
KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 3 , PAGES 3 7 0 – 3 8 4

NONLINEAR BAYESIAN STATE FILTERING
WITH MISSING MEASUREMENTS AND BOUNDED
NOISE AND ITS APPLICATION
TO VEHICLE POSITION ESTIMATION

Lenka Pavelková

The paper deals with parameter and state estimation and focuses on two problems that
frequently occur in many practical applications: (i) bounded uncertainty and (ii) missing
measurement data. An algorithm for the state estimation of the discrete-time non-linear
state space model whose uncertainties are bounded is proposed. The algorithm also copes
with situations when some measurements are missing. It uses Bayesian approach and
evaluates maximum a posteriori probability (MAP) estimates of states and parameters. As
the model uncertainties are supposed to have a bounded support, the searched estimates lie
within an area that is described by the system of inequalities. In consequence, the problem
of MAP estimation becomes the problem of nonlinear mathematical programming (NLP).
The estimation with missing data reduces to the omission of corresponding inequalities
in NLP formulation. The proposed estimation algorithm is applied to the estimation of
a moving vehicle position when incomplete data from global positioning system (GPS)
together with complete data from vehicle sensors are at disposal.
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1. INTRODUCTION

A state space model is frequently used for a description of real systems. When-
ever some internal variables cannot be measured directly and some parameters are
unknown the need for their estimation arises. These unknown parameters and un-
observed states are estimated using measured data, i. e., system inputs and outputs,
as well as modeled dependencies among particular quantities.

The uncertainties of state evolution as well as observation model are often sup-
posed to have normal distribution and the problem is then solved by means of the
Kalman filtering (KF) [8] and its variants and extensions.

However, the unbounded support of the Gaussian distribution can cause diffi-
culties if the estimated quantity is physically bounded as, for instance, it may give
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unreasonable negative estimates of naturally non-negative variable. There are sev-
eral ways how to deal with this drawback.

In the KF framework, the state estimates are projected onto the constraint surface
via quadratic programming [4]. Use of truncated probability density functions (pdf)
is another way of solving this problem [18]. Here, the constraints are incorporated
by the cutting off that part the pdf describing the state estimate that violates the
constraints. In both cases, the key drawback of KF – it works well only when noise
covariances are well chosen – is enhanced.

Constraints on estimates can be respected by using truncated prior pdf, which
ensures that the posterior also satisfies the constraints. These constraints can be
well faced when using Monte-Carlo sampling, alias particle filtering. It suffices to
respect them within the accept/reject steps of the algorithm [10]. The Monte-Carlo
methods require, however, a huge amount of samples to obtain acceptable results.

Other techniques, dealing with unknown-but-bounded equation errors, are used
[20]. A bounded set is constructed containing the unknown states or parameters.
The complexity of this set is very high so approximation is needed to obtain re-
cursively feasible solution. The approximation by ellipsoid is proposed in [14], by
a union of non-overlapping boxes in [2]. A recursive Kalman-like algorithm for the
state estimation of linear models with disturbances bounded by ellipsoids is pro-
posed in [1]. These methods lack a stochastic interpretation of involved quantities
and estimates.

Missing data represent another practical problem faced in real applications re-
quiring a state estimation. Then, standard estimation methods cannot be used
straightforwardly and specific approaches have to be developed. The following ex-
amples, biased towards the addressed problem of bounded uncertainties, indicate
some of them.

The paper [17] considers the problem of missing data within the framework of a
class of uncertain discrete-time systems with a deterministic description of noise and
uncertainty. A recursive scheme for constructing an ellipsoidal bounding the set of
possible states state, consistent with the available measured data and the considered
noise and uncertainty description, is proposed.

In [19], KF with intermittent observations is considered. There, the existence
of a critical value for the arrival rate of the observations is shown, beyond which a
transition to an unbounded state error covariance occurs.

In [23], authors propose a robust filter for linear uncertain discrete-time stochastic
systems. The parameter uncertainties are allowed to be norm-bounded. The system
measurements may be missing at any sample time with a known probability of their
occurrence. This filtering problem reduces to the solutions of a couple of algebraic
Riccati-like inequalities or linear matrix inequalities.

