LATTICE EFFECT ALGEBRAS DENSELY EMBEDDABLE INTO COMPLETE ONES

Zdenka Riečanová

An effect algebraic partial binary operation \oplus defined on the underlying set E uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion \widehat{E} of E there exists an effect algebraic partial binary operation $\widehat{\oplus}$ then $\widehat{\oplus}$ need not be an extension of \oplus . Moreover, for an Archimedean atomic lattice effect algebra E we give a necessary and sufficient condition for that $\widehat{\oplus}$ existing on \widehat{E} is an extension of \oplus defined on E. Further we show that such $\widehat{\oplus}$ extending \oplus exists at most one.

 $\label{eq:Keywords: non-classical logics, orthomodular lattices, effect algebras, MV-algebras, MacNeille completions$

Classification: 03G12, 06D35, 06F25, 81P10

1. INTRODUCTION, BASIC DEFINITIONS AND FACTS

Lattice effect algebras generalize orthomodular lattices including noncompatible pairs of elements [10] and MV-algebras including unsharp elements [1]. Effect algebras were introduced by D. Foulis and M. K. Bennet [3] as a generalization of the Hilbert space effects (i. e., self-adjoint operators between zero and identity operator on a Hilbert space representing unsharp measurements in quantum mechanics). They may have importance in the investigation of the phenomenon of uncertainty.

Definition 1.1. A partial algebra $(E; \oplus, 0, 1)$ is called an *effect algebra* if 0, 1 are two distinct elements and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

- (Ei) $x \oplus y = y \oplus x$ if $x \oplus y$ is defined,
- (Eii) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,
- (Eiii) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put x' = y, a supplement of x),
- (Eiv) if $1 \oplus x$ is defined then x = 0.

We often denote the effect algebra $(E; \oplus, 0, 1)$ briefly by E. On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

 $x \leq y$ and $y \oplus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If E with the defined partial order is a lattice (a complete lattice) then $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* (a complete lattice effect algebra).

Definition 1.2. Let *E* be an effect algebra. Then $Q \subseteq E$ is called a *sub-effect* algebra of *E* if

- (i) $1 \in Q$
- (ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect algebra of E then Q is called a *sub-lattice effect algebra* of E.

Note that a sub-effect algebra Q (sub-lattice effect algebra Q) of an effect algebra E (of a lattice effect algebra E) with inherited operation \oplus is an effect algebra (lattice effect algebra) in its own right.

Important sub-lattice effect algebras of a lattice effect algebra E are

- (i) $S(E) = \{x \in E \mid x \land x' = 0\}$ a set of all sharp elements of E (see [5], [6]), which is an orthomodular lattice (see [7]).
- (ii) Maximal subsets of pairwise compatible elements of E called *blocks* of E (see [19]), which are in fact maximal sub-MV-algebras of E. Here, x, y ∈ E are called *compatible* (x ↔ y for short) if x ∨ y = x ⊕ (y ⊖ (x ∧ y)) (see [11] and [2]).
- (iii) The center of compatibility B(E) of E, $B(E) = \bigcap \{M \subseteq E \mid M \text{ is a block} of E\} = \{x \in E \mid x \leftrightarrow y \text{ for every } y \in E\}$ which is in fact an MV-algebra (MV-effect algebra).
- (iv) The center $C(E) = \{x \in E \mid y = (y \land x) \lor (y \land x') \text{ for all } y \in E\}$ of E which is a Boolean algebra (see [4]). In every lattice effect algebra it holds $C(E) = B(E) \cap S(E)$ (see [15] and [17]).

For an element x of an effect algebra E we write $\operatorname{ord}(x) = \infty$ if $nx = x \oplus x \oplus \cdots \oplus x$ (*n*-times) exists for every positive integer n and we write $\operatorname{ord}(x) = n_x$ if n_x is the greatest positive integer such that $n_x x$ exists in E. An effect algebra E is Archimedean if $\operatorname{ord}(x) < \infty$ for all $x \in E, x \neq 0$.

