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PARTICLE FILTER WITH ADAPTIVE SAMPLE SIZE

Ondřej Straka and Miroslav Šimandl

The paper deals with the particle filter in state estimation of a discrete-time nonlinear
non-Gaussian system. The goal of the paper is to design a sample size adaptation technique
to guarantee a quality of a filtering estimate produced by the particle filter which is an
approximation of the true filtering estimate. The quality is given by a difference between
the approximate filtering estimate and the true filtering estimate. The estimate may be a
point estimate or a probability density function estimate. The proposed technique adapts
the sample size to keep the difference within pre-specified bounds with a pre-specified
probability. The particle filter with the proposed sample size adaptation technique is
illustrated in a numerical example.
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1. INTRODUCTION

Recursive state estimation of discrete-time nonlinear stochastic dynamic systems
from noisy measurement data is an essential element in many applications involving
control and cognition of complex stochastic systems. Over the last four decades
it has been a subject of a considerable research interest. General solution to the
state estimation problem is described by the Bayesian recursive relations (BRR’s).
The closed form solution to the BRR’s is available for a few special cases only and
therefore, usually an approximative solution has to be applied.

Since the nineties, the particle filter (PF) has dominated in the recursive nonlinear
state estimation due to its easy implementation in very general settings and cheap
and formidable computational power. The PF solves the BRR’s using Monte Carlo
(MC) methods, particularly using the importance sampling method, and approxi-
mates the continuous state space by a swarm of samples (particles) with associated
relative weights.

The fundamental paper dealing with the MC solution to the BRR’s was published
in the 90’s [1] where the first efficient PF, called the bootstrap filter, was proposed.
Many improvements of the bootstrap filter have been proposed since, see for example
[2]. Among these improvements, in particular the design of the sampling probability
density function (pdf) [3] as one of the key parameters of the PF has to be mentioned.

Another key parameter of the PF, significantly affecting the estimate quality, is
the sample size (i. e. the number of the particles), nonetheless efficient sample size
setting has been disregarded for a long time. Vague recommendations of sample
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size specification limits applicability and user-friendliness of the PF. The sample
size is usually determined ad hoc. Some advances in the sample size setting were
achieved in [4] where the time-invariant sample size was considered and the Cramér
Rao bound [5] was used as a gauge for quality evaluation of the PF. Sample size
adaptation (SSA) techniques were treated for example in [6, 7, 8, 9, 10]. In [3] a
survey of the SSA techniques has been provided.

The goal of this paper is to propose a generalization of the SSA technique pro-
posed in [11], which adapted the sample size according to the filtering pdf quality.
The generalized SSA technique should enable adaptation with respect to arbitrary
estimate quality, i. e. both a point estimate or a filtering pdf estimate. The intention
is to adapt the number of samples while keeping bounded a difference between the
approximate estimate provided by the PF and the true value of the estimate.

The paper is organized as follows: State estimation by the PF and a brief survey
of the SSA techniques are given in Section 2. Then, the proposed SSA technique is
presented in Section 3, which consists of the basic idea of the technique, a demon-
stration of the adaptation with respect to the filtering pdf quality, a discussion of
a multidimensional case and computational issues of the technique. Further, an
application of the proposed SSA technique is illustrated in a numerical example in
Section 4 and finally, Section 5 concludes the paper.

2. STATE ESTIMATION BY THE PARTICLE FILTER

Consider a discrete-time nonlinear stochastic system given by the state equation (1)
and measurement equation (2):

xk+1 = fk(xk, ek), k = 0, 1, 2, . . . , (1)
zk = hk(xk,vk), k = 0, 1, 2, . . . , (2)

where the vectors xk ∈ Rnx and zk ∈ Rnz represent a state of the system and a mea-
surement at time k, respectively, ek ∈ Rnx and vk ∈ RnZ are state and measurement
white noises, mutually independent and independent of the initial state x0, with
known pdf’s p(ek) and p(vk), respectively, fk : Rnx×Rnx →Rnx , hk : Rnx×Rnz →Rnz

are known vector mappings and the pdf p(x0) of the initial state x0 is known. The
system given by (1) and (2) can alternatively be described by the transition pdf
p(xk|xk−1) and measurement pdf p(zk|xk).

