ASSOCIATIVE n-DIMENSIONAL COPULAS

Andrea Stupňanová and Anna Kolesárová

The associativity of n-dimensional copulas in the sense of Post is studied. These copulas are shown to be just n-ary extensions of associative 2 -dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia.

Keywords: Archimedean copula, associativity in the sense of Post, n-dimensional copula Classification: 03E72

1. INTRODUCTION

Copulas were introduced by Sklar [13] to capture the stochastic dependence structure of random variables. Recall that for $n \geq 2$, a function $C:[0,1]^{n} \rightarrow[0,1]$ is called an n-dimensional copula (n-copula, for short) whenever it is a restriction of an n dimensional distribution function with all univariate margins uniformly distributed on $[0,1]$. Hence an n-copula is characterized by the properties:
(C1) $C\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ whenever $\forall j \neq i, x_{j}=1$;
(C2) $C\left(x_{1}, \ldots, x_{n}\right)=0$ whenever $0 \in\left\{x_{1}, \ldots, x_{n}\right\}$;
(C3) the n-increasing property, i. e., $\forall \mathbf{x}, \mathbf{y} \in[0,1]^{n}, x_{i} \leq y_{i}, i=1, \ldots, n$, it holds

$$
\sum_{J \subset\{1, \ldots, n\}}(-1)^{|J|} C\left(u_{1}^{J}, \ldots, u_{n}^{J}\right) \geq 0, \text { where } u_{i}^{J}= \begin{cases}x_{i}, & \text { if } i \in J, \tag{1}\\ y_{i}, & \text { if } i \notin J .\end{cases}
$$

By the Sklar theorem [13, for any n-dimensional random vector $Z=\left(X_{1}, \ldots, X_{n}\right)$ there is an n-copula $C:[0,1]^{n} \rightarrow[0,1]$ such that for each $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$

$$
F_{Z}\left(z_{1}, \ldots, z_{n}\right)=C\left(F_{X_{1}}\left(z_{1}\right), \ldots, F_{X_{n}}\left(z_{n}\right)\right),
$$

where $F_{Z}, F_{X_{1}}, \ldots, F_{X_{n}}$ are distribution functions of the corresponding random vectors.

There are two distinguished functions which are n-copulas for each $n \geq 2$: the so-called minimum n-copula M and the product n-copula Π, given by

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{n}\right) & =\min \left\{x_{1}, \ldots, x_{n}\right\} \\
\Pi\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} x_{i} .
\end{aligned}
$$

The minimum n-copula M describes the comonotone dependence of random variables X_{1}, \ldots, X_{n} and the product n-copula Π describes their independence. For more details we recommend monographs [4, 11].
For each n-copula C it holds

$$
W \leq C \leq M
$$

where W is the so-called Fréchet-Hoeffding lower bound, given by

$$
W\left(x_{1}, \ldots, x_{n}\right)=\max \left\{0, \sum_{i=1}^{n} x_{i}-(n-1)\right\} .
$$

It is a well-known fact that this function is a copula only for $n=2$, and in that case describes the countermonotone dependence of random variables X_{1} and X_{2}.

All the three basic 2-copulas (copulas, for short) M, Π and W are associative, i. e., for all $x_{1}, x_{2}, x_{3} \in[0,1]$ they satisfy the property

$$
\begin{equation*}
C\left(C\left(x_{1}, x_{2}\right), x_{3}\right)=C\left(x_{1}, C\left(x_{2}, x_{3}\right)\right) . \tag{2}
\end{equation*}
$$

Associativity as an algebraic property was originally introduced for binary functions only, see formula (21). Recently, based on ideas of Post 12, Couceiro [1 has studied the associativity of n-ary functions. Subsequently, during the open problem session at FSTA 2010, R. Mesiar has posed the problem of representation of associative n-copulas, see [8]. Recall that for $n=2$ this problem was solved in seventies by Ling [6] and Moynihan [10].

The aim of this paper is to solve the above mentioned open problem for any fixed $n>2$. The paper is organized as follows. In the next section, the representation of associative copulas is recalled. In Section 3 we study n-ary associative functions on $[0,1]$ possessing a neutral element and we show their relationship with binary associative functions. In Section 4, we introduce a representation theorem for associative n-copulas, together with some examples. Finally, some concluding remarks are added.

2. ASSOCIATIVE 2-DIMENSIONAL COPULAS

As mentioned above, 2-dimensional copulas will be referred to as copulas only. Let $C:[0,1]^{2} \rightarrow[0,1]$ be an associative copula satisfying $C(x, x)<x$ for all $\left.x \in\right] 0,1[$. Then C is called an Archimedean copula. Moynihan [10] has proved the next representation theorem for Archimedean copulas.