A minimal nonzero element of an effect algebra E is called an *atom* and E is called *atomic* if under every nonzero element of E there is an atom. Properties of the set of all atoms in a lattice effect algebra E are in several cases substantial for the algebraic structure of E. For instance, the "Isomorphism theorem based on atoms" for Archimedean atomic lattice effect algebras can be proved [13]. Further, the atomicity of the center C(E) of E gives us the possibility to decompose E into subdirect product (resp. direct product for complete E) of irreducible effect algebras in the case when supremum of all atoms of the center equals 1. Recently M. Kalina [8] proved that this is not true in general and we give here a necessary and sufficient conditions for that. Moreover, if a lattice effect algebra E is complete then its important sub-lattice effect algebras S(E), blocks, C(E) and B(E) are complete sub-lattice effect algebras of E. However, not every effect algebra can

be embedded as a dense sub-effect algebra into a complete one (see [16]). We are going to prove some statements about extensions of \oplus -operation on an Archimedean atomic lattice effect algebra $(E; \oplus, 0, 1)$ onto the MacNeille completion $\widehat{E} = \mathcal{MC}(E)$ of its underlying ordered set E. In [16] it was proved that there exists a $\widehat{\oplus}$ -operation on $\widehat{E} = \mathcal{MC}(E)$ such that its restriction $\widehat{\oplus}_{/E}$ onto E coincides with \oplus on E iff Eis strongly D-continuous. Here strongly D-continuity of E means that, for every $U, Q \subseteq E$ such that $u \leq q$ for all $u \in U, q \in Q$ holds:

 $\bigwedge_E \{q \ominus u \mid q \in Q, u \in U\} = 0 \quad \text{iff} \quad a \leq b \text{ for all } a, b \in E \text{ with } a \leq q, u \leq b \text{ for all } u \in U, q \in Q.$

2. EXTENSIONS OF EFFECT ALGEBRAIC OPERATIONS ONTO COMPLETIONS OF THEIR UNDERLYING SETS

Every effect algebra $(E; \oplus, 0, 1)$ is in fact a bounded poset or lattice since the \oplus operation induces uniquely partial order on E at which 0 is the smallest and 1 the
greatest element of E. The converse is not true: The different operations \oplus_1 and \oplus_2 on a set E with $0, 1 \in E$ may induce the same partial order on E.

Example 2.1. The lattice effect algebras $E_1 = \{0, a, b, a \oplus b = 1\}$ and $E_2 = \{0, a, b, 2a = 2b = 1\}$ have the underlying set the same lattice $\widetilde{E} = \{0, a, b, 1 = a \lor b\}$.

For a poset P and its subposet $Q \subseteq P$ we denote, for all $X \subseteq Q$, by $\bigvee_Q X$ the join of the subset X in the poset Q whenever it exists.

We say that a finite system $F = (x_k)_{k=1}^n$ of not necessarily different elements of an effect algebra $(E; \oplus, 0, 1)$ is orthogonal if $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ (written $\bigoplus_{k=1}^n x_k$ or $\bigoplus F$) exists in E. Here we define $x_1 \oplus x_2 \oplus \cdots \oplus x_n = (x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1}) \oplus x_n$ supposing that $\bigoplus_{k=1}^{n-1} x_k$ is defined and $\bigoplus_{k=1}^{n-1} x_k \leq x'_n$. We also define $\bigoplus \emptyset = 0$. An arbitrary system $G = (x_\kappa)_{\kappa \in H}$ of not necessarily different elements of E is called orthogonal if $\bigoplus K$ exists for every finite $K \subseteq G$. We say that for an orthogonal system $G = (x_\kappa)_{\kappa \in H}$ the element $\bigoplus G$ exists iff $\bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite}\}$ exists in E and then we put $\bigoplus G = \bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite}\}$. (Here we write $G_1 \subseteq G$ iff there is $H_1 \subseteq H$ such that $G_1 = (x_\kappa)_{\kappa \in H_1}$).

It is well known that any partial ordered set P can be embedded into a complete lattice $\hat{P} = \mathcal{MC}(P)$ called a *MacNeille completion* (or *completion by cuts*). It has been shown (see [26]) that the MacNeille completion of P (up to isomorphism unique over P) is any complete lattice \hat{P} into which P can be supremum-densely and infimum-densely embedded (i. e., for every element $x \in \hat{P}$ there exist $Q, S \subseteq P$ such that $x = \bigvee_{\hat{P}} \varphi(Q) = \bigwedge_{\hat{P}} \varphi(S)$, where $\varphi : P \to \hat{P}$ is the embedding). We usually identify P with $\varphi(P) \subseteq \hat{P}$. In this sense \hat{P} inherits all infima and suprema existing in P.