The general solution to the state estimation problem in the form of the filtering
pdf p(xk|zk) with zk , [zT

0 , . . . , zT
k ]T is provided by the BRR’s:

p(xk|zk) =
p(xk|zk−1)p(zk|xk)∫

p(xk|zk−1)p(zk|xk)dxk
, (3)

p(xk|zk−1) =
∫

p(xk|xk−1)p(xk−1|zk−1)dxk−1, (4)

which produce the filtering pdf p(xk|zk) and the predictive pdf p(xk|zk−1).
The idea of the PF in nonlinear state estimation is to approximate the true

filtering pdf p(xk|zk) by the empirical filtering pdf rNk
(xk|zk), which is given by
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Nk random samples of the state {x(i)
k }Nk

i=1 and associated weights {wk(x(i)
k )}Nk

i=1,
wk(·) ≥ 0,

∑Nk

i=1 wk(x(i)
k ) = 1 as

rNk
(xk|zk) =

Nk∑
i=1

wk(x(i)
k )δ(xk − x(i)

k ),

where δ(·) is the Dirac function defined as δ(x) = 0 for x 6= 0 and
∫

δ(x)dx = 1.
The samples are drawn from a sampling pdf π(xk|xk−1, zk), which is chosen by

the user, and the weights are computed to balance the discrepancy between the
sampling pdf π(xk|xk−1, zk) and the filtering pdf p(xk|zk), which is known up to a
normalizing constant only. The general algorithm of the PF can be summarized in
Alg. 1 as follows:

Alg. 1: particle filter

Initialization:

• Set k = 0.
• Draw N0 samples {x(i)

0 }N0
i=1 from the prior pdf p(x0|z−1) = p(x0).

• Compute the unnormalized weights {w̃0(x
(i)
0 )}N0

i=1 as

w̃0(x
(i)
0 ) = p(z0|x(i)

0 ). (5)

Resampling: Generate a new set {x∗(i)k }Nk+1
i=1 by resampling with replacement Nk+1

times from {x(i)
k }Nk+1

i=1 with probability Prob(x∗(i)k =x(i)
k ) = wk(x(i)

k ) and set
wk(x∗(i)k ) = 1

Nk+1
. Replace the original sets {x(i)

k }Nk+1
i=1 and {wk(x(i)

k )}Nk+1
i=1 by

the resampled sets {x∗(i)k }Nk+1
i=1 and {wk(x∗(i)k )}Nk+1

i=1 respectively.

Sampling:

• Draw Nk samples {x(i)
k }Nk

i=1 from the sampling pdf π(xk|xk−1, zk).

Weighting:

• The weights {w̃k(x(i)
k )}Nk

i=1 are calculated using the following relation

w̃k(x(i)
k ) =

p(zk|x(i)
k )p(x(i)

k |x∗(i)k−1)

π(x(i)
k |x∗(i)k−1, zk)

. (6)

The weights are normalized, i. e. wk(x(i)
k ) = w̃k(x(i)

k )/
∑Nk

j=1 w̃k(x(j)
k ). The

empirical pdf rNk
(xk|zk) is given by the samples {x(i)

k }Nk
i=1 and the weights

{wk(x(i)
k )}Nk

i=1 as

rNk
(xk|zk) =

Nk∑
i=1

wk(x(i)
k )δ(xk − x(i)

k ).

Increase k and iterate to step Resampling.
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For details see [2].
Note that the algorithm uses a general sampling pdf π(xk|xk−1, zk) based on

utilization of the current measurement zk. This general sampling pdf covers either
the prior sampling pdf with π(xk|xk−1, zk) = p(xk|xk−1), or other sampling pdf’s,
e. g. the optimal sampling pdf or the auxiliary sampling pdf [3].

2.1. Sample size specification

Besides the sampling pdf π(xk|xk−1, zk), also the sample size Nk represents a key
parameter of the PF significantly affecting estimate quality. The first papers dealing
with the PF usually got along with the rule the more particles the better estimate
quality. While this is true as for Nk → ∞ the empirical pdf rNk

(xk|zk) converges
to the true pdf p(xk|zk), the limited computational resources lead to an endeavor
to keep computational demands of the PF algorithm as low as possible. To save
the computational resources, it is possible to fix the estimate quality and change the
sample size accordingly as at some time instants the sample size is unnecessarily high
to achieve the desired estimate quality. Or the task may request keeping estimate
quality at a certain level without regard to computational costs. These are the basic
motivating ideas for SSA techniques.

