Kybernetika 47 no. 2, 273-284, 2011

Stability Criteria of Linear Neutral Systems With Distributed Delays

Guang-Da Hu

Abstract:

In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded half circular region. If there are no characteristic roots on the imaginary axis, the number of unstable characteristic roots can be obtained. The results of this paper extend those in the literature. Numerical examples are given to illustrate the presented results.

Keywords:

neutral systems, distributed delay, stability criteria

Classification:

65L07, 34K06

References:

  1. J. W. Brown and R. V. Churchill: Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004.   CrossRef
  2. J. K. Hale and S. M. Verduyn Lunel: Introdution to Functional Equations. Springer-Verlag, New York 1993.   CrossRef
  3. J. K. Hale and S. M. Verduyn Lunel: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5-23.   CrossRef
  4. G. Da Hu and M. Liu: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720-724.   CrossRef
  5. G. Da Hu and T. Mitsui: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT 35 (1995), 504-515.   CrossRef
  6. V. B. Kolmanovskii and A. Myshkis: Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1992.   CrossRef
  7. P. Lancaster: The Theory of Matrices with Applications. Academic Press, Orlando 1985.   CrossRef
  8. H. Li, S. Zhong and H. Li: Some new simple stability criteria of linear neutral systems with a single delay. J. Comput. Appl. Math. 200 (2007), 441-447.   CrossRef
  9. W. Michiels and S. Niculescu: Stability and Stabilization of Time Delay Systems: An Eigenvalue Based Approach. SIAM, Philadelphia 2007.   CrossRef
  10. J. H. Park: A new delay-dependent stability criterion for neutral systems with multiple delays. J. Comput. Appl. Math. 136 (2001), 177-184.   CrossRef
  11. T. Vyhlídal and P. Zítek: Modification of Mikhaylov criterion for nuetral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435.   CrossRef