The paper [5] reviews estimation problems with missing, or hidden data. The
problem is formulated in the context of Markov models. Two interrelated issues
are considered, namely, the state estimation given the measured data and model
parameters, and the parameter estimation given the measured data alone. The
measured data can be incomplete. Various combinations of discrete and continuous
states and observations are considered.
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In spite of the fact that bounds and missing measurement occur jointly in prac-
tice it seems that there is no established methodology coping practically with both
bounded uncertainty and missing data. In [13], author proposes a simple algorithm
for the estimation of discrete-time linear state space model with bounded uncer-
tainty when some measurements are missing. The Bayesian approach is used and
MAP estimates are evaluated. The current paper extends this approach to a state
space model with nonlinear state equation. The proposed algorithm is applied to the
same technical problem as in [13], i. e. vehicle position estimation. We aim to obtain
more precise state estimates. The refined non-linear model opens this possibility as
it utilizes better information contained in the available data.

2. PRELIMINARIES

2.1. Notation

Throughout the paper, the following notation is used:

≡ equality by definition
∝ equality up to a constant factor (proportionality)
z∗ a set of z-values, z ∈ z∗, z is a column vector
zt value of z in discrete time instant t;

t ∈ t∗ ⊂ {0, 1, 2, . . . T}, T < ∞
ẑt estimate of zt;
zk:l the ordered sequence; zk:l ≡ [z′k, z′k+1, . . . , z

′
l]
′, 0 ≤ k ≤ l

′ transposition
z, z lower and upper bound on z, respectively;

inequalities like z ≥ z are meant entry-wise
0(α), 1(α) column vector of zeros and ones of the indicated size, respectively;

index can be omitted when the vector size is obvious from context
0(α,β) zero matrix of the indicated dimensions
I(α) square identity matrix of the order α
Rn n-dimensional real space
f(·|·) probability density functions (pdf); respective pdfs are distinguished

by the argument names;
no formal distinction is made between a random variable, its
realization and pdf argument

Integrals used are always definite and multivariate ones. The integration domain
coincides with the support of the pdf in its argument.

2.2. Calculus with pdfs

Let us consider the joint pdf f(a, b, c). For any (a, b, c) ∈ (a, b, c)∗, the following
relations between pdfs hold [9]:

Chain rule
f(a, b|c) = f(a|b, c)f(b|c) = f(b|a, c)f(a|c)
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Marginalization

f(b|c) =
∫

f(a, b|c)da, f(a|c) =
∫

f(a, b|c)db

Bayes rule

f(b|a, c) =
f(a|b, c)f(b|c)

f(a|c)
=

f(a|b, c)f(b|c)∫
f(a|b, c)f(b|c) db

∝ f(a|b, c)f(b|c). (1)

2.3. Basics of Bayesian learning

In Bayesian view [3, 9], the system is described by probability density functions
(pdfs). The quantities describing the system consist generally of observable outputs
y1:T , optional inputs u1:T and internal quantities that are never observed directly.
The internal quantities consist of system states x0:T and a time invariant unknown
parameters Θ. The collection of the outputs and inputs is called data and denoted
d1:T , i. e., dt = (yt,ut), t ∈ t∗ = {1, . . . , T}. The joint pdf

f(d1:T ,x0:T ,Θ)

describing both observed and internal quantities can be decomposed onto a product
of the following elements:

• observation model
{f(yt|ut,d1:t−1,xt,Θ)}t∈t∗ (2)

• time evolution model {
f(xt|ut,d1:t−1,xt−1,Θ)

}
t∈t∗

(3)

• controller
{f(ut|d1:t−1) ≡ f(ut|d1:t−1,x0:t−1,Θ)}t∈t∗ (4)

here the validity of the natural conditions of control is supposed [9], i. e., x0:t−1

and Θ are unknown to the controller

• prior pdf
f(x0,Θ). (5)

Under (2) – (5), it holds

f(d1:T ,x0:T ,Θ) = f(x0,Θ)
T∏

t=1

f(yt|ut,d1:t−1,xt,Θ)

× f(xt|ut,d1:t−1,xt−1,Θ)f(ut|d1:t−1) (6)

∝ f(x0,Θ)
T∏

t=1

f(yt|ut,d1:t−1,xt,Θ)f(xt|ut,d1:t−1,xt−1,Θ).
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As the controller does not depend on the internal quantities xt and Θ, it plays no
role in estimation. Therefore, the knowledge of the controller is not required. Only,
the generated input values have to be known.