Theorem 2.1. A function $C:[0,1]^{2} \rightarrow[0,1]$ is an Archimedean copula if and only if there is a continuous strictly decreasing convex function $f:[0,1] \rightarrow[0, \infty], f(1)=0$, such that

$$
\begin{equation*}
C\left(x_{1}, x_{2}\right)=f^{(-1)}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) \tag{3}
\end{equation*}
$$

where $f^{(-1)}$ is the pseudo-inverse of f.
Recall that the pseudo-inverse $f^{(-1)}:[0, \infty] \rightarrow[0,1]$ is given by

$$
f^{(-1)}(u)=f^{-1}(\min (f(0), u)) .
$$

The function f in the above theorem is called a generator of an Archimedean copula C. It is unique up to a positive multiplicative constant.

Copulas W and Π are Archimedean, with generators f_{W} and f_{Π}, respectively, given by $f_{\mathrm{W}}(x)=1-x$ and $f_{\Pi}(x)=-\log x$. If we define the function $f_{(1)}:[0,1] \rightarrow$ $[0, \infty]$ by $f_{(1)}(x)=\frac{1}{x}-1$, it is also a generator and the corresponding Archimedean copula $C_{(1)}:[0,1]^{2} \rightarrow[0,1]$ is given by

$$
C_{(1)}\left(x_{1}, x_{2}\right)=\frac{x_{1} x_{2}}{x_{1}+x_{2}-x_{1} x_{2}}
$$

whenever $\left(x_{1}, x_{2}\right) \neq(0,0)$.
For a general associative copula C we have the next representation theorem (4) (11).
Theorem 2.2. A function $C:[0,1]^{2} \rightarrow[0,1]$ is an associative copula if and only if there is a system (]$a_{k}, b_{k}[)_{k \in \mathcal{K}}$ of pairwise disjoint open subintervals of $[0,1]$ and a system $\left(C_{k}\right)_{k \in \mathcal{K}}$ of Archimedean copulas such that

$$
C\left(x_{1}, x_{2}\right)= \begin{cases}a_{k}+\left(b_{k}-a_{k}\right) C_{k}\left(\frac{x_{1}-a_{k}}{b_{k}-a_{k}}, \frac{x_{2}-a_{k}}{b_{k}-a_{k}}\right), & \text { if } \left.\left(x_{1}, x_{2}\right) \in\right] a_{k}, b_{k}\left[^{2}\right. \tag{4}\\ M\left(x_{1}, x_{2}\right), & \text { for some } k \in \mathcal{K}\end{cases}
$$

Observe that if $\mathcal{K}=\emptyset$ then C in (4) is the strongest copula M. Archimedean copulas are linked to $\mathcal{K}=\{1\}$ and $] a_{1}, b_{1}[=] 0,1[$. Copula C given by (4) is called an ordinal sum copula, with notation $\left(\left\langle a_{k}, b_{k}, C_{k}\right\rangle \mid k \in \mathcal{K}\right)$.
Example 2.3. Let $C=\left(\left\langle 0, \frac{1}{2}, \Pi\right\rangle\right)$. Then

$$
C\left(x_{1}, x_{2}\right)= \begin{cases}2 x_{1} x_{2}, & \text { if } \left.\left(x_{1}, x_{2}\right) \in\right] 0, \frac{1}{2}\left[^{2}\right. \\ M\left(x_{1}, x_{2}\right), & \text { else }\end{cases}
$$

3. N-ARY ASSOCIATIVE FUNCTIONS WITH NEUTRAL ELEMENT

The associativity of n-ary functions was introduced by Post 12.
Definition 3.1. Let $n \geq 2$ and I be a real interval. A function $F: I^{n} \rightarrow I$ is said to be associative whenever for all $x_{1}, \ldots, x_{n}, \ldots, x_{2 n-1} \in I$ it holds

$$
\begin{align*}
& F\left(F\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)=F\left(x_{1}, F\left(x_{2}, \ldots, x_{n+1}\right), x_{n+2}, \ldots, x_{2 n-1}\right) \\
= & \cdots=F\left(x_{1}, \ldots, x_{n-1}, F\left(x_{n}, \ldots, x_{2 n-1}\right)\right) . \tag{5}
\end{align*}
$$