Definition 2.2. Let $(E; \oplus_E, 0_E, 1_E)$ and $(F; \oplus_F, 0_F, 1_F)$ be effect algebras. A bijective map $\varphi : E \to F$ is called an *isomorphism* if

- (i) $\varphi(1_E) = 1_F$,
- (ii) for all $a, b \in E$: $a \leq_E b'$ iff $\varphi(a) \leq_F (\varphi(b))'$ in which case $\varphi(a \oplus_E b) = \varphi(a) \oplus_F \varphi(b)$.

We write $E \cong F$. Sometimes we identify E with $F = \varphi(E)$. If $\varphi : E \to F$ is an injection with properties (i) and (ii) then φ is called an *embedding*. We say that E is *densely embeddable* into F if there is an embedding $\varphi : E \to F$ of effect algebras such that to each $x \in F$, $x \neq 0$ there exists $y \in E$, $y \neq 0$ with $\varphi(y) \leq x$. Then $\varphi(E)$ is called a dense sub-effect algebra of F.

Remark 2.3. Note that for an effect algebra $(E; \oplus, 0, 1)$ an extension of \oplus -operation onto $\widehat{E} = \mathcal{MC}(E)$ exists iff E is a dense sub-effect algebra of \widehat{E} (equivalently, an extension $\widehat{\oplus}$ onto $\widehat{E} = \mathcal{MC}(E)$ exists iff E can be densely embedded into \widehat{E}). This follows from the fact that in such a case E is a supremum-dense sub-effect algebra of the complete lattice effect algebra \widehat{E} , and conversely.

Theorem 2.4. Let $(E; \lor, \land, ', 0, 1)$ be an orthomodular lattice and let $E^* = \mathcal{MC}(E)$ be a MacNeille completion of E. Then

- (i) There exists a unique \oplus -operation on E such that $(E; \oplus, 0, 1)$ is a lattice effect algebra in which partial order coincides with partial order of the orthomodular lattice E.
- (ii) E^* is an orthomodular lattice iff there exists a unique \oplus^* -operation on E^* such that $(E^*; \oplus^*, 0, 1)$ is a complete lattice effect algebra and $\oplus_{/E}^* = \oplus$.

Proof. (i) Let $(E; \oplus, 0, 1)$ be a lattice effect algebra in which partial order coincides with partial order of the orthomodular lattice E. Then for $x, y \in E$, $x \oplus y$ exists iff $x \leq y'$, in which case $x \oplus y = (x \lor y) \oplus (x \land y) = x \lor y$, since $x \land y \leq y' \land y = 0$. Conversely, for every orthomodular lattice E the operation \oplus defined by $x \oplus y = x \lor y$ iff $x \leq y'$ satisfies axioms of an effect algebra (see [2]).

(ii) This follows by (i) and the fact that E is a sub-lattice of E^* . Moreover, E^* is an orthomodular lattice iff for the effect algebra $(E; \oplus, 0, 1)$ derived from the orthomodular lattice E there exists an extension \oplus^* on E^* such that $(E^*; \oplus^*, 0, 1)$ is a complete lattice effect algebra (see [16, Theorem 6.5]).

Recall that a lattice effect algebra with a unique block is called an MV-effect algebra.

Lemma 2.5. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic MV-effect algebra. Let $\widehat{E} = \mathcal{MC}(E)$ be a MacNeille completion of E and let us identify E with $\varphi(E)$ (where $\varphi: E \to \widehat{E}$ is the embedding). Then

- (i) There exists a unique $\widehat{\oplus}$ -operation on \widehat{E} making \widehat{E} a complete MV-effect algebra $(\widehat{E}; \widehat{\oplus}, 0, 1)$.
- (ii) The restriction $\widehat{\oplus}_{/E}$ coincides with \oplus on E and E is a sub-MV-effect algebra of \widehat{E} .

Proof. (i) Since \widehat{E} is a complete atomic MV-effect algebra, it is isomorphic to a direct product of finite chains. Since $\widehat{\oplus}$ on the direct product is defined coordinate-wise, we obtain that this operation on \widehat{E} is unique.