The Bayesian state and parameter estimation works with characteristics of the
joint pdf (6). This pdf combines prior information in f(x0,Θ), theoretical knowledge
described by both observation (2) and time evolution (3) models and observed data
d1:T by using deductive rules of the calculus with pdfs (1).

2.4. Discrete-time state-space model with bounded innovations

We consider a discrete-time state space model that describes a given system with
l-dimensional input ut, m-dimensional state xt and n-dimensional output yt by the
following non-linear state (7) and linear output (8) equations in the discrete time
instants t ∈ t∗ = 1, 2, . . . , T

xt = g(xt−1,ut) + wt (7)
yt = Cxt + et (8)

where g is a real vector function, g : Rm+l → Rm;
C is known model matrix of an appropriate dimensions;
wt, et are vectors of the state and output noises respectively; they are zero mean,
mutually conditionally independent and identically distributed.

Here, wt, et are assumed to have uniform distribution on a multivariate box with
the center 0 and unknown half-widths of the support intervals q and r, respectively,
i.e.,

f (wt|q) = U (0,q) , f (et|r) = U (0, r) . (9)

These assumptions complete the state and output equations into state evolution and
observation models, respectively. Note that we make here no formal distinction of a
random variable, its realization and pdf argument, see Section 2.1.

Further, we suppose that x0, q, and r are a priori mutually independent and that
it holds

x0 ≤ x0 ≤ x0, 0 ≤ q ≤ q, 0 ≤ r ≤ r, {x ≤ xt ≤ x}t∈t∗ . (10)

Note that restrictions in (10) are defined by the user so that they reflect the
reality. These known optional values specify user’s prior information.

Equations (7) and (8) together with the assumptions (9) and (10), define the
state uniform model (SU model).

We introduce the column vector X as follows

X =
[ (

x0:T
)′

q′ r′
]′

. (11)

The joint pdf (6) of data d1:T , the state trajectory x0:T , and unknown parameters
Θ = [q′, r′]′ of the SU model takes the form

f
(
d1:T ,x0:T ,Θ

)
∝

 m∏
i=1

qi

n∏
j=1

rj

−T

χ(S) (12)
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where m, n are the lengths of the state and output vector, respectively,
χ(S) is the indicator of the support S of this pdf.

The set S is a set of X (11) such that (for given realization u1:T , y1:T ) the noise
terms in (7) and (8) are inside multivariate box defined by (9) and (10), i. e.,

S = {X ∈ S0;∀ t ∈ t∗ : |xt − g(xt−1,ut)| ≤ q, |yt −Cxt| ≤ r} . (13)

where S0 is the set of X that meet (10).
The linear version of SU model was introduced in [12] and algorithms for both

state filtering and parameters estimations were designed. The extension considered
in this paper uses a non-linear state equation and proposes an algorithm for the state
estimation of this model applicable even when some measurements are missing.

3. ESTIMATION OF SU MODEL WITH MISSING DATA

3.1. One-shot state and parameter estimation

We suppose that the considered system is described by the SU model (12). We aim
to estimate states x0:T and the noise bounds q, r, i. e. vector X (11). We focus
on a maximum a posteriori (MAP) estimation, see e. g. [3], that provides a point
estimate of the internal quantity X. The MAP estimate X̂MAP of X with linearized
logarithm of a posteriori pdf has the following form [12]

X̂MAP = arg minX∈S

 m∑
i=1

qi +
n∑

j=1

rj

 , (14)

where m, n are the lengths of the state and output vector, respectively,
S is given by (13).

Note that the log-likelihood to be maximized by the MAP estimate is identical
to that for linear case in [12]. The maximization differs because of the involved
nonlinearity of the state evolution, see Section 3.3.

3.2. On-line state and parameter estimation

The real-time (on-line) estimation provides the state and parameter estimates in
each time step. We use a moving horizon estimator principle [16] and perform the
Bayesian estimation on a sliding window of the length δ ≥ 1, i. e., for estimating the
states xt−δ:t, t = δ + 1, . . . , T and parameters q, r, we use the data dt−δ:t and prior
information on xt−δ−1, q, r.