Evidently, for $n=2$, formulas (5) and (2) coincide, i. e., the Post n-ary associativity is a concept extending the standard notion of associativity for binary functions (operations). In the next definition, we recall the notion of neutral element, see [3].
Definition 3.2. Let $n \geq 2$ and I be a real interval. A function $F: I^{n} \rightarrow I$ is said to have neutral element $e \in I$ whenever $F\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ if $x_{j}=e$ for each $j \neq i$.
Evidently, property (C1) of n-copulas means that n-copulas have neutral element $e=1$. We say that a function F is an n-ary extension of a binary function G if it holds

$$
\left.F\left(x_{1}, \ldots, x_{n}\right)=G\left(G\left(\ldots G\left(G\left(x_{1}, x_{2}\right), x_{3}\right) \ldots\right), x_{n-1}\right), x_{n}\right)
$$

for all n-tuples in I^{n}.

Example 3.3.

(i) Define a mapping $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}+x_{3}$. Then F is a ternary associative function. Observe that there is no binary associative function whose ternary extension coincides with F. Moreover, F has no neutral element.
(ii) Let $C:[0,1]^{3} \rightarrow[0,1]$ be given by $C\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \min \left\{x_{2}, x_{3}\right\}$. Then $e=1$ is neutral element of C, but C is not associative. Note that C is a ternary copula.

Theorem 3.4. Consider $n \geq 2$. Let I be a real interval and $e \in I$. Then the following claims are equivalent:
(i) A mapping $F: I^{n} \rightarrow I$ is associative function with neutral element e.
(ii) There is a binary associative function $G: I^{2} \rightarrow I$ with neutral element e whose n-ary extension is F.

Proof. If $n=2$, the claim is trivial. Suppose that $n>2$.

- (i) \Leftarrow (ii) The proof is trivial.
- (i) \Rightarrow (ii) Define a function $G: I^{2} \rightarrow I$ by $G\left(x_{1}, x_{2}\right)=F\left(x_{1}, x_{2}, e, \ldots, e\right)$. Then $G\left(x_{1}, e\right)=F\left(x_{1}, e, \ldots, e\right)=x_{1}$ and $G\left(e, x_{2}\right)=F\left(e, x_{2}, e, \ldots, e\right)=x_{2}$, i. e., e is a neutral element of G. Moreover, for any $x_{1}, x_{2}, x_{3} \in I$ it holds

$$
\begin{gathered}
G\left(G\left(x_{1}, x_{2}\right), x_{3}\right)=F\left(F\left(x_{1}, x_{2}, e, \ldots, e\right), x_{3}, e, \ldots, e\right) \\
=F(x_{1}, x_{2}, F(\underbrace{e, \ldots, e,}_{(n-2) \text {-times }} x_{3}, e), \underbrace{e, \ldots, e}_{(n-3) \text {-times }})=F(x_{1}, x_{2}, x_{3}, \underbrace{e, \ldots, e}_{(n-3) \text {-times }}),
\end{gathered}
$$

and

$$
\begin{gathered}
G\left(x_{1}, G\left(x_{2}, x_{3}\right)\right)=F\left(x_{1}, F\left(x_{2}, x_{3}, e, \ldots, e\right), e, \ldots, e\right) \\
=F(x_{1}, x_{2}, F(x_{3}, \underbrace{e, \ldots, e}_{(n-1) \text {-times }}), \underbrace{e, \ldots, e}_{(n-3) \text {-times }})=F(x_{1}, x_{2}, x_{3}, \underbrace{e, \ldots, e}_{(n-3) \text {-times }}),
\end{gathered}
$$

which proves the associativity of G. From this proof it is also obvious that if $n=3$, then $F\left(x_{1}, x_{2}, x_{3}\right)=G\left(G\left(x_{1}, x_{2}\right), x_{3}\right)$. For $n>3, G\left(G\left(x_{1}, x_{2}\right), x_{3}\right)=$
$=F(x_{1}, x_{2}, x_{3}, \underbrace{e, \ldots, e}_{(n-3) \text {-times }})$ and similarly we can show that

$$
G\left(G\left(G\left(x_{1}, x_{2}\right), x_{3}\right), x_{4}\right)=F(x_{1}, x_{2}, x_{3}, x_{4}, \underbrace{e, \ldots, e}_{(n-4) \text {-times }}) .
$$

By induction on n it can be proved that for any $n>2$,

$$
G\left(G\left(\ldots G\left(G\left(x_{1}, x_{2}\right), \ldots\right), x_{n-1}\right), x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right) .
$$

Theorem 3.4 shows that under the neutral element existence, the associativity of n-ary functions is classically related to the associativity of binary functions.