Currently, only few SSA techniques have been designed; their survey can be found
in [12]. Basically, there are two groups of SSA techniques. The former one adapts
the sample size by means of estimate quality evaluation [7, 8, 9, 10], the latter by
means of sample set quality evaluation [6, 13, 14].

As the paper focuses on adaptation with respect to estimate quality, only repre-
sentatives of the former group are briefly introduced.

2.1.1. Kullback–Leibler divergence sampling

In [7] a SSA technique called Kullback–Leibler divergence (KLD) sampling was pro-
posed. It adapts the sample size to bound the error between the true pdf and the
empirical pdf by ε with probability 1 − δ. The error is measured by the KLD.
The technique assumes that the true pdf can be represented by a discrete piecewise
constant pdf. The drawback of the proposed technique is that the samples of the
empirical pdf are assumed to be drawn directly from the true pdf and the relation for
sample size calculation utilizes the number of bins with support n as the only infor-
mation concerning the true pdf. The relation for computing Nk is Nk = 1

2εχ2
n−1,1−δ,

where χ2
n−1,1−δ is 1 − δ quantile of the chi-square distribution with n − 1 degrees

of freedom. The KLD sampling technique can be referred to as an adaptation with
respect to complexity of the true pdf, without taking into account the sampling pdf.

2.1.2. KLD sampling improvement

In [8] the KLD sampling technique was elaborated further to grasp the fact that the
samples of the empirical pdf are drawn from a sampling pdf which is different from
the true pdf. To take this fact into account, the relative accuracy of the estimator
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between sampling from the true pdf and the sampling pdf was utilized. The sample

size is in [8] adapted according to Nk =
varπ(

p(xk|z
k)

π(xk|xk−1,zk)xk)

varp(xk|zk)
1
2εχ2

n−1,1−δ.

2.1.3. Asymptotic normal approximation

In the same paper [8] another adaptation technique has been proposed checking qual-
ity of the estimate not in terms of the true pdf p(xk|zk) estimate but in terms of a
moment of this pdf. The idea of this technique is such that the central limit theorem
(CLT) justifies asymptotic normal approximation for the mean of the estimate, i. e.,
ErNk

(xk|zk) ∼ N{xk;Ep(xk|zk), varπ( p(xk|zk)
π(xk|xk−1,zk)xk|zk)/Nk}, with N{x;µ, σ2} be-

ing normal distribution of x with mean µ and variance σ2. Based on this approx-
imation, the paper proposes one-sided confidence interval for the number of parti-

cles to bound the relative error of the mean estimate Prob(|
ErNk

(xk|zk)−Ep(xk|zk)

Ep(xk|zk)
| ≤

ε) ≥ (1 − δ). Then the relation for sample size Nk proposed in the paper is

Nk =
t21−δ/2varπ(

p(xk|z
k)

π(xk|xk−1,zk)xk|zk)

ε2Ep(xk|zk)2
, where t1−δ/2 is 1 − δ/2 quantile of the standard

normal distribution.

2.1.4. Fixed efficient sample size

The idea proposed in [9] is based on keeping efficient sample size (ESS) fixed and
adapting the sample size accordingly. The ESS represents the number of particles
drawn from the true pdf p(xk|zk) necessary to attain the same estimate quality as Nk

particles drawn from the sampling pdf π(xk). The technique adapts the sample size
Nk as Nk = NESS

k (1+varπ(w̃k(xk)), where NESS
k is a design parameter representing

the fixed efficient sample size.

2.1.5. Fixed empirical density quality

The technique proposed in this paper is a generalization of the SSA technique devel-
oped in [11] which was originally focused on keeping fixed quality of the filtering pdf
estimate. The quality of the estimate was measured by the inaccuracy [15] between
the estimate and the true pdf. The relation for sample size adaptation is presented
in Section 3.1.

The above mentioned SSA techniques focus on either a point estimate quality or
pdf estimate quality. To design a single technique that enables sample size adapta-
tion with respect to both a point estimate and a pdf estimate is the fundamental
motivation of this paper.