(ii) By [18, Theorem 3.4], E is a sub-MV-effect algebra of \widehat{E} (see also [22, Theorem 3.1]). Hence the restriction $\widehat{\oplus}_{/E}$ coincides with \oplus on E.

Definition 2.6. A direct product $\prod \{E_{\kappa} \mid \kappa \in H\}$ of effect algebras E_{κ} is a cartesian product with \oplus , 0, 1 defined "coordinatewise", i. e., $(a_{\kappa})_{\kappa \in H} \oplus (b_{\kappa})_{\kappa \in H}$ exists iff $a_{\kappa} \oplus_{\kappa} b_{\kappa}$ is defined for each $\kappa \in H$ and then $(a_{\kappa})_{\kappa \in H} \oplus (b_{\kappa})_{\kappa \in H} = (a_{\kappa} \oplus_{\kappa} b_{\kappa})_{\kappa \in H}$. Moreover, $0 = (0_{\kappa})_{\kappa \in H}, 1 = (1_{\kappa})_{\kappa \in H}$.

A subdirect product of a family $\{E_{\kappa} \mid \kappa \in H\}$ of lattice effect algebras is a sublattice-effect algebra Q of the direct product $\prod\{E_{\kappa} \mid \kappa \in H\}$ such that each restriction of the natural projection $\operatorname{pr}_{\kappa_i}$ to Q is onto E_{κ_i} .

Proposition 2.7. There is an Archimedean atomic lattice effect algebra $(E; \oplus, 0, 1)$ such that there are infinitely many different operations $\widehat{\oplus}_n$ on a MacNeille completion $\widehat{E} = \mathcal{MC}(E)$ of E at which $(\widehat{E}; \widehat{\oplus}_n, 0, 1)$ are mutually non-isomorphic.

Example 2.8. Let $E_k^{(1)} \simeq E_1$, k = 1, 2, ..., n; $E_k^{(2)} \simeq E_2$, k = n + 1, n + 2, ... where E_1, E_2 are those from Example 2.1. Let

$$\widehat{E}^{(n)} \cong \left(\prod_{k=1}^{n} E_k^{(1)}\right) \times \left(\prod_{k=n+1}^{\infty} E_k^{(2)}\right) \cong B_n \times M_n.$$

Here $(\widehat{E}^{(n)}; \widehat{\oplus}_n, 0, 1)$, where $0 = (0_k)_{k=1}^{\infty}$, $1 = (1_k)_{k=1}^{\infty}$ and $x \in \widehat{E}^{(n)}$ iff $x = (x_k)_{k=1}^{\infty}$ with $x_k \in \widehat{E}_k^{(1)}$ for k = 1, 2, ..., n and $x_k \in \widehat{E}_k^{(2)}$ for k = n + 1, n + 2, ... are mutually non-isomorphic complete distributive lattice effect algebras. Nevertheless the underlying complete lattices $\widehat{E}^{(n)}$ are isomorphic to the complete lattice $\widehat{E} \cong \prod_{k=1}^{\infty} E_k$ where $E_k = \widetilde{E}$ from Example 2.1, k = 1, 2, ... Moreover, $B_n =$ $\prod_{k=1}^n E_k^{(1)}$, n = 1, 2, ... are complete atomic Boolean algebras with 2n atoms and $M_n = \prod_{k=n+1}^{\infty} E_k^{(2)}$, n = 1, 2, ... are complete atomic lattice effect algebras with infinitely many blocks.

Assume now that $E^* = \prod_{k=1}^{\infty} E_k^{(1)}$. Clearly E^* is a complete atomic Boolean algebra. Set $E = \{x \in E^* \mid x \text{ or } x' \text{ is finite}\}$ hence $x \in E$ iff x or x' is a join of a finite set of atoms of E^* . Then E is a sub-lattice effect algebra of E^* (even a Boolean sub-algebra of E^*) with \oplus -operation $x \oplus y = x \lor y$ iff $x \land y = 0$ in the Boolean algebra E. Hence E is not a sub-lattice effect algebra of any $\widehat{E}^{(n)}$, since $\widehat{\oplus}_{n/E}$ does not coincide with \oplus on $E, n = 1, 2, \ldots$.