4. ON THE STRUCTURE OF ASSOCIATIVE N-DIMENSIONAL COPULAS

Based on Theorems 2.1 2.23 .4 and recent results on ordinal sum structure of n-copulas proved by Mesiar and Sempi 9, we have the next result.

Corollary 4.1. Let $n \geq 2$. A function $C:[0,1]^{n} \rightarrow[0,1]$ is an associative n-copula if and only if there is a system (]$a_{k}, b_{k}[)_{k \in \mathcal{K}}$ of pairwise disjoint open subintervals of] 0,1 [, and a system $\left(C_{k}\right)_{k \in \mathcal{K}}$ of associative n-copulas satisfying the diagonal inequality $C_{k}(x, \ldots, x)<x$ for all $\left.x \in\right] 0,1[$ and $k \in \mathcal{K}$ such that

$$
C\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{cc}
a_{k}+\left(b_{k}-a_{k}\right) \mathrm{C}_{k}\left(\frac{\min \left\{x_{1}, b_{k}\right\}-a_{k}}{b_{k}-a_{k}}, \ldots, \frac{\min \left\{x_{n}, b_{k}\right\}-a_{k}}{b_{k}-a_{k}}\right) \tag{6}\\
\left.\quad \text { if } \min \left\{x_{1}, \ldots, x_{n}\right\} \in\right] a_{k}, b_{k}[& \text { for some } k \in \mathcal{K} \\
M\left(x_{1}, \ldots, x_{n}\right) & \text { else }
\end{array}\right.
$$

To complete the representation of associative n-copulas, the characterization of such copulas satisfying the diagonal inequality is necessary.

Theorem 4.2. Let $n \geq 2$. A function $C:[0,1]^{n} \rightarrow[0,1]$ is an associative n-copula satisfying the diagonal inequality $C(x, \ldots, x)<x$ for all $x \in] 0,1$ [if and only if there is a generator f whose pseudo-inverse $f^{(-1)}$ is an $(n-2)$-times differentiable function with derivatives alternating the sign, such that $(-1)^{n} \frac{\mathbf{d}^{n-2} f^{(-1)}}{\mathbf{d} x^{n-2}}$ is a convex function, and

$$
\begin{equation*}
C\left(x_{1}, \ldots, x_{n}\right)=f^{(-1)}\left(\sum_{i=1}^{n} f\left(x_{i}\right)\right) \tag{7}
\end{equation*}
$$

Proof. The sufficiency of conditions follows from [7.
By Theoren $3.4 C$ is an n-ary extension of an associative copula G. Suppose that $G\left(x_{0}, x_{0}\right)=x_{0}$ for some $\left.x_{0} \in\right] 0,1[$. Then

$$
C\left(x_{0}, \ldots, x_{0}\right)=G\left(G\left(\ldots G\left(G\left(x_{0}, x_{0}\right), \ldots\right), x_{0}\right), x_{0}\right)=x_{0}
$$

which violates the diagonal inequality satisfied by C. Therefore G also satisfies the diagonal inequality, i. e., $G(x, x)<x$ for all $x \in] 0,1$ [. By Theorem 1, formula (77) is satisfied for some generator f. Moreover, C given by (7) is n-increasing and hence, according to the results of McNeil and Nešlehová in [7], the required properties of f are necessary.

Example 4.3.

(i) As already mentioned, the product n-copula Π is associative for any $n \geq 2$. Evidently, $\Pi(x, \ldots, x)=x^{n}<x$ whenever $\left.x \in\right] 0,1\left[\right.$. As the generator f_{Π} of the copula Π is given by $f_{\Pi}(x)=-\log x$, it holds $f_{\Pi}^{(-1)}(x)=f_{\Pi}^{-1}(x)=e^{-x}$, hence for any $k, \frac{\mathbf{d}^{k} f_{\Pi}^{-1}(x)}{\mathbf{d} x^{k}}=(-1)^{k} e^{-x}$. Derivatives alternate the sign and for any $n \geq 2,(-1)^{n} \frac{\mathbf{d}^{n-2} f_{\Pi}^{(-1)}(x)}{\mathbf{d} x^{n-2}}=e^{-x}$ is a convex function.
(ii) A similar result can be shown for the generator $f_{(1)}$ introduced in Section 2, given by $f_{(1)}(x)=\frac{1}{x}-1$. It holds $f_{(1)}^{(-1)}(x)=f_{(1)}^{-1}(x)=(1+x),{ }^{-1}$ which implies that
$(-1)^{n} \frac{\mathbf{d}^{n-2} f_{\Pi}^{(-1)}(x)}{\mathbf{d} x^{n-2}}=(n-2)!(1+x)^{-n+1}$ is convex. The corresponding n copula $C_{(1)}$ is given by $C_{(1)}(x)=\left(\sum_{i=1}^{n} \frac{1}{x_{i}}-(n-1)\right)^{-1}$.
(iii) The weakest associative n-copula is the Clayton copula $C_{\left(-\frac{1}{n-1}\right)}$ generated by the generator $f_{\left(-\frac{1}{n-1}\right)}:[0,1] \rightarrow[0, \infty], f_{\left(-\frac{1}{n-1}\right)}=1-x^{\frac{1}{n-1}}$. The corresponding pseudo-inverse $f_{\left(-\frac{1}{n-1}\right)}^{(-1)}:[0, \infty] \rightarrow[0,1]$ is given by