3. SAMPLE SIZE ADAPTATION

Frequently, the filtering pdf p(xk|zk) obtained from a filter is utilized to compute
the integral

I(g) =
∫

g(xk)p(xk|zk)dxk, (7)
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where g is a mapping g : Rnx → Rm. An important special case of (7) is the filtering
mean x̂k|k given by g(xk) = xk. An approximation of (7) provided by the PF is
given by

Î(g) =
∫

g(xk)rNk
(xk|zk)dxk =

∫
g(xk)

1
Nk

∑Nk

i=1 w̃(x(i)
k )δ(xk − x(i)

k )
1

Nk

∑Nk

j=1 w̃(x(j)
k )

dxk

=
1

Nk

∑Nk

i=1 w̃(x(i)
k )g(x(i)

k )
1

Nk

∑Nk

j=1 w̃(x(j)
k )

, (8)

where it can be proved [2] that

lim
Nk→∞

Î(g) = I(g).

A reasonable requirement for quality of the approximation (8) is to keep the dif-
ference between Î(g) and I(g) bounded. The difference is solely affected by the
sampling pdf and the sample size. As the sampling pdf is supposed to be unaltered,
keeping the difference bounded naturally causes an variation of the sample size Nk.
This is the main idea of the SSA technique proposed in this paper. For simplicity,
the following relations will consider a scalar case, i. e. g : Rnx → R1 and the result
will consequently be generalized to a multidimensional case.

The difference between Î(g) and I(g) is given by

Î(g)− I(g) =
1

Nk

∑Nk

i=1 w̃k(x(i)
k )g(x(i)

k )
1

Nk

∑Nk

j=1 w̃k(x(j)
k )

− I(g) =
1

Nk

∑Nk

i=1 w̃k(x(i)
k )

(
g(x(i)

k )− I(g)
)

1
Nk

∑Nk

j=1 w̃k(x(j)
k )

(9)

=
1

Nk

∑Nk

i=1 w̃k(x(i)
k )γ(x(i)

k )
1

Nk

∑Nk

j=1 w̃k(x(j)
k )

=
Y

W

4
= R, (10)

where γ(x(i)
k ) = g(x(i)

k ) − I(g). Let us denote the ratio in (10) by R. Both
the numerator and denominator in (10) are given by sample means and accord-
ing to the central limit theorem (CLT), for Nk → ∞ they converge to a nor-
mal distribution. Note that the CLT can only be applied if means and variances
of the terms in the sums are finite. Denote the sample mean in the numerator
as Y = 1

Nk

∑Nk

i=1

[
w̃k(x(i)

k )γ(x(i)
k )

]
and the sample mean in the denominator as

W = 1
Nk

∑Nk

i=1 w̃k(x(i)
k ), i. e. Y = w̃k(xk)γ(xk) and W = w̃k(xk). Then, according

to the CLT

p(Y ) −−−−−→
Nk→∞

N{Y : µY , σ2
Y
},

p(W ) −−−−−→
Nk→∞

N{W : µW , σ2
W
},
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where µY = µY , µW = µW σ2
Y

= σ2
Y

Nk
and σ2

W
= σ2

W

Nk
with

µY =0, (11)
µW =Eπ (w̃k(xk)) , (12)

σ2
Y =Eπ

(
[w̃k(xk)]2[g(xk)]2

)
− 2Eπ

(
[w̃k(xk)]2g(xk)

) Eπ (w̃k(xk)g(xk))
Eπ (w̃k(xk))

+ Eπ

(
[w̃k(xk)]2

) [
Eπ (w̃k(xk)g(xk))

Eπ (w̃k(xk))

]2

, (13)

σ2
W =Eπ

(
[w̃k(xk)]2

)
− E2

π (w̃k(xk)) . (14)

As the ratio R is a stochastic variable, its quantile must be used to bound it. A
quantile of the ratio R in (10) as a function of Nk can not be computed directly
due to intricate distribution of R, nevertheless the Geary-Hinkley transformation
to normality [16] can be applied here. It says that, under a certain condition,
the random variable R given by a ratio of two possibly correlated, normal random
variables Y and W may be transformed to a standard normal variable T using the
transformation

T =
µW R− µY√

σ2
W

R2 − 2cov(Y ,W )R + σ2
Y

=
µW R− µY√

σ2
W

Nk
R2 − 2 cov(Y,W )

Nk
R + σ2

Y

Nk

. (15)

The covariance cov(Y ,W ) = cov(Y,W )
Nk

in (15) can be expressed as

cov(Y, W ) = Eπ

(
[w̃k(xk)]2g(xk)