We denote an estimated quantity as Xt, t ∈ t∗. It has the following form, cf. X
in (11),

Xt =
[ (

xt−δ−1:t
)′

q′ r′
]′

. (15)

The superfluous state xt−δ−1 and data item dt−δ−1 from the previous estimation
step are integrated out from the posterior pdf in every time step t. This integration
induces non-uniform term in the posterior pdf. In the time instant t ∈ t∗, this
term is described by a piecewise polynomial function containing t powers of this
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state. With increasing t, the estimation becomes intractable because of increasing
complexity of the support of the posterior pdf. An approximation of the non-uniform
term in each step is applied [12]. It consists in the replacing of the oldest state by its
point estimate from the previous step. The MAP estimate X̂t of Xt with linearized
logarithm of a posteriori pdf has then the following form

X̂t = arg minXt∈S̃t

 m∑
i=1

qi +
n∑

j=1

rj

 (16)

where S̃t is constructed similarly to (13).
For τ∗ ≡ {t− δ, . . . , t}, t∗ ≡ {δ +1, . . . , T}, 1 < δ ≤ T , S̃t is a set of Xt (15) such

that (for given realization ut−δ:t, yt−δ:t in the time instant t) the noise terms in (7)
and (8) are inside multivariate box defined by (9) and (18), i. e.,

S̃t =
{
Xt ∈ S̃0t;∀ τ ∈ τ∗ : |xτ − g(xτ−1,uτ )| ≤ q, |yτ −Cxτ | ≤ r

}
. (17)

For t ∈ t∗, S̃0t is a set of Xt (15) that meet requirements

xt−δ−1 = x̂t−δ−1, 0 ≤ q ≤ q, 0 ≤ r ≤ r, {x ≤ xτ ≤ x}τ∈τ∗ , (18)

where x̂t−δ−1 is the point estimate of xt−δ−1 from the previous step.
Again, the maximized log-likelihood is identical to the one for linear case in [12]

but the optimization discussed in the following section differs because of the involved
nonlinearity.

Note that in the time step t we are interested only in the newest state estimate,
i. e. x̂t, from the whole estimate X̂t.

3.3. MAP estimation as a problem of mathematical programming

Here, we present a solution of an on-line MAP estimate (16). The solution of one-
shot estimation (14) can be performed as a special case of the on-line version for the
window of length δ = T −1. In this case an on-line version is identical to the off-line
version with x0 ≡ x̂T−δ−1.

The MAP estimation can be given the following nonlinear mathematical pro-
gramming (NLP) form [4]

Find a vector X̂t such that J′X̂t =
∑m

i=1
qi +

∑n

j=1
rj → min (19)

while AX̂t ≤ bt, C(X̂t) ≤ 0, X ≤ X̂t ≤ X, t ∈ t∗,

and with given realizations of u1:T , y1:T

where

(i) J′ ≡ [0′((δ+2)m),1
′
(m+n)]

(ii) A and bt are known matrix and vector, respectively; they result from the linear
part of inequalities describing the set S̃t (17) and have the following form

AX̂t ≤ bt with A =
[
A1 A2

]
, (20)
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with

A1 = Rm(I(δ+1) ⊗K⊗C),
A2 = −1(2(δ+1)) ⊗ Lm(I(n)),

bt =
[
I(δ+1) ⊗K⊗ I(n)

]
yt−δ:t,

where ⊗ denotes Kronecker product;
Rcol(M) and Lcol(M) are operators adding col zero columns to the matrix M from
the right and left, respectively; K ≡ [1 − 1]′; C is model matrix defined in (8).
(iii) C is a real vector function that corresponds to the nonlinear part of inequalities
describing S̃t (17), i. e.,

xτ−δ − g(xτ−δ−1, uτ−δ) −q ≤ 0
−xτ−δ + g(xτ−δ−1, uτ−δ) −q ≤ 0

...
xτ − g(xτ−1, uτ ) −q ≤ 0

−xτ + g(xτ−1, uτ ) −q ≤ 0

(iv) X, X are known vectors; they stem from the set S̃0t (18) and have the following
form

X =


x̂t−δ−1

1(δ+1) ⊗ x
0(m)

0(n)

, X =


x̂t−δ−1

1(δ+1) ⊗ x
q
r

. (21)

To solve (19), we use the MATLAB1 function “fmincon” from optimization tool-
box.