Theorem 2.9. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic lattice effect algebra and let $E^* = \mathcal{MC}(E)$ be a MacNeille completion of a lattice E. Let there exist a \oplus^* operation on E^* making $(E^*; \oplus^*, 0, 1)$ a complete lattice effect algebra. The following conditions are equivalent:

(i) For every atom a of E, $\operatorname{ord}(a)$ in E equals $\operatorname{ord}(a)$ in E^* at which for every positive integer $k \leq \operatorname{ord}(a)$

$$\underbrace{a \oplus^* a \oplus^* \cdots \oplus^* a}_{k-\text{times}} = \underbrace{a \oplus a \oplus \cdots \oplus a}_{k-\text{times}}$$

and for every pair $a, b \in A_E$: $a \leftrightarrow b$ in E iff $a \leftrightarrow b$ in E^* .

(ii) The restriction \oplus_{E}^{*} of \oplus^{*} onto E coincides with \oplus on E (equivalently E is a sub-lattice effect algebra of E^{*}).

In this case for any maximal orthogonal set $A \subseteq A_E$ there are unique atomic blocks M_A of E and M_A^* of E^* with $A \subseteq M_A \cap M_A^*$ and $M_A^* = \mathcal{MC}(M_A)$.

Proof. (i) \implies (ii): Let A_E and A_{E^*} be sets of atoms of E and E^* respectively. Since E is supremum-dense in E^* , we obtain that $A_E = A_{E^*}$. It follows by [12] that to every maximal set of pairwise compatible atoms $A \subseteq A_E = A_{E^*}$ there exist unique blocks M_A of E and M_A^* of E^* with A as a common set of atoms. Hence $A \subseteq M_A$ and $A \subseteq M_A^*$. Let us show that $M_A \subseteq M_A^*$. For that assume $x \in M_A$. Then by [21, Theorem 3.3] there exist a set $\{a_{\kappa} \mid \kappa \in \mathcal{H}\} \subseteq A$ and positive integers $k_{\kappa} \leq \operatorname{ord}(a_{\kappa}), \kappa \in \mathcal{H}$ such that

$$\begin{aligned} x &= \bigoplus_{M_A} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigvee_{M_A} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigvee_E \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} \\ &= \bigvee_{E^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigvee_{M_A^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigoplus_{M_A^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} \in M_A^* \end{aligned}$$

since $k_{\kappa}a_{\kappa} \in M_A \cap M_A^*$ for all $k_{\kappa} \leq \operatorname{ord}(a_{\kappa}), \kappa \in \mathcal{H}, M_A$ is a bifull sub-lattice of E (see [14]), E^* inherits all infima and suprema existing in E and M_A^* is a complete sub-lattice of E^* (see [20, Theorem 2.8]). This proves that $M_A \subseteq M_A^*$.

Now let $y \in M_A^*$. Then again by [21, Theorem 3.3] there exist $\{b_\beta \mid \beta \in \mathcal{B}\} \subseteq A$ and positive integers $l_\beta \leq \operatorname{ord}(b_\beta), \beta \in \mathcal{B}$ such that

$$y = \bigoplus_{M_A^*} \{ l_\beta b_\beta \mid \beta \in \mathcal{B} \} = \bigvee_{M_A^*} \{ l_\beta b_\beta \mid \beta \in \mathcal{B} \}$$

which proves that M_A is supremum-dense in M_A^* , as $l_\beta b_\beta \in M_A$ for all $\beta \in \mathcal{B}$.

Since $1 \in M_A \cap M_A^*$ we obtain that

$$1 = \bigoplus_{M_A} \{n_a a \mid a \in A\} = \underbrace{\bigoplus_{M_A} \{k_\kappa a_\kappa \mid \kappa \in \mathcal{H}\}}_{x} \oplus \underbrace{\bigoplus_{M_A} (\{(n_{a_\kappa} - k_\kappa)a_\kappa \mid \kappa \in \mathcal{H}\} \cup \{n_a a \mid a \in A, a \neq a_\kappa \text{ for every } \kappa \in \mathcal{H}\})}_{x} \oplus \underbrace{\bigoplus_{M_A^*} \{n_a a \mid a \in A\}}_{x} = \underbrace{\bigoplus_{M_A^*} \{k_\kappa a_\kappa \mid \kappa \in \mathcal{H}\}}_{x} \oplus \underbrace{\bigoplus_{M_A^*} (\{(n_{a_\kappa} - k_\kappa)a_\kappa \mid \kappa \in \mathcal{H}\} \cup \{n_a a \mid a \in A, a \neq a_\kappa \text{ for every } \kappa \in \mathcal{H}\})}_{x'^* \in M_A^*}.$$