)
− Eπ

(
[w̃k(xk)]2

) Eπ ([w̃k(xk)]g(xk))
Eπ ([w̃k(xk)])

. (16)

The transformation (15) holds even for quantiles, i. e.

t1−δ/2 =
µW r1−δ/2 − µY√

σ2
W

Nk
r2
1−δ/2 − 2 cov(Y,W )

Nk
r1−δ/2 + σ2

Y

Nk

, (17)

where t1−δ/2 is 1−δ/2 quantile of the standard normal distribution and r1−δ/2 is
1−δ/2 quantile of the distribution of R. Equation (17) represents a relation between
a quantile of the standard normal distribution, a quantile of R = Î(g) − I(g) and
sample size Nk. Therefore, it is possible to introduce the following relation for
sample size Nk:

Nk =

⌈
t21−δ/2

σ2
W r2

1−δ/2 − 2cov(Y, W )r1−δ/2 + σ2
Y

(µW r1−δ/2 − µY )2

⌉
. (18)

The sample size Nk given by (18) is necessary for the difference Î(g) − I(g) to be
within the interval (−r1−δ/2,+r1−δ/2) with probability 1−δ.

The relation (18) is the central point of the proposed SSA technique. The confi-
dence coefficient 1− δ and the value of 1− δ/2 quantile r1−δ/2 are both parameters
of the technique and are chosen by the user.
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Note that according to [16] the transformation (15) holds at the five percent
significance level as long as the coefficient of variation of the denominator W , denoted
CW = σW /µW is less than 0.39 and coefficient of variation of the numerator Y is
greater than 0.005. If this condition does not apply, the quantile can be computed
numerically but not in terms of a function of the sample size Nk. In such a case, it
is possible to determine an upper bound for the sample size Nk using Chebychev’s
inequality

Prob(|Î(g)− I(g)| ≥ ε) ≤
√

var
(
Î(g)− I(g)

)
/ε,

in the following form

Nk =
⌈

1
ε2δ

var(Î(g)− I(g))
⌉

. (19)

The relation states that if sample size Nk given by (19) is used, then

Prob(|Î(g)− I(g)| ≥ ε) ≤ δ.

The term var(Î(g)− I(g)) in (19) can be computed using the standard delta method
for ratio statistics as

varπ(Î(g)− I(g)) ≈
(varπ (w̃k(xk)g(xk))

E2
π (w̃k(xk))

− 2
Eπ(w̃k(xk)g(xk)) covπ(w̃k(xk), w̃k(xk)g(xk))

E3
π(w̃k(xk))

+
E2

π(w̃k(xk)g(xk)) varπ(w̃k(xk))
E4

π(w̃k(xk))

)
(20)

which can be further explored using second order raw moments as

varπ(Î(g)− I(g)) ≈
(Eπ

(
[w̃k(xk)]2[g(xk)]2

)
E2

π (w̃k(xk))

− 2
Eπ (w̃k(xk)g(xk))Eπ

(
[w̃k(xk)]2g(xk)

)
E3

π (w̃k(xk))
+

E2
π (w̃k(xk)g(xk))Eπ (w̃k(xk))

E4
π (w̃k(xk))

)
=

σ2
Y

E2
π (w̃k(xk))

. (21)

It must be noted that for the sample size given by (19) no information concerning
distribution of Î(g)−I(g) is used; therefore this condition for the sample size is loose
and the relation (18) should be used if possible.

The asymptotic normal approximation proposed in [8] can be seen as a simplifi-
cation of the relation (18) by considering the denominator W to be a constant (i. e.
σ2

W = 0 and cov(Y, W ) = 0), setting g(xk) = xk and bounding a relative difference
Î(g)−I(g)

I(g) instead of the absolute error Î(g)− I(g) used in this paper.

