
can be utilised for detection of the vessel positions and widths on the scan line.
However, the individual scans are mostly deformed and have to be geometrically
rectified before the position of the vessels can be determined. To this end, the lowest
layer of the B-scan profiles, retinal pigment epithelium (RPE) must be identified via
a gradient technique and segmented as a curve to be straitened in the individual
scans; consecutively, the image is rectified by a polynomial transform. Finally, the
individual vessel positions are located along the parallel lines of the 2D image, as in
Figure 10. Registering the reconstructed OCT vessel image with the retinal image
is the way to localisation of the OCT scan lines in the fundus camera image, which
enables comparison of rough retinal neural layer detection on fundus camera image
with the objective measurement provided by OCT.

Fig. 9. Single B-scan (cross-sectional depth map) of a retina along a line.

2.3.3. Autofluorescence areas segmentation

A rather special type of retinal image examination concerns the autofluorescent (AF)
zones formed by lipofuscin granules in the retinal pigment epithelium in the parapap-
illary region near to the optical disc, which have been found diagnostically important
particularly for open angle glaucoma and ocular hypertension [4, 11, 43, 47, 50, 69].
They can be imaged and AF level and distribution thus estimated by the SLT equip-
ment working in a special mode, using a low-pass filter for detection of emitted light
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Fig. 10. Fused blood-vessel image based on OCT scans (left), the corresponding fundus

camera image.

above λ =500 nm, after the autofluorescence was excited by illumination with blue
argon laser (λ =488 nm). The image analysis required so far manual outlining of the
AF areas; this is not only time-consuming but the results of manual segmentation
suffer generally with a high inter-observer variability. The aim of the AF project de-
scribed in [30, 35], and [36] was therefore to develop a semi-automatic segmentation
method that would both save the medical expert effort and also limit the variance.

The analysis of the SLT AF images starts with localisation and segmentation
of OD, in the neighbourhood of which the AF areas with a higher accumulation
of lipofuscin may appear as small brighter isles; however, their contrast may be
rather low. In order to simplify the algorithm and to increase the reliability of the
segmentation, the seeds of the AF areas are pointed to by the medical expert; the
rest of the segmentation is automatic. The procedure is based on region growing
method starting from the seeds, the localisation of which is automatically refined
by inspecting 5× 5 neighbourhood of the original seed and choosing the highest
intensity pixel, in order to diminish the precision requirements to the user. The
region growing is dynamically controlled by the varying mean mR of the growing
area: a candidate pixel pc is only added to the area R when

abs(mR − pc) < T,

where T is a chosen threshold to be found experimentally. The final results are
naturally sensitive to this parameter that may influence not only the important size
but also merging of neighbouring areas whose number is diagnostically important as
well. As an additional operation, the obtained AF areas are automatically evaluated
for their position with respect to OD, their shape and size.

Statistical evaluation of the reliability and consistence of the method has been
performed on a relatively large clinical image set of 20 glaucomatous patients. In the
lack of standard segmentation methodology for AF areas, automatically determined
AF areas in several AF zones were compared with the expert manual segmentation.
Large differences among manually segmented areas could have been observed, while
generally a reasonable agreement of the described method with averaged expert
results was found. Images presented in Figure 11 show the results of both the auto-
matic and manual segmentations (by three different experienced ophthalmologists).
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Fig. 11. (From left): Example result of semiautomatic segmentation, and three

independent results of manual segmentations by three experienced ophthalmologists.

A high inter-operator variability is visible; in this frame the automatic results are
generally well comparable. The analysis demonstrates utility of the semiautomatic
segmentation method that suppresses the variability.

2.4. Feature extraction and classification of NFL

Retinal neural fibre layer (NFL) status is an important indicator of some serious
diseases, particularly of glaucoma, which is a relatively frequent cause of sight dam-
age or loss [1, 3, 8, 12, 19, 27, 51]. This is caused by deterioration of retinal neural
fibre layer (NFL) that provides connection between the light sensing elements of eye
and the sight nerve bundle leaving the retina at the optical disc. The degree of NFL
damage is an indicator of the disease progression, which can be hindered or even
stopped if discovered early; that is why automatic screening methods for generic use
(easy and cheap) are required by the ophthalmologic community. Ophthalmologists
can assess the NFL status visually, evaluating standard fundus camera retinal images
(Figure 3 left), where NFL shows up as a very faint stripy structure, usually lighter
than regions with defective or lacking NFL. Local brightness is the main feature
used in visual evaluation; however this is unreliable due to spatially varying illumi-
nation of retina; the evaluation thus requires great experience and the subjective
results suffer with a large interpersonal variance. The OCT, which measures local
thickness of NFL structure quantitatively, is presently considered the best among
the automatic NFL evaluating methods; however, it is still rather expensive and de-
manding to be used for screening. To this purpose, fundus camera thus remains the
most commonly available data source with a good potential for basic NFL screen-
ing, if suitable objective analytic methods are provided, although practically only
rough classification into healthy and missing NFL is possible. Even though several
attempts from different aspects have been previously published [18, 44, 45, 55, 58],
the problem is still open and topical.