Thus, by axiom (Eiii) of effect algebras, we obtain that

$$x' = \bigoplus_{M_A} \left(\{ (n_{a_{\kappa}} - k_{\kappa})a_{\kappa} \mid \kappa \in \mathcal{H} \} \cup \{ n_a a \mid a \in A, a \neq a_{\kappa} \text{ for every } \kappa \in \mathcal{H} \} \right)$$

and

$$x'^* = \bigoplus_{M_A^*} \left(\{ (n_{a_{\kappa}} - k_{\kappa})a_{\kappa} \mid \kappa \in \mathcal{H} \} \cup \{ n_a a \mid a \in A, a \neq a_{\kappa} \text{ for every } \kappa \in \mathcal{H} \} \right)$$

As above, we get that $x' = x'^*$.

Thus by de Morgan laws for supplementation on M_A^* we obtain that M_A is also infimum-dense in M_A^* . This proves that $M_A^* = \mathcal{MC}(M_A)$ is a MacNeille completion of a M_A .

Assume now that $x, y \in E$ with $x \oplus^* y$ defined in E^* . Then $x \leftrightarrow y$ in E^* and hence by [9] there exists an atomic block M^* of E^* such that $\{x, y, x \oplus y\} \subseteq M^*$. Now, by [12] we obtain that there exists a maximal pairwise compatible set $A \subseteq A_E = A_{E^*}$ such that $A \subseteq M^*$ and an atomic block block M of E such that $A \subseteq M$. As we have proved above, $M \subseteq M^* = \mathcal{MC}(M)$. Since $x, y \in M^* \cap E = M$ we obtain by Lemma 2.5 that M is a sub-effect algebra of M^* and hence $x \oplus^* y = x \oplus y$. Thus, we have proved that the restriction $\oplus_{/E}^*$ onto E coincides with \oplus on E. Consequently, E is a sub-lattice effect algebra of E^* because we have also $0, 1 \in E$ and for any $x, x' \in E$ the equalities $1 = x \oplus x' = x \oplus^* x'$ holds, as we have just proved above. (ii) \Longrightarrow (i): This is trivial.

Corollary 2.10. Let $(E; \oplus, 0, 1)$ be an Archimedean atomic lattice effect algebra and let $E^* = \mathcal{MC}(E)$. Then there exists at most one \oplus^* -operation on E^* such that $(E^*; \oplus^*, 0, 1)$ is a complete lattice effect algebra and the restriction $\oplus_{/E}^*$ of \oplus^* onto E coincides with \oplus on E.

Proof. Let \oplus_1^* and \oplus_2^* be such that make E^* a complete lattice effect algebra at which $\oplus_{1/E}^*$ and $\oplus_{2/E}^*$ coincide with \oplus on E. Set $E_1^* = E_2^* = E^*$ and, for simplicity, let us use symbols E_1^* for complete lattice effect algebra $(E_1^*; \oplus_1^*, 0, 1)$ and E_2^* for $(E_2^*; \oplus_2^*, 0, 1)$. Since the effect algebra E is a sub-lattice effect algebra of E_1^* as well as of E_2^* , we obtain that for any $x \in E$ the supplements x' in E, E_1^* and E_2^* coincide. Further $A_E = A_{E_1^*} = A_{E_2^*} \subseteq E$. Thus for any $y \in E^*$ there exists an orthogonal set $A_y = \{a_\kappa \mid \kappa \in \mathcal{H}\} \subseteq A_E$ and positive integers $k_\kappa \leq \operatorname{ord}(a_\kappa), \kappa \in \mathcal{H}$ such that

$$y = \bigvee_{E^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigoplus_{E_1^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \} = \bigoplus_{E_2^*} \{ k_{\kappa} a_{\kappa} \mid \kappa \in \mathcal{H} \},$$