3.1. Adaptation with respect to empirical pdf quality

The proposed relation (18) for sample size adaptation can also be used to keep
quality of the empirical pdf fixed by a special choice of the function g(xk) [11].
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To measure the empirical filtering pdf rNk
(xk|zk) quality, which approximates

the filtering pdf p(xk|zk), the Kullback–Leibler (KL) distance given by

D(rNk
, p)

4
=

∫
rNk

(xk|zk) log
rNk

(xk|zk)
p(xk|zk)

dxk (22)

can be chosen. It is a generic choice of information measure to quantify a discrepancy
between two pdf’s rNk

(xk|zk) and p(xk|zk). The KL distance can also be written
as a difference of two components

D(rNk
, p) =

∫
rNk

(xk|zk) log
1

p(xk|zk)
dxk︸ ︷︷ ︸

K(rNk
,p)

−
∫

rNk
(xk|zk) log

1
rNk

(xk|zk)
dxk︸ ︷︷ ︸

H(rNk
)

(23)

where the former K(rNk
, p) is inaccuracy [15] and the latter H(p) is the Shannon

differential entropy (SDE). The inaccuracy measures actual discrepancy between
the pdf’s rNk

(xk|zk) and p(xk|zk), while the SDE measures entropy of rNk
(xk|zk).

The inaccuracy is of an opportune form for the comparison of rNk
(xk|zk) and

p(xk|zk) as the empirical pdf is a mixture of Dirac functions and the relation∫
δ(x− a)f(x)dx = f(a) holds. The SDE component of the KL distance will be

dropped as H(rNk
) = −∞. It must be noted that the inaccuracy alone may be neg-

ative nevertheless it still provides a measure of a disagreement between the pdf’s.
The inaccuracy K(rNk

, p) given by

K(rNk
, p) =

∫ 1
Nk

∑Nk

i=1 w̃k(x(i)
k )δ(xk − x(i)

k )
1

Nk

∑Nk

j=1 w̃k(x(j)
k )

log
1

p(xk|zk)
dxk (24)

can be written as

K(rNk
, p) =

1
Nk

∑Nk

i=1 w̃k(x(i)
k ) log 1

p(x
(i)
k |zk)

1
Nk

∑Nk

j=1 w̃k(x(j)
k )

. (25)

Therefore, the inaccuracy (25) can be seen as a special case of Î(g) in (8) with

g(xk) = log
1

p(xk|zk)
. (26)

Analogically to Î(g) being an approximation of I(g), the inaccuracy (25) is an ap-
proximation of K(p, p) given by

K(p, p) =
∫

p(xk|zk) log 1
p(xk|zk)

dxk,

which is equal to the SDE H(p). Therefore the function γ in (10) is equal to

γ(xk) = log
1

p(xk|zk)
−H(p).
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So by considering Î(g) = K(rNk
, p) and I(g) = H(p) the adaptation with respect

to the empirical pdf quality can be seen as a special case of the SSA technique
proposed above.

As the terms σ2
Y and cov(Y, W ) in (13) and (16) for g(xk) given by (26) depend

on the true filtering pdf p(xk|zk) which is unknown, the following substitution

p(xk|zk) =
w̃k(xk)π(xk|xk−1, zk)

c
, (27)

which arises due to the fact that the normalized weight w(xk) is given by

w(xk) =
w̃k(xk)

c
=

p(xk|zk)
π(xk|xk−1, zk)

, (28)

with c = Eπ (w̃k(xk)), will be used. After a few arrangements the terms can be
expressed as

σ2
Y =Eπ

(
[w̃k(xk)]2[g̃(xk)]2

)
− 2Eπ

(
[w(xk)]2g̃(xk)

) Eπ (w̃k(xk)g̃(xk))
Eπ (w̃k(xk))

+ Eπ

(
[w̃k(xk)]2

) E2
π (w̃k(xk)g̃(xk))
E2

π (w̃k(xk))
,

cov(Y, W ) = log Eπ (w̃k(xk))Eπ

(
[w̃k(xk)]2

)
+ Eπ

(
[w̃k(xk)]2g̃(xk)

)
− Eπ

(
[w̃k(xk)]2

) log Eπ (w̃k(xk))Eπ (w̃k(xk)) + Eπ (w̃k(xk)g̃(xk))
Eπ (w̃k(xk))

with g̃(xk) = log 1ewk(xk)π(xk|xk−1,zk) .

3.2. Multidimensional case

If the mapping g is multidimensional, i. e. m > 1, the relation (18) must be modified
accordingly. The relation is derived analogically to the scalar case. In the multidi-
mensional case , the user parameter r1−δ/2 is given by a vector of dimensions m×1,
which means that estimate quality for each dimension of g may be bounded by a
different value.