Our approach to detecting healthy / missing NFL areas in retina images (see the
detail in Figure 12) is based on evaluating and classifying a number of differently
defined local features in fundus camera images potentially characterising the NFL.
As these textural characteristics are individually barely visible and their evaluation
is therefore of low reliability, multiple features forming a feature vector have to be
submitted to classification algorithms, enabling then to achieve a reasonably reliable
NFL detection. As the texture analysis would be heavily disturbed by the structure
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of retinal vessels, this must be detected and segmented out before the NFL analysis;
a highly reliable segmentation of the vessel structure (section 2.1.3) is thus a crucially
important step in the FNL analysis.

Fig. 12. From left: Detail of retina image showing the stripy appearance of NFL area in

its upper left half and the corresponding modified edge map after cleaning.

2.5. Texture analysis of NFL

In [26] and [20], a complex method to detect the presence of NFL is described, us-
ing three textural approaches that proved relevant, each providing a vector-valued
feature image quantifying the NFL presence according to particular criteria. Sub-
sequently, four chosen local features derived from these partial results form a local
feature vector submitted to a learning classifier, which provides the local NFL assess-
ment. The evaluation is provided for node pixels of a square grid 4×4 over the image
U with xk being the position of kth node point. The local square-shaped N × N
blocks kX used for determining the node textural parameters are centred around xk;
N is generally different for each of the used analytic approaches, described below.

Directional spectral analysis – the most relevant approach – aims at detecting
the faint stripy appearance of the neural layer (as in Figure 12 left) due to locally
parallel fibre orientation, which may be detectable in local spectra of small NFL
areas (N =128), into which the analysed image is subdivided. The spectral analysis
is performed for every local block kX by 2D-DFT transform after weighting with 2D
Tukey circular window ensuring that the operator is isotropic. Each of the obtained
local amplitude spectra (Figure 13) is subdivided into overlapping angular sectors
sl, and the sector spectral energies P are calculated as

l
kP =

∑
u

∑
v

∣∣l
kFu,v

∣∣2 , u, v ∈ sl, l = 1, 2, . . . , 22,

where u, v, are spatial frequency indices and F are the spectral coefficients. Two
features may be derived from these directional spectral energies: the local NFL
intensity assessed by the degree of non-isotropy characterised by the difference in
extreme directional energies,

F1(xk) = max
l

(
l
kP
)
−min

l

(
l
kP
)
,

and the local NFL orientation given by the index of the maximum energy sector,

F2(xk) = arg max
l

(
l
kP
)
,
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which, however, would contribute to the efficiency of the classification only when
the local orientation could be compared to a standard directional map, which is not
yet available.

Fig. 13. Local amplitude spectra of areas with NFL detected (left) and missing (right).

Edge based approach derives the features from the binary edge map Iedge obtained
by convolution of the retinal image with Laplacian of Gaussian operator (N=13)
followed by non-linear zero-crossing detection. Two features are then derived from
the map after cleaning small objects (Figure 12 right):

the percentage of edge pixels in the block (N=129),

F3(xk) =
∑

i

∑
j

Iedge(i, j)/N2,

and the mean of lengths of the edge segments ledge,

F4(xk) =
1

2M

M∑
m=1

ledge(m).

Although edges are detected with low reliability due to faintness, they proved to
provide useful information this way. A feature, describing the prevailing local di-
rection of the FNL edges, has not been derived as its utility is low due to lack of a
standard directional map.

Brightness based feature has been introduced as mimicking the approach primarily
utilised by medical experts for NFL classification, although it is obvious that it might
be only an auxiliary criterion due to uneven illumination in retinal images. It utilises
the fact that areas with missing neurons are on average slightly darker than healthy
areas; a simple feature comparing the locally smoothed brightness at the node xk

with the average brightness of the total region of interest (ROI) is

F5(xk) =
∑ ∑

i,j∈ROI

I ′i,j −
∑ ∑

i,j∈kX

I ′i,j .

