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INTERTWINING OF BIRTH-AND-DEATH PROCESSES

Jan M. Swart

It has been known for a long time that for birth-and-death processes started in zero
the first passage time of a given level is distributed as a sum of independent exponentially
distributed random variables, the parameters of which are the negatives of the eigenvalues
of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this
fact by constructing a coupling between a general birth-and-death process and a process
whose birth rates are the negatives of the eigenvalues, ordered from high to low, and whose
death rates are zero, in such a way that the latter process is always ahead of the former, and
both arrive at the same time at the given level. In this note, we extend their methods by
constructing a third process, whose birth rates are the negatives of the eigenvalues ordered
from low to high and whose death rates are zero, which always lags behind the original
process and also arrives at the same time.
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1. INTRODUCTION

1.1. First passage times of birth-and-death processes

Let X = (Xt)t≥0 be the continuous-time Markov process in N = {0, 1, . . .}, started
from X0 = 0, that jumps from x− 1 to x with birth rate bx > 0 and from x to x− 1
with death rate dx > 0 (x ≥ 1). Let

τN := inf{t ≥ 0 : Xt = N} (N ≥ 1) (1)

denote the first passage time of N . The following result has been known at least
since [5], Prop. 1.

Proposition 1.1. (Law of first passage times) The first passage time τN is dis-
tributed as a sum of independent exponentially distributed random variables whose
parameters λ1 < · · · < λN are the negatives of the nonzero eigenvalues of the gen-
erator of the process stopped in N .

Older proofs of this fact are based on a calculation of the Laplace transform of
τN by purely algebraic methods, see [2] for a historical overview. In the latter paper,
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Diaconis and Miclo gave for the first time a probabilistic proof of Proposition 1.1,
by coupling the process X to another birth-and-death process X+ with birth rates
b+
1 = λN , . . . , b+

N = λ1 and zero death rates, in such a way that Xt∧τN
≤ X+

t for all
t ≥ 0 and X and X+ arrive in N at the same time. In the present paper, we will
extend their methods by showing that X and X+ can in addition be coupled to a
process X− with birth rates b+

1 = λ1, . . . , b
+
N = λN and zero death rates, in such a

way that X−
t ≤ Xt∧τN

≤ X+
t for all t ≥ 0 and all three processes arrive in N at the

same time.

1.2. Intertwining of Markov processes

The coupling technique used by Diaconis and Miclo in [2] is of a special kind, which
is sometimes called intertwining of Markov processes. Let X and X ′ be continuous-
time Markov processes with finite state spaces S and S′ and generators G and G′,
respectively, and let K be a probability kernel from S to S′. Then K defines a linear
operator from R

S′

to R
S , also denoted by K, by the formula

Kf(x) :=
∑

y∈S′

K(x, y)f(y). (2)

The following result, which is based on an observation by Rogers and Pitman [7], was
proved by Fill in [3], Thm. 2. (An independent proof can be found in [1], Prop. 4).

Proposition 1.2. (Intertwining of Markov processes) Assume that

GK = KG′. (3)

Then there exists a generator Ĝ of an S×S′-valued Markov process with the property
that if (X, X ′) evolves according to Ĝ and satisfies

P[X ′
0 = y |X0] = K(X0, y) (y ∈ S′), (4)

then

P[X ′
t = y | (Xs)0≤s≤t] = K(Xt, y) (t ≥ 0, y ∈ S′), (5)

and the processes X and X ′, on their own, are Markov processes evolving according
to the generators G and G′, respectively.

Algebraic relations of the type (3) are called intertwining relations, hence the name
intertwining of Markov processes. We note that the operator K needs in general not
have an inverse, and even if it does, this inverse will in general not be associated to a
probability kernel from S′ to S. In view of this, an intertwining of Markov processes
is not a symmetric relation. To express this, following terminology introduced in
[1], we will also say that in the set-up of Proposition 1.2, X ′ is an averaged Markov

process on X .
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1.3. Intertwining of birth-and-death processes

We are now ready to formulate our main result. Deviating slightly from our notation
in Section 1.1, we let X = (Xt)t≥0 be a continuous-time Markov process with state
space {0, . . . , N}, started from X0 = 0, that jumps from x − 1 to x with birth rate
bx and from x to x − 1 with death rate dx, where b1, . . . , bN > 0, d1, . . . , dN−1 > 0,
but dN = 0, i. e., X is the stopped process from Section 1.1. We let G denote the
generator of X , i. e.,

Gf(x) := bx+1

(

f(x + 1) − f(x)
)

+ dx

(

f(x − 1) − f(x)
)

(0 ≤ x ≤ N), (6)

where f : {0, . . . , N} → R is a real function and we adopt the convention that
d0 = 0 and bN+1 = 0 so that the corresponding terms in (6) are zero, regardless of
the (fictive) values of f in −1 and N + 1. The following theorem is our main result.