Instead of obtaining a single Nk in the scalar case, a set of m sample sizes {N i
k}m

i=1

is obtained here using the following relation

N i
k =

⌈(
[S 1m×1t1−δ/2]i

µW [r1=δ/2]i − [µY ]i

)2
⌉

, (29)

where [·]i stands for the ith component of the vector, 1m×1 is an m-dimensional
column vector of ones and S is the Cholesky decomposition of the m×m matrix P
given by

P = σ2
W r1−δ/2rT

1−δ/2 − cov(Y, W )rT
1−δ/2 − r1−δ/2cov(Y, W )T + var(Y ) (30)
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such that SST = P. The matrix S is an analogy to the denominator in the Geary-
Hinkley transformation (15), where the matrix P is a multidimensional counterpart
to the term under the square root in (17).

The sample size used in the PF must be chosen as a maximum of the set {N i
k}m

i=1,
i. e.

Nk = max
i
{N i

k}m
i=1, (31)

because the condition for estimate quality must hold for each element of the map-
ping g. This implies that for some elements of g the sample size Nk may be unneces-
sarily high but such a sample size is required for Prob

(
|Î(g)− I(g)| ≤ r1−δ/2

)
= δ.

3.3. Computational issues

To implement the proposed SSA technique in the PF framework, several issues must
be discussed. First of all, let us restate individual terms used in the sample size
adaptation (18):

Eπ (w̃k(xk)) =
∫

w̃k(xk)π(xk|xk−1, zk)dxk (32)

Eπ

(
[w̃k(xk)]2

)
=

∫
w̃k(xk)2π(xk|xk−1, zk)dxk (33)

Eπ (w̃k(xk)g(xk)) =
∫

w̃k(xk)gk(xk)π(xk|xk−1, zk)dxk (34)

Eπ

(
[w̃k(xk)]2g(xk)

)
=

∫
w̃k(xk)2g(xk)π(xk|xk−1, zk)dxk (35)

Eπ

(
[w̃k(xk)]2[g(xk)]2

)
=

∫
w̃k(xk)2g(xk)2π(xk|xk−1, zk)dxk. (36)

Value of the integrals (32 – 36) cannot usually be computed analytically, hence they
must be calculated either numerically or using MC integration. In the case of the
numerical integration, calculation of π(xk|xk−1, zk) at an arbitrary point for large
Nk−1 can be computationally demanding as Nk−1 evaluations of local sampling
pdf’s π(xk|x(i)

k−1, zk) is required for each point. A simple solution to this problem
is approximation of the sampling pdf π(xk|xk−1, zk) by a piecewise linear function
which evaluation at an arbitrary point is modest from the computational point of
view.

MC integration of the expectations (32 – 36) is preferable especially for high di-
mension of the state xk. To calculate the expectations using MC integration, first,
generate NMC samples from π(xk|xk−1, zk), second, utilize them to compute Nk

according to (18) and finally, the remaining Nk −NMC samples are drawn.
Note that at some cases, which include adaptation with respect to a point esti-

mate, it is also possible to compute the values of σ2
W , σ2

Y , cov(Y, W ) and µW directly
from the initial NMC samples and corresponding weights.

The accuracy of the sample size Nk computation based on the above mentioned
approach is affected by NMC , i. e. another sample size. To avoid this deja vu,
it is possible to use a strategy consisting in successive increasing the precision of
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the sample size Nk calculation by utilizing the newly generated samples. More
specifically, instead of drawing all the remaining Nk −NMC in one batch, only ∆N
samples are drawn and used for Nk recalculation. This process is repeated until
Nk equals to the number of already drawn samples. This technique attenuates the
dependency of the sample size Nk on the sample size NMC .

The PF with the proposed SSA technique will be denoted as the adaptive PF
(APF) and its algorithm can be summarized as

Alg. 2: adaptive particle filter

Specification of parameters: Choose the confidence coefficient 1− δ and length
of the interval r1−δ/2.

Initial sample size adaptation: Compute value of the integrals (32 – 36). and
calculate the sample size N0 according to (18).

Initialization Corresponds to Alg. 1

Sample size adaptation: Compute value of the integrals (32 – 36). and calculate
the sample size Nk according to (18).

Resampling: Corresponds to Alg. 1

Sampling: Corresponds to Alg. 1

Weighting: Corresponds to Alg. 1

Increase k and iterate to step Sample size adaptation.