As the NFL detection is computationally rather demanding, a smaller region of
interest (ROI) is automatically determined in a retinal image, encompassing the
diagnostically important area around optical disc extended towards macula, as in
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Figure 14; this naturally requires preceding optical disc segmentation (section 2.1.3).
The local NFL status is classified in the ROI based on the local feature vector

F(xk) = [F1(xk), F3(xk), F4(xk), F5(xk)]. (14)

The features were selected based on experimental verification of their relevance with
respect to separability of both classes considering the means and variances. Further
on, the relevance of individual features was confirmed by comparing the classification
results with each of the features individually omitted from the vector; in all cases,
the success rate increased when a feature was added.

Another our textural approach to NFL detection is [61], where the texture is
modelled by Gaussian Markov random fields (GMRF), the parameters of which
serve then as classification features to recognize healthy and diseased NFL in retinal
fundus images. The modelling, based on Markov random field modelling theory
[46], is describing probability of spatial interactions in a textural image and has
been used in many image processing applications, e. g. [63]. In our application, the
GMRF is modelling the image texture y(x), which is considered a set of zero mean
observations y(x), x ∈ Ω for an M × M image lattice Ω. The GMRF model is a 2D
stationary non-causal autoregressive process where the individual observations are
generated by the difference equation

y(x) =
∑

r∈Nr

φ(r)y(x + r) + e(x); (15)

here Nr is a chosen neighbourhood set centred at pixel x, φ(r) is the model parame-
ter belonging to the neighbour located at radius r, and e(x) is a stationary Gaussian
noise process with zero mean and a known variance σ2. Fifth-order circularly sym-
metric neighbourhood has been shaped on rectangular lattice as where the numbers

indicate the indices of the five different parameters φ(r). The GMRF model thus
has 6 parameters – textural features: 5 weight parameters describing the influence
of the neighbours to the central pixel plus the noise variance σ2. These 6 features



Fusion based analysis of ophtalmologic image data 473

can be estimated in the least square error sense via the following equations:

φ(r) =

[∑
Ω

q(x)qT (x)

]−1(∑
Ω

q(x)y(x)

)
,

σ2 =
1

M2

∑
Ω

(y(x)− φT q(x))2,

where

q(x) = col

[∑
r∈Ni

y(x + r); i = 1, . . . , 5

]
.

The features then form the local vector to be used in the NFL classification,

Φ̄(x) =
[
φ1(x), φ2(x), φ3(x), φ4(x), φ5(x), σ2(x)

]
. (16)

Although this approach provided well acceptable results, more elaborate models
(e. g. with expressed anisotropy) are considered as candidates for future research.
This might better reflect the existing anisotropy of the NFL.

Presently, still other textural features are under investigation in partial projects,
e. g. based on run-length or co-occurrence matrices. Another such attempt is in [32],
using fractal model of the NFL texture; the fractal dimensions are used as relevant
features. Generally, the tendency is to provide a higher number of possibly only
weakly relevant features that however may lead to increasing the efficiency of the
NFL classification from fundus camera images.

2.5.1. NFL classification

Of the different types of classifiers tested in frame of the retinal project, several have
shown a sufficient and essentially comparable efficiency – feed-forward layered neu-
ronal networks (NN) (e. g. in [20]), vector support machines (in [32]) and Bayesian
classifiers (in [61]). Of them, particularly two ones are mentioned here in a degree of
detail concerning also the classified material. In [20], a simple feed-forward layered
neural network with error back-propagation learning provided the best results. Its
learning was based on a selection of blocks from the available image material, while
the testing utilised a disjunctive similarly chosen block set. The available material
concerned ten patients; out of them, seven patients suffered with a degree of NFL
deterioration, while the remaining three were healthy. Altogether 564 blocks sized
129× 129 pixels were obtained from the above defined ROIs, out of which 164 were
indicated by medical experts as lacking the FNL, while the remaining 400 blocks
were considered healthy. In the lack of any golden standard, testing of the classifi-
cation based on feature vectors (14) was only possible in comparison with the visual
evaluation of images by experienced medical experts.

The achieved success rate of the classification in the test set was 93,36%̇ that can
be considered a very good result when considering the high interpersonal variance of
the medical decisions in this area. The results may be presented as segmentation of
areas with presence or absence of the NFL at the node pixels of the above mentioned
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grid in the ROI, i. e. as an overlay on the retinal image with greenish areas for healthy
and reddish for the areas lacking NFL, as in Figure 14, where also medical-expert
NFL diagnoses are indicated (though a little uncertain ones). There is quite a good
agreement generally between the automatic and manual classification; in some cases,
when the NFL is very faint, the automatic detection seems to recognise the NFL
even when it is not detected visually.