Theorem 1.3. (Intertwining of birth-and-death processes) The operator G has
N + 1 distinct eigenvalues 0 = −λ0 > −λ1 > · · · > −λN . Let X− and X+ be
the pure birth processes in {0, . . . , N}, started from X−

0 = X+
0 = 0, with birth

rates b−1 := λ1, . . . , b
−
N := λN and b+

1 := λN , . . . , b+
N := λ1, respectively, and let G−

and G+ be their generators. Then there exist probability kernels K− and K+ on
{0, . . . , N} satisfying

K−(x, {0, . . . , x}) = 1, K+(x, {0, . . . , x}) = 1, (0 ≤ x ≤ N),

K−(N, N) = 1, K+(N, N) = 1,
(7)

and

(i) K+G = G+K+ and (ii) GK− = K−G−. (8)

Moreover, the processes X−, X , and X+ can be coupled in such a way that

(i) P[Xt = y | (X+
s )0≤s≤t] =K+(X+

t , y) (t ≥ 0, 0 ≤ y ≤ N),

(ii) P[X−
t = y | (X+

s , Xs)0≤s≤t] =K−(Xt, y) (t ≥ 0, 0 ≤ y ≤ N).
(9)

The existence of a kernel K+ such that (8) (i) and (9) (i) hold has been proved
before in [2], Prop. 10. Our new contribution is the construction of the kernel K−

such that moreover (8) (ii) and (9) (ii) hold. It is easy to see that formulas (7) and
(9) imply that

(i) X−
t ≤ Xt ≤ X+

t (t ≥ 0),

(ii) τ−
N = τN = τ+

N ,
(10)

where τN := inf{t ≥ 0 : Xt = N} and τ−
N and τ+

N are defined similarly for X− and
X+, respectively. We note that X− and X+ move, in a sense, in the slowest resp.
fastest possible way from 0 to N , given that they have to arrive at exactly the same
time as X . Note that, using terminology introduced at the end of Section 1.2, X is
an averaged Markov process on X+ and X− is an averaged Markov process on X .
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1.4. Discussion

In comparison to the paper by Diaconis and Miclo [2], the present paper does not add
too much that is new. In particular the construction of the kernel K− in Theorem 1.3
is very similar to the construction of the kernel K+, which was already carried out in
[2]. However, we believe that the observation that both constructions are possible,
with an interesting symmetry between them, is of some interest.

The (new) construction with the process X− has in fact one advantage over the
construction with X+, since Proposition 1.2 and formula (8) imply that the process
X started in any initial state can be coupled to a process X− with the same dynamics
as in Theorem 1.3, in such a way that P[X−

t = y | (Xs)0≤s≤t] = K−(Xt, y) for all 0 ≤
y ≤ N and t ≥ 0. This implies that for a general initial state X0 = x ∈ {0, . . . , N},

the stopping time τN is distributed as
∑N

y=Z σy where σ1, . . . , σN are independent
exponentially distributed random variables with parameters λ1, . . . , λN and Z is an
independent {0, . . . , N}-valued random variable with law K−(x, · ). Note that the
(old) coupling with the process X+ forces one to start the process X in an initial
law that is a convex combination of the laws K+(x, · ) with 0 ≤ x ≤ N , hence no
conclusions can be drawn for arbitrary initial states.

On the other hand, the methods of [2] can also be used to study birth-and-
death processes on {0, . . . , N} whose death rate dN is not zero and which, therefore,
converge in law to a unique equilibrium. In particular, Diaconis and Miclo use
a generalization of their intertwining relation (8) (i) to construct a fastest strong
stationary time for such processes (we refer to [2] for the definition). In contrast, it
seems that the interwining relation (8) (ii) does not generalize to such a setting.

On a more general level, one may ask what the advantage is of a ‘probabilistic’
proof of Proposition 1.1 as opposed to older, more algebraic proofs. Since most of
the work behind Theorem 1.3 goes into proving the intertwining relations (8), one
might even argue that the present proof is still rather algebraic in nature, although
with a strong probabilistic flavour. In this context, it is interesting to note that
the fact that G is diagonalizable with real, distinct eigenvalues follows as a result
of our proofs (in particular, this follows from a repeated application of the Perron–
Frobenius theorem) and does not have to be provided by some extra argument (based
on, for example, reversibility).