4. NUMERICAL EXAMPLE

To illustrate the proposed SSA technique, a scalar nonlinear non-Gaussian system
[17] is considered:

xk+1 = ϕ1xk + 1 + sin(ωπk) + ek

zk = ϕ2x
2
k + vk

with p(x0) = N{x0; 0, 12}, p(ek) = G{ek; 3, 2}, p(vk) = N{vk; 0, 1}, ϕ1 = 0.5, ϕ2 =
0.2, ω = 0.04, where G{x; a, b} means Gamma distribution with parameters a and
b. The state is estimated by the PF for k = 0, . . . 29. The PF considers p(x0|z−1) =
p(x0) and prior sampling density. In all experiments 1000 MC simulations were
performed.

The sample size was adapted first with respect to a point estimate quality, more
specifically the filtering mean, and second with respect to empirical filtering pdf
quality. The true values (i. e. the filtering mean x̂k|k = E

(
xk|zk

)
and the true

filtering pdf p(xk|zk)) used for comparison of the results were calculated using the
point-mass method [18], which computes the BRR’s numerically, with a large number
of grid points.
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For adaptation with respect to the filtering mean the following parameters were
chosen g(xk) = xk, δ = 0.1 and r1−δ/2 = 0.1. The results, i. e. the 90 % quantile
of the difference Î(xk) − I(xk) calculated using 1000 MC simulations is depicted
in Figure 1a and an example of APF sample size evolution for several simulations
(dashed), together with an shaded area formed by 95 % sample sizes is given in
Figure 1b.
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Fig. 1. SSA with respect to the filtering mean quality.

From Figures 1a and 1b it can be seen that the APF guarantees the given level
of estimate quality at the cost of dramatic increase of computational costs during
the first few steps.

The APF with adaptation with respect to empirical filtering pdf quality consid-
ered the confidence coefficient δ = 0.01 and r1−δ/2 = 1 in this case. The results
obtained by APF were compared to that of the unadapted PF. To compare the
APF and an unadapted PF meaningfully, the sample size for the unadapted PF was
calculated in the following way. Firstly, an average NAV of all the sample sizes of
the APF was calculated and rounded, i. e.

NAV =

⌈
1
30

1
1000

29∑
k=0

1000∑
s=1

Nk(s)

⌉
= 410,

where Nk(s) is sample size of the APF in sth simulation at the time instant k.
Consequently, the unadapted PF was applied twice with N = NAV , and N = 2·NAV .
It should be remembered that the unadapted PF uses some information obtained
from the APF (NAV ) but does not adapt the sample size N in time.

Figure 2c contains 99 % quantiles of the difference K(rNk
)−H(p) calculated from

the simulations for the APF (solid) and unadapted PF with N = NAV (dot-dashed),
and N = 2 · NAV (dashed). An example of APF sample size evolution for several
simulations is given in Figure 2d (dashed), together with an shaded area formed by
95 % sample sizes.

From Figure 2c it is clear that the APF adapts the sample size to keep the
difference K(rNk

)−H(p) within the interval (−r0.99, r0.99), r0.99 = 1 with probability
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Fig. 2. SSA with respect to the empirical filtering pdf quality.

0.99. The unadapted PF with the same sample size on average as the APF provides
much worse results in terms of empirical filtering pdf quality than the APF. If the
sample size of the unadapted PF is considered twice as large as the average NAV ,
then the empirical pdf quality is approximately the same as with the APF. Therefore,
in this case the unadapted PF requires more than twice as many samples as the APF
to guarantee the same quality of the empirical filtering pdf.

5. CONCLUSION

The paper dealt with the particle filter for nonlinear state estimation problem.
A technique adapting sample size of the particle filter has been proposed. The
adaptation enables guaranteeing a quality of the approximate estimate provided by
the particle filter. As the estimate, either a point estimate, such as filtering mean,
or a filtering pdf estimate may be chosen. The proposed relation for sample size
guarantees the difference between the approximate estimate and the true value of
the estimate to be within a user-specified boundary with a user-specified probability.
The paper also discussed implementation issues of the technique and showed a sim-
ilarity between the proposed technique and the asymptotic normal approximation
technique. The adaptive particle filter was illustrated in a numerical example where
it was shown that the adaptation guarantees the pre-specified quality of the chosen
estimate and that the adaptive particle filter is superior to the unadapted particle
filter in terms of efficiency.

The technique proposed in the paper is intended as a module for any PF algorithm
which can later be applied in arbitrary problems such as signal processing, image
recognition, tracking, navigation and control.
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