3.4. State and parameter estimation with missing data

The problem of missing measurement data can be easily incorporated into the SU
model estimation algorithm. The missing measurement causes that output equality
(8) is missing in given time instant. This fact influences matrices A1, A2 and vector
bt in (19). If N measurements are missing, then 2N rows in each above mentioned
matrices and vector are omitted.

To prevent the state estimates divergence in the case of measurement outage, we
choose the length sliding window δ so that data are present both at the beginning
and end of estimated time interval. If no outages are present, the on-line state
estimation runs with user defined δ. As soon as a measurement outage occurs, then δ
is increasing up to δOUT until new measurements are coming. Then, state estimation
with δOUT is performed. After it, we continue again in the on-line estimation with
the sliding window of the length δ till the next data outage.

The introduced delay in supplying the state estimates causes no harm in the
considered application.

1MATLAB is a high-level technical computing language and interactive environment for
algorithm development, data visualization, data analysis, and numeric computation, see
www.mathworks.com.
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4. ESTIMATION OF A MOVING VEHICLE POSITION

Today, an importance of the precise tracking of moving vehicle is growing. The
knowledge of the vehicle position is required in many practical application, e. g. in a
navigation or in a vehicle trajectory reconstruction. There are many methods how
to solve this task using various data sources and their combination, for illustration
see eg. [6, 7, 11].

Frequently, a moving vehicle position is determined by means of global positioning
system (GPS). The GPS provides the position directly in the Cartesian coordinates
but signal outages can occur in the data that are caused e. g. by big trees or buildings
that inhibit the signal receiving.

Inertial navigation system (INS) is often an alternative data source. INS is a
navigation aid that uses a computer, motion sensors (accelerometers) and rotation
sensors (gyroscopes) to continuously calculate via dead reckoning the position, ori-
entation, and velocity (direction and speed of movement) of a moving object without
the need for external references. The starting location and the initial orientation
(azimuth) have to be known. But the data is relative and therefore, the estimation
error has a cumulative character.

Many estimation algorithms combining the GPS/INS data were developed. GPS
corrects the errors in INS, INS supplies data during GPS signal outages. For esti-
mation purposes, a model is usually constructed that uses kinematics laws, i. e., it
is not concerned with the causing forces. The estimation algorithms mostly use a
various modification of Kalman filter, see e. g. [15, 21, 22]. Nevertheless, as already
mentioned above, KF is very sensitive to tuning covariances.

This demanding real-life problem is an ideal test case of the underlying general
theory. It has oriented us to estimation based on SU models. In [13], a promising
but still insufficiently precise solution for linear SU model is described. Here, we
make a further step and propose a method for a reconstruction of the moving vehicle
position based on estimation of the nonlinear SU model (12). Comparing to [13],
it allows us to use more adequate selection of inputs and states. We focus on the
precise estimation of the position of a moving ground vehicle. We aim to propose a
simple algorithm that uses a readily available data sources.

As additional data source during GPS data outages, we use data from vehicle
sensors. These data are provided by controller area network (CAN) that is a bus
network that connects devices, sensors and actuators in a vehicle for control appli-
cations. The CAN data include a complete information about vehicle velocity, yaw
rate and lateral acceleration. The CAN measurements are at disposal during the
whole driving time. These data are an alternative to above mentioned INS data.

4.1. Non-linear SU model of a moving vehicle

Here, we construct the state (7) and output (8) equations that relate the vehicle
movements to GPS/CAN data. In the model, we neglect altitude changes and
use the Cartesian coordinate system. The list of available data is summarized in
Table 1. Azimuth ϕ is the horizontal angular distance of vehicle moving from a
northern direction, measured clockwise.
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Table 1. GPS/CAN data – usage in the model.

quantity (unit) notation source in model as
true position (m) (px, py) — state
true azimuth (rad) ϕ — state
measured position (m) (p̃x, p̃y) GPS output
measured azimuth (rad) ϕ̃ GPS output
velocity (m/s2) v CAN input
yaw rate [rad/s] ω CAN input

Using available data, a vehicle movement is characterized by a time evolution of
the position vector p = (px, py), whereas the following relationships hold

ṗx = v sinϕ, ṗy = v cos ϕ, ϕ̇ = ω,

where ż means a time derivative of z.
The above given relations cannot be used directly in the discrete-time equations

(7) and (8). Therefore, we approximate the differential equations by the difference
ones. Then, using assignment from the Table 1, the non-linear state equation (7)
with xt = [px;t py;t ϕt]′, ut = [vt ωt]′, wt = [wx;t wy;t wϕ;t]′ takes the following form

px;t = px;t−1 +hvtsinϕt−1 +wx;t

py;t = py;t−1 +hvtcosϕt−1 +wy;t

ϕt = ϕt−1 −h ωt +wϕ;t

(22)

where h is the length of the time step, i. e., the time difference between two subse-
quent time instants of measurement, labelled by t and t− 1.

