Kybernetika 47 no. 3, 426-438, 2011

Fast and accurate methods of independent component analysis: A Survey

Petr Tichavský and Zbyněk Koldovský


This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG).


probability distribution, Blind source separation, score function, autoregressive random processes, audio signal processing, electroencephalogram, artifact rejection


94A12, 92-02, 92-04, 92-08


  1. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso and E. Moulines: A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing 45 (1997), 434-444.   CrossRef
  2. R. Boscolo, H. Pan and V. P. Roychowdhury: Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15 (2004), 55-65.   CrossRef
  3. J.-F. Cardoso: Blind signal separation: statistical principles. Proc. IEEE 90 (1998), 2009-2026.   CrossRef
  4. J. Chambers, W. Cleveland, B. Kleiner and P. Tukey: Graphical Methods for Data Analysis. Wadsworth, 1983.   CrossRef
  5. S. Cruces, A. Cichocki and L. De Lathauwer: Thin QR and SVD factorizations for simultaneous blind signal extraction. In: Proc. European Signal Processing Conference (EUSIPCO), Vienna 2004, pp. 217-220.   CrossRef
  6. S. Dégerine and A. Za\"{\i}di: Separation of an instantaneous mixture of Gaussian autoregressive sources by the exact maximum likelihood approach. IEEE Trans. Signal Processing 52 (2004), 1492-1512.   CrossRef
  7. A. Delorme, T. Sejnowski and S. Makeig: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34 (2007) 1443-1449.   CrossRef
  8. A. Hyvärinen and E. Oja: A fast fixed-point algorithm for independent component analysis. Neural Computation 9 (1997), 1483-1492.   CrossRef
  9. A. Hyvärinen, J. Karhunen and E. Oja: Independent Component Analysis. John Wiley \   CrossRef
  10. C. J. James and C. W. Hesse: Independent component analysis for biomedical signals. Physiol. Meas. 26 (2005), R15-R39.   CrossRef
  11. Z. Koldovský, P. Tichavský and E. Oja: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér-Rao lower bound. IEEE Trans. Neural Networks 17 (2006), 1265-1277.   CrossRef
  12. Z. Koldovský, J. Málek, P. Tichavský, Y. Deville and S. Hosseini: Blind separation of piecewise stationary nonGaussian Sources. Signal Process. 89 (2009), 2570-2584.   CrossRef
  13. Z. Koldovský and P. Tichavský: A comparison of independent component and independent subspace analysis algorithms. In: Proc. European Signal Processing Conference (EUSIPCO), Glasgow 2009, pp. 1447-1451.   CrossRef
  14. Z. Koldovský and P. Tichavský: Time-domain blind separation of audio sources based on a complete ICA decomposition of an observation space. IEEE Trans. Audio, Speech and Language Processing 19 (2011), 406-416.   CrossRef
  15. E. G. Learned-Miller and J. W. Fisher III: ICA using spacings estimates of entropy. J. Machine Learning Research 4 (2004), 1271-1295.   CrossRef
  16. Te-Won Lee: Independent Component Analysis, Theory and Applications. Kluwer Academic Publishers, 1998.   CrossRef
  17. D.-T. Pham: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl. 22 (2001), 1136-1152.   CrossRef
  18. D.-T. Pham: Blind separation of instantaneous mixture of sources via the Gaussian mutual information criterion. Signal Process. 81 (2001), 855-870.   CrossRef
  19. D.-T. Pham and J.-F. Cardoso: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Signal Process. 49 (2001), 1837-1848.   CrossRef
  20. P. Tichavský, Z. Koldovský and E. Oja: Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis. IEEE Trans. Signal Process. 54 (2006), 1189-1203.   CrossRef
  21. P. Tichavský, Z. Koldovský and E. Oja: Corrections to ``Performance analysis of the FastICA algorithm and Cramér-Rao Bounds for linear independent component analysis, TSP 04/06". IEEE Tran. Signal Process. 56 (2008), 1715-1716.   CrossRef
  22. P. Tichavský, Z. Koldovský and E. Oja: Speed and accuracy enhancement of linear ICA techniques using rational nonlinear functions. Lecture Notes in Comput. Sci. {\mi 4666} (2007), 285-292.   CrossRef
  23. P. Tichavský, Z. Koldovský, A. Yeredor, G. Gomez-Herrero and E. Doron: A hybrid technique for blind non-Gaussian and time-correlated sources using a multicomponent approach. IEEE Trans. Neural Networks 19 (2008), 421-430.   CrossRef
  24. P. Tichavský and A. Yeredor: Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans. Signal Process. 57 (2009), 878-891.   CrossRef