In general, diagonalizing a generator of a Markov process gives very strong infor-
mation about the process, but in practice, if the state space is large, it is hard to
get good information about the position of eigenvalues etc. The idea of interwining
generators with transition kernels may in some cases be a good way to transform
generators of complicated processes into generators of more simple processes and
thus provide a more probabilistic alternative to diagonalization.

The methods of this paper can certainly be extended to one-dimensional processes
with two traps, to dicrete-time processes, and to one-dimensional diffusions. Miclo
[6] has proved a generalization of Proposition 1.1 for reversible Markov chains. In
[1], intertwining relations were used to estimate the time to extinction for large
hierarchical contact processes. The present work was partly motivated by an open
problem from that paper. (To be precise, Question 1◦ from Section 3.3.)
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2. PROOFS

2.1. Leading eigenvectors

Let X be the birth-and-death process in SN := {0, . . . , N} from Section 1.3 and let
G : R

SN → R
SN be its generator, defined in (6). We equip R

SN with the usual inner

product 〈π|f〉 :=
∑N

x=0 π(x)f(x) and let G† denote the adjoint of G with respect to
this inner product. Then

G†π(x) = bxπ(x − 1) − bx+1π(x) + dx+1π(x + 1) − dxπ(x), (11)

where as in (6) we use the convention that d0 = 0 and bN+1 = 0 so that the
corresponding terms in (11) are zero, regardless of the (fictive) values of π in −1 and
N + 1.

Since δN (the delta mass in N) is the unique invariant law of X , the eigenvalue 0
of the generator G has multiplicity one and its unique left and right eigenvectors are
δN and the constant function 1, respectively. We will need the following result on
the next largest eigenvalue and its left and right eigenvectors.

Lemma 2.1. (Leading eigenvectors) There exists a λ > 0 and f, π ∈ R
SN such that

(i) f is strictly decreasing on {0, . . . , N} and satisfies f(0) = 1, f(N) = 0,

(ii) π is strictly positive on {0, . . . , N − 1} and satisfies
N−1
∑

x=0
π(x) = 1 = −π(N),

(iii) Gf = −λf and G†π = −λπ.

P r o o f . Set

e(x) := δx (0 ≤ x ≤ N − 1) and e(N) := 1,

ξ(x) := δx − δN (0 ≤ x ≤ N − 1) and ξ(N) := δN .
(12)

Then {e(0), . . . , e(N)} is a basis for R
SN and {ξ(0), . . . , ξ(N)} is its associated dual

basis, i. e., 〈e(x)|ξ(y)〉 = 1{x=y}. Set

E := span{e(0), . . . , e(N − 1)} =
{

f ∈ R
SN : f(N) = 0

}

,

F := span{ξ(0), . . . , ξ(N − 1)} =
{

π ∈ R
SN :

∑N

x=0 π(x) = 0
}

.
(13)

Since N is a trap for the process X , it is easy to see that the operator G maps the
space E into itself. Since the coordinates of a vector in E with respect to the basis
{e(0), . . . , e(N)} are the same as its coordinates with respect to the standard basis
{δ0, . . . , δN}, it follows that with respect to the basis {e(0), . . . , e(N)}, the matrix
[G] of G has the form

[G] =

(

A 0
0 0

)

, (14)

where A(x, y) = G(x, y) for 0 ≤ x, y ≤ N−1. The restriction of the process X to the
space {0, . . . , N − 1} is irreducible in the sense that there is a positive probability
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of going from any state to any other state. Therefore, by applying the Perron–
Frobenius theorem (see, e. g. Chapter XIII, §2, Theorem 2 in [4]) to A + cI and its
adjoint for some sufficiently large c, one finds that A has a real eigenvalue −λ of
multiplicity one, which is larger than all other real eigenvalues, and associated left
and right eigenvectors π ∈ F and f ∈ E that are strictly positive with respect to
the bases {ξ(0), . . . , ξ(N − 1)} and {e(0), . . . , e(N − 1)}, respectively. Since Markov
semigroups are contractive we have −λ ≤ 0 and since the eigenvalue zero of G has
multiplicity one and belongs to different left and right eigenvectors, we conclude that
−λ < 0. Since we can always normalize our eigenvectors such that