The linear output equation (8) with yt = [p̃x;t p̃y;t ϕ̃t]′, C equal to the unit
matrix of size 3, et = [ex;t ey;t eϕ;t]′ is as follows

It

 p̃x;t

p̃y;t

ϕ̃t

 = It

 px;t +ex;t

py;t +ey;t

ϕt +eϕ;t

 (23)

where It is the measurement indicator: It = I(n) if the GPS data are available,
It = 0(n,n) otherwise; n is the length of the output vector.

This model is estimated using the technique described in Sections 3.3 and 3.4.
To successfully run NLP, a starting point X̂0 of the optimization has to be set
appropriately. Improper setting of X̂0 causes numerical instability. In experiments,
we set the X̂0 in the following way. We estimated the vehicle position with the
simplified linear SU model proposed in [13] first and obtain X̂LIN. Here, the original
linear SU model has been extended by one linear equation for an azimuth estimation.
Then we set X̂0 = X̂LIN and run NLP.
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5. EXPERIMENTS

5.1. Data description

For experiments, we use real data obtained from Škoda-Auto Inc. according to the
Table 1. GPS data are provided with frequency 10 Hz and centimeter accuracy.
CAN data are provided with the frequency 50 Hz. Here, we use only these CAN
data entries that are in time with GPS data entries. During the experiments, we
have a complete GPS data set at disposal. We simulate data outages by an artificial
omission of some GPS data items. Afterwards, we run an estimation. The estimation
is performed off-line on such part of complete data set that contains simulated outage
with some data entries both before beginning and after end of outage. Finally, we
compare the estimated states with the complete measured data.

The experiments run in the Matlab environment using its optimization toolbox.
It suffices for the considered experimental off-line processing. Experience indicates
that real-time version will be feasible with specialized software.

5.2. Evaluation of experiments

The estimation of the vehicle position is performed using the proposed algorithm
described in Sections 3.3 and 3.4. The resulting estimates are compared with the
actual values – we check whether the estimated values are within the given tolerance
area. To evaluate the quality of the estimates, the absolute error of estimates ∆zt

is used. It is defined as the difference between the measured vehicle position entry
z̃t and estimated vehicle position entry ẑt; z̃t, ẑt ∈ {px, py}, i. e.,

∆zt ≡ |z̃t − ẑt|, t ∈ t∗. (24)

The maximum entry of the sequence {∆zt}t∈t∗ is denoted by max(∆z). The mean
of this sequence is denoted by mean(∆z) and the median is denoted by med(∆z).

5.3. Results

In experiments, the estimation of moving vehicle position was performed with the
same lengths of simulated data outages that were placed on different parts of the
vehicle trajectory. The length of the outages is δ = 5 s, which is a typical length of
data outage in real situations.

Figure 1 shows a whole vehicle trajectory where the star denotes a start of the
vehicle movement (left) and a course of particular entries px;t, py;t, t ∈ t∗ (right).

Figure 2 shows the course of state estimation errors ∆px;t , ∆py;t for one selected
data outage with satisfactory estimation result (left) and respective part of trajectory
(right).

Figure 3 shows the course of state estimation errors ∆px;t , ∆py;t for one selected
data outage with unsatisfactory estimation result (left) and respective part of tra-
jectory (right).

Table 2 summarizes the obtained estimation results. Each row corresponds to
one experiment. It contains information on the maximum of absolute estimation
error, mean and median of absolute estimation error relating to the estimates of
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Fig. 1. The whole trajectory of a moving vehicle in cartesian coordinates where the star

denotes a start of the vehicle movement (left) and the course of corresponding parts

px, py.
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Fig. 2. Courses of absolute estimation errors ∆px;t and ∆py;t for an experiment with

satisfactory results (left) and respective part of trajectory (right) with marked beginning

(circle) and end (square) of the data outage.
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Table 2. Maximum, mean and median of absolute estimation error ∆zt (24)

for z ∈ {px, py} in meters.