$$
f_{\left(-\frac{1}{n-1}\right)}^{(-1)}(x)=\left\{\begin{array}{cl}
(1-x)^{n-1}, & \text { if } x \leq 1 \\
0, & \text { if } x>1
\end{array}\right.
$$

Then $(-1)^{n} \frac{\mathbf{d}^{n-2} f_{\left(-\frac{1}{n-1}\right)}^{(-1)}(x)}{\mathbf{d} x^{n-2}}=(n-1)!\max \{1-x, 0\}$ is convex but not differentiable. For more details we recommend [7].
(iv) The function $C:[0,1]^{n} \rightarrow[0,1]$ given by

$$
\mathrm{C}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{cl}
2^{n-1} \prod_{i=1}^{n} \min \left\{x_{i}, \frac{1}{2}\right\}, & \text { if } \min \left\{x_{1}, \ldots, x_{n}\right\}<\frac{1}{2} \tag{8}\\
M\left(x_{1}, \ldots, x_{n}\right), & \text { else }
\end{array}\right.
$$

is an n-ary extension of the ordinal sum copula ($\left\langle 0, \frac{1}{2}, \Pi\right\rangle$) introduced in Example 2.3 As n-ary function Π is an associative n-copula for each $n \geq 2$, our function C given by (8) is also an associative n-copula for each $n \geq 2$.

5. CONCLUDING REMARKS

We have solved the Problem 2.1 posed in [8], showing that associative n-copulas are just n-ary extensions of appropriate associative copulas. Based on Theorem 3.4, similar results can be formulated for the representation of continuous n-ary triangular norms or triangular conorms [5], and also for n-ary uninorms [2] continuous up to the case when $\{0,1\} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.

ACKNOWLEDGEMENT

The support of grants VEGA $1 / 0373 / 08$, VEGA $1 / 0198 / 09$ and APVV-0012-07 is kindly acknowledged.
(Received October 20, 2010)

REFERENCES

[1] M. Couceiro: On two generalizations of associativity. In: Abstracts of FSTA 2010 (E. P. Klement et. al., eds.), Liptovský Ján 2010, p. 47.
[2] J. Fodor, R. Yager, and A. Rybalov: Structure of uninorms. Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411-427.
[3] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge 2009.
[4] H. Joe: Multivariable Models and Dependence Concepts. Chapman \& Hall, London 1997.
[5] E.-P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000.
[6] C. H. Ling: Representation of associative functions. Publicationes Mathematicae Debrecen 12 (1965), 189-212.
[7] A.-J. McNeil and J. Nešlehová: Multivariate Archimedean copulas, d-monotone functions and L_{1}-norm symmetric distributions. Annals Statist. 37 (2009), 30593097.
[8] R. Mesiar and P. Sarkoci: Open problems posed at the 10th International Conference on Fuzzy Set Theory and Appl. (FSTA 2010), Liptovský Ján. Kybernetika 46 (2010), 585-598.
[9] R. Mesiar and C. Sempi: Ordinal sums and idempotents of copulas. Aequationes Math. 79 (2010), 1-2, 39-52.
[10] R. Moynihan: Infinite τ_{T} products of distribution functions. J. Austral. Math. Soc. Ser. A 26 (1978), 227-240.
[11] R.-B. Nelsen: An Introduction to Copulas. Second edition. Springer Science and Business Media, New York 2006.
[12] E.-L. Post: Polyadic groups. Trans. Amer. Math. Soc. 48 (1940), 208-350.
[13] A. Sklar: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.

Andrea Stupňanová, Department of Mathematics, Slovak University of Technology, Radlinského 11, 81368 Bratislava. Slovak Republic.
e-mail: stupnanova@stuba.sk
Anna Kolesárová, Institute IAM, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava. Slovak Republic.
e-mail: anna.kolesarova@stuba.sk