which gives $y' = \bigwedge_{E^*} \{(k_\kappa a_\kappa)' \mid \kappa \in \mathcal{H}\}$. Hence y' in E_1^* and E_2^* coincides. It follows that for $y, z \in E^*$ there exists $y \oplus_1^* z$ iff $y \oplus_2^* z$ exists iff $z \leq y'$. Let $A_z = \{c_\alpha \mid \alpha \in \Lambda\} \subseteq A_E$ and $l_\alpha \leq \operatorname{ord}(c_\alpha)$, $\alpha \in \Lambda$ be such that $z = \bigvee_{E^*} \{l_\alpha c_\alpha \mid \alpha \in \Lambda\}$. Then $A_y \cup A_z \subseteq A \subseteq A_E$ for some maximal orthogonal set A of atoms and hence by Theorem 2.9 there are unique blocks M of E, M_1^* of E_1^* and M_2^* of E_2^* such that $A \subseteq M \cap M_1^* \cap M_2^*$. Moreover by Theorem 2.9 we have $M_1^* = M_2^* = \mathcal{MC}(M)$, which by Lemma 2.5 implies that $\oplus_{1/M_1^*}^* = \oplus_{2/M_2^*}^*$. Since $x, y \in M_1^* \cap M_2^*$ we obtain that $x \oplus_1^* y = x \oplus_2^* y \in M_1^* \cap M_2^*$. This proves that $\oplus_1^* = \oplus_2^*$ on E^* .

Note that in [13] the necessary and sufficient conditions for isomorphism of two Archimedean atomic lattice effect algebras are given. These conditions are based on isomorphism of their atomic blocks.

Finally note that if $(E; \oplus, 0, 1)$ is a complete lattice effect algebra with atomic center C(E) then E is isomorphic to a direct product of the family $\{[0, p] \mid p \in E$ atom of $C(E)\}$ of irreducible lattice effect algebras. This is because then C(E) is a complete sublattice of E and hence then $\bigvee_{C(E)} A_{C(E)} = \bigvee_{E} A_{C(E)} = 1$, where $A_{C(E)} = \{p \in C(E) \mid p \text{ atom of } C(E)\}$ (see [23, Theorem 3.1]). M. Kalina showed (see [8]) that for an Archimedean atomic lattice effect algebra E with atomic center C(E) the condition $\bigvee_E A_{C(E)} = 1$ need not be satisfied. Hence the center C(E) of E need not be a *bifull sub-lattice* of E (meaning that $\bigvee_{C(E)} D = \bigvee_E D$ for any $D \subseteq C(E)$ for which at least one of the elements $\bigvee_{C(E)} D$, $\bigvee_E D$ exists).

This occurs e.g., for every sub-lattice effect algebra E_1 of finite and cofinite elements of the direct product $E = G \times B$, where B is a complete Boolean algebra with countably many atoms and G is an irreducible Archimedean atomic (o)-continuous lattice effect algebra with infinite top element. M. Kalina constructed such lattice effect algebra G in [8].

Theorem 2.11. Let E be an Archimedean atomic lattice effect algebra with atomic center C(E). The following conditions are equivalent:

- (i) $\bigvee_{E} A_{C(E)} = 1.$
- (ii) For every $a \in A_E$ there exists $p_a \in A_{C(E)}$ such that $a \leq p_a$.
- (iii) For every $z \in C(E)$ it holds:

$$z = \bigvee_{C(E)} \{ p \in A_{C(E)} \mid p \le z \} = \bigvee_{E} \{ p \in A_{C(E)} \mid p \le z \}.$$

(iv) C(E) is a bifull sub-lattice of E.

In this case E is isomorphic to a subdirect product of Archimedean atomic irreducible lattice effect algebras.

Proof.

(i) \iff (ii): This was proved in [25, Lemma 1].

(i) \implies (iii): Let $z \in C(E)$. Then, as $C(E) \subseteq B(E)$, we have by [7] that

$$z = z \land \bigvee_E A_{C(E)} = \bigvee_E \{z \land p \mid p \in A_{C(E)}\} = \bigvee_E \{p \in A_{C(E)} \mid p \le z\}.$$