No. max(∆px) mean(∆px) med(∆px) max(∆py ) mean(∆py ) med(∆py )
1 0.0248 0.0022 0.0005 0.0527 0.0028 0
2 0.0268 0.0048 0.0007 0.1121 0.0030 0
3 0.0227 0.0015 0 0.2161 0.0456 0
4 0.0654 0.0122 0.0070 0.1255 0.0334 0.0134
5 1.4605 0.3348 0.1515 0.6608 0.1174 0.0004
6 0.0225 0.0021 0 0.0101 0.0001 0
7 0.5356 0.0570 0.0068 0.0466 0.0054 0.0004
8 0.0405 0.0019 0 0.3432 0.0181 0
9 0.0256 0.0021 0 0.0482 0.0055 0.0020

10 0.0673 0.0031 0 0.0321 0.0014 0
11 0.0151 0.0008 0 1.6401 0.3349 0.0030
12 0.1070 0.0145 0 1.1502 0.1318 0
13 0.3243 0.0318 0 0.1087 0.0227 0.0061
14 0.5726 0.0543 0 0.3542 0.0215 0.0004
15 0.2911 0.0370 0 2.0917 0.3801 0
16 0.7180 0.0993 0 0.5726 0.0823 0

particular entries px, py of respective experiment. An entry 0 means the value lower
than 0.0001.

5.4. Discussion

In most of the experiments, we have obtained satisfactory results. It means that the
maximal absolute estimation error was lower than 0.5m which is a requirement of
the industrial partner.

We observe that the quality of estimation results depends strongly on the trajec-
tory shape. The unsatisfactory results occur mostly when an outage is placed on
the sharp turns of the trajectory. The used experimental data were from a training
drive. A common drive is usually more quiet without such sharp turns.

Further, the estimation quality depends on the amount of available measurements
before (NB) and after (NA) data outage. In our experiments, NA = NB = 10 was
appropriate for 50 missing measurements.

The necessity of properly chosen starting point X̂0 for NLP was discussed in
Section 4.1.

6. CONCLUSIONS

This paper presents an algorithm for the estimation of nonlinear SU model when
some measurements are missing. It generalizes previously proposed linear SU model
[13] and refines on achieved results. The proposed algorithm is simple to perform,
need no demanding initial setting and uses readily available data.
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An algorithm performance was successfully tested on the problem of a moving
vehicle position estimation.

Future research aims a further improvement of the state estimates. We will
focus on the cases when NLP gives unsatisfactory results. We will try to prevent
such situations by imposing boundaries on state values using more CAN data as a
steering angle or a distance moved.

Another way how to improve the estimates quality is a redefining of the model
so that all involved quantities will be considered either as outputs or states, i. e. no
input will be considered. In such a way, we prevent the unprecise data to deteriorate
the estimation results.

ACKNOWLEDGEMENT

This work was partially supported by the Research Centre DAR – project of the Ministry
of Education, Youth and Sports of the Czech Republic No. 1M0572.

(Received July 31, 2010)

R E FER E NCE S

[1] Y. Becis-Aubry, M. Boutayeb, and M. Darouach: State estimation in the presence of
bounded disturbances. Automatica 44 (2008), 1867–1873.

[2] A. Bemporad, C. Filippi, and F. Torrisi.: Inner and outer approximations of polytopes
using boxes. Computational Geometry 27 (2004), 151–178.

[3] J. O. Berger: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,
New York 1985.

[4] R. Fletcher: Practical Methods of Optimization. John Wiley & Sons, 2000.

[5] G. C. Goodwin and A. Feuer: Estimation with missing data. Mathematical and
Computer Modelling of Dynamical Systems 5 (1999), 3, 220–244.

[6] V. Gupta and S. Brennan: Terrain-based vehicle orientation estimation combining
vision and inertial measurements. J. Field Robotics 25 (2008), 3, 181–202.

[7] M. Imran, Y. Hassan, and D. Patterson: GPS-GIS-based procedure for tracking vehicle
path on horizontal alignments. Computer-aided Civil and Infrastructure Engineering
21(2006), 5, 383–394.

[8] A. M. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New
York 1970.
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