Fig. 14. Examples of automatic NFL detection in fundus camera images (ROI

represented by violet frames, greenish/red overlay – healthy/ lacking NFL) compared to

areas estimated by medical experts (white dotted boarders).

As the first step towards objective evaluation of the fundus camera image classifi-
cation based on feature vectors (14), a comparison has been made of its results with
the objective measurements of the NFL thickness by the OCT method. In total 92
image areas medically evaluated areas (42 lacking NFL, 50 healthy) were mutually
registered in both modalities. These tests have shown obvious correlation between
the medical decision, the used features and objectively measured thickness of the
NFL. An example showing the OCT B-scan and the corresponding evaluated fundus
camera image with indicated line of the scan is shown in Figure 15.

In [61], a Bayesian classifier, expecting Gaussian probability distribution of indi-
vidual classes in the feature space, determining the class by maximizing the proba-
bility of individual classes conditioned by a particular feature vector F ,

k = arg max
k

P (ωk|F), P (ωk|F) =
p(F|ωk)P (ωk)

p(F)
, (17)

has been used for classification of the experimental image material. The probability
distribution of a class p(F|ωk) as well as the prior class probability P (ωk) is deter-
mined during training the classifier using the training data set, while p(F) is just a
scaling factor. The extensive experiments based on the feature vector (16) proved
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Fig. 15. Comparison of NFL detection in a fundus camera image (left) and OCT scan

along the indicated trace (NFL is green marked).

the discrimination ability of the proposed GMRF features. The iterative maximum-
likelihood estimate [13] with optimization technique based on modified expectation
maximization algorithm has been used. The GMRF method has been tested on
image regions 97× 97 pixels, manually selected from the available 28 retinal images
and classified by a medical-expert. The regions (examples in Figure 16) are divided
into three classes: A – regions from glaucomatous eyes still with NFL (intermediate
cases), B – regions from glaucomatous eyes with total NFL loss, C – regions from
healthy eyes with normal NFL (most pronounced stripy texture).

Fig. 16. Examples of selected image regions

(from left to right: class A, class B, class C).

When binary decisions were concerned, naturally best separation was achieved
between classes B and C with the lowest error rate under 1 %; less pronounced
separability has been found with about 3% error rate for A-B combinations. When
all three classes are to be resolved, as in Figure 17, the error rate increases to 9.9 %,
while the worst error rate of 11.7 % corresponds to binary case in the least differing
groups A and C.

The GMRF results have been also preliminarily compared to OCT measurements
with similar positive conclusion as for the previous method. These good results
suggest that the GMRF features (16) might complement those included in the vector
(14), this way expectedly enhancing the segmentation quality of the NFL areas.
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Fig. 17. Example of GMRF based classification of NFL ( three classes: green – healthy

layer, red – lacking NFL, yellow – intermediate class).

3. DISCUSSION AND CONCLUSIONS

As already mentioned, the overview character of the paper encompassing different
though connected topics precludes discussing the individual results and conclusions
in too concrete detail here; the individual brief discussions were included at respec-
tive places in Chapter 2. However, it can be generally stated that the long-term
continuous research in the area of ophthalmologic image analysis provides consistent
and methodologically novel results that, besides being interesting for the image pro-
cessing community, are particularly welcome by the cooperating medical colleagues,
who implement them partly in their routine or research procedures. Another point is
the positive influence of the research centre DAR on the team forming, concentration
of people interests to a particular area, and, last but not least, also to the educa-
tion of young scientists in frame of their doctoral study, when they have this rather
exceptional opportunity to participate on such a team effort. It can be concluded,
that, together with the presented results, these very positive side effects definitely
justify establishing and maintaining the Centre, without which a greater part of the
results as well as of the good generic influence would not be accomplished.
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[22] J. Jan, R. Kolář et al.: Analysis of fused ophthalmologic image data. In: Proc.
6th EURASIP conf. Speech & Image Processing, Multimedia Communications &
Services, Maribor 2007, pp. 37–40.

[23] J. Jan: Retinal image analysis – Brno group). In: SAOT Retina Image Processing
Workshop 2009, Erlangen Univ.

[24] J. Jan: Retinal image analysis aimed at blood vessel structure segmentation and
neural layer detection. In: Proc. BEC 2008, Tallin 2008, pp. 31–38

[25] J. Jan: Medical Image Processing, Reconstruction and Restoration – Concepts and
Methods. CRC Press, Taylor and Francis Group 2006.
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Jiř́ı Gazárek, Department of Biomedical Engineering, FEEC, Brno University of Technol-
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