The last follows from the fact that $p \wedge z \in C(E)$ for all $p \in A_{C(E)}$. (iii) \Longrightarrow (iv): Let $D \in C(E)$ and let there exist $\bigvee_{C(E)} D = d \in C(E)$. Using (iii) we have that $z = \bigvee_{C(E)} \{p \in A_{C(E)} \mid p \leq z\} = \bigvee_{E} \{p \in A_{C(E)} \mid p \leq z\}$, for every $z \in C(E)$. Moreover, for every $p \in A_{C(E)}$, $p \leq d$ we have

$$p = p \land \bigvee_{C(E)} \{ z \in C(E) \mid z \in D \} = \bigvee_{C(E)} \{ p \land z \in C(E) \mid z \in D \},$$

hence there exists $z \in D$ such that $p \leq z$. Conversely, $p \in A_{C(E)}$, $p \leq z \in D$ imply that $p \leq d$. This proves that

$$\{p \in A_{C(E)} \mid p \le d\} = \bigcup \{\{p \in A_{C(E)} \mid p \le z\} \mid z \in D\},\$$

which by (iii) gives that

$$\begin{split} \bigvee_{C(E)} D = d &= \bigvee_E \{ p \in A_{C(E)} \mid p \leq d \} = \bigvee_E \bigcup \{ \{ p \in A_{C(E)} \mid p \leq z \} \mid z \in D \} \\ &= \bigvee_E \{ \bigvee_E \{ p \in A_{C(E)} \mid p \leq z \} \mid z \in D \} = \bigvee_E \{ z \in C(E) \mid z \in D \} = \bigvee_E D. \end{split}$$

Since $D \subseteq C(E)$ iff $D' = \{z' \mid z \in D\} \subseteq C(E)$, we obtain that $\bigwedge_{C(E)} D = \bigwedge_E D$. (iv) \Longrightarrow (i): This is trivial.

Now, assume that (i) holds. Then from [23, Theorem 3.1] we get that E is isomorphic to a subdirect product of Archimedean atomic irreducible lattice effect algebras.

Open Problem. Assume that $(E; \oplus, 0, 1)$ is an Archimedean atomic lattice effect algebra such that some effect-algebraic \oplus^* -operation onto $\widehat{E} = \mathcal{MC}(E)$ exists. Still unanswered question is whether then there exists also such $\widehat{\oplus}$ -operation on \widehat{E} that extends the operation \oplus .

ACKNOWLEDGEMENT

The author was supported by the Slovak Research and Development Agency under the contract No. APVV-0071-06 and by the VEGA grant agency, Grant Number 1/0297/11.

(Received July 16, 2010)

$\mathbf{R} \, \mathbf{E} \, \mathbf{F} \, \mathbf{E} \, \mathbf{R} \, \mathbf{E} \, \mathbf{N} \, \mathbf{C} \, \mathbf{E} \, \mathbf{S}$

- C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958). 467–490.
- [2] F. Chovanec and F. Kôpka: Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583.
- [3] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346.
- [4] R. J. Greechie, D. J. Foulis, and S. Pulmannová: The center of an effect algebra. Order 12 (1995), 91–106.
- [5] S. P. Gudder: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30.
- [6] S.P. Gudder: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923.
- [7] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
- [8] M. Kalina: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620.
- [9] M. Kalina, V. Olejček, J. Paseka, and Z. Riečanová: Sharply dominating MV-effect algebras. To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x.
- [10] G. Kalmbach: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.

- [11] F. Kôpka: Compatibility in D-posets. Internat. J. Theoret. Phys. 34 (1995), 1525– 1531.
- [12] K. Mosná: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/s, 3–6.
- [13] J. Paseka and Z. Riečanová: Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528.
- [14] J. Paseka and Z. Riečanová: The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states. To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7.
- [15] Z. Riečanová: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158.
- [16] Z. Riečanová: MacNeille completions of D-posets and effect algebras. Internat. J. Theoret. Phys. 39 (2000), 859–869.
- [17] Z. Riečanová: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38 (1999), 3209–3220.
- [18] Z. Riečanová: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452.
- [19] Z. Riečanová: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. Jour. Theoret. Phys. 39 (2000), 231–237.
- [20] Z. Riečanová: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532.
- [21] Z. Riečanová: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524.
- [22] Z. Riečanová: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259.
- [23] Z. Riečanová: Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423.
- [24] Z. Riečanová: Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009) 529–534.
- [25] Z. Riečanová: Archimedean atomic lattice effect algebras with complete lattice of sharp elements. SIGMA 6 (2010), 001, 8 pages.
- [26] J. Schmidt: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. d. Math. 7 (1956), 241–249.

Zdenka Riečanová, Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, SK-812 19 Bratislava. Slovak Republic.

e-mail: zdenka.riecanova@stuba.sk