∑N−1
x=0 π(x) = 1

and maxN−1
x=0 f(x) = 1, this proves all statements of the lemma except for the fact

that f is strictly decreasing.
To prove this latter fact, we observe that by the facts that Gf = −λf and f > 0

on {0, . . . , N − 1},

b1

(

f(1) − f(0)
)

= −λf(0) < 0, (15)

which show that f(0) > f(1). By the same argument,

bx+1

(

f(x+1)−f(x)
)

= −λf(x)−dx

(

f(x−1)−f(x)
)

< 0 (1 ≤ x ≤ N−1), (16)

from which we see by induction that f(x) > f(x + 1) for all 0 ≤ x ≤ N − 1. �

2.2. Intertwining the fast process

In this section, we prove the existence of a kernel K+ satisfying (7) and (8). Our
proof is basically the same as the proof given in [2], but as a preparation for the
next section it will be convenient to review their proof and shorten it somewhat.
The proof in [2] is written in such a way as to make clear how the authors arrived
at their argument and uses discrete derivatives that are presumably also useful if
one wants to generalize the theory to one-dimensional diffusions. If our only aim is
Theorem 1.3, however, we can summarize their arguments quite a bit.

The kernel K+ will be constructed as the concatenation of an inductively defined
sequence of kernels K(N−1)+, . . . , K(1)+. Associated with these kernels is a sequence
of generators G(N−1),+, . . . , G(0)+ of birth-and-death processes in {0, . . . , N} satis-
fying the intertwining relations

K(M) +G(M) + = G(M−1) +K(M)+ (1 ≤ M ≤ N − 1), (17)

where the process with generator G(M) has birth rates b
(M)
1 , . . . , b

(M)
N > 0 and death

rates d
(M)
1 , . . . , d

(M)
M > 0, d

(M)
M+1 = · · · = d

(M)
N = 0; see Figure 1 for a picture. In

particular, we will choose G(N−1)+ := G and setting G+ := G(0) + will yield the
desired pure birth process with birth rates b+

1 = λN , . . . , b+
N = λ1.

The core the proof is the following proposition, which corresponds to the inductive
step in the argument.

Proposition 2.2. (Inductive step) Let 1 ≤ M ≤ N−1 and let G be the generator
of a birth-and-death process in {0, . . . , N} with birth rates b1, . . . , bN > 0 and death



Intertwining of birth-and-death processes 7
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′
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G
(1)−
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G
(2)−

0 1 2 4G 3

K(3)−

ḋ2 ḋ3

d̈3

Fig. 1 Intertwining of birth and death processes. In this picture N = 4. All nonzero

transition rates and probabilities have been indicated with arrows.
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rates d1, . . . , dM > 0, dM+1 = · · · = dN = 0. Then there exists a probability kernel
K on {0, . . . , N} satisfying

K(x, {0, . . . , x}) = 1 (0 ≤ x ≤ N) and K(x, x) = 1 (M + 1 ≤ x ≤ N), (18)

and a generator G′ of a birth-and-death process in {0, . . . , N} with birth rates
b′1, . . . , b

′
N > 0 and death rates d′1, . . . , d

′
M−1 > 0, d′M = · · · = d′N = 0, such that

KG = G′K.

P r o o f . It follows from Lemma 2.1 applied to the process stopped at M + 1 that
there exists a function ρ : {0, . . . , N} → R such that ρ > 0 on {0, . . . , M}, ρ = 0 on

{M + 1, . . . , N},
∑N

x=0 ρ(x) = 1, and

G†ρ(x) = −λρ(x) + λδM+1(x) (0 ≤ x ≤ N), (19)

where
λ = bM+1ρ(M) > 0. (20)

The law ρ is sometimes called a quasi-stationary law. Using ρ, we define the kernel
K on {0, . . . , N} by

K(x, y) :=







1{y≤x}
ρ(y)

H(x)
if x ≤ M,

1{y=x} if M + 1 ≤ x,

(21)

where

H(x) :=

x
∑

y=0

ρ(y) (0 ≤ x ≤ M). (22)

Since K is a lower triangular matrix, it is invertible, so there exists a unique linear
operator G′ satisfying KG = G′K and G′ is in fact given by G′ = KGK−1. Since
G′1 = G′K1 = KG1 = 0 we see that

G′(x, x) = −
∑

y 6=x

G′(x, y). (23)

In view of this, to prove our claim, it suffices to check that the off-diagonal entries
of G′ coincide with those of a birth-and-death process in {0, . . . , N} with birth rates
b′1, . . . , b

′
N > 0 and death rates d′1, . . . , d

′
M−1 > 0, d′M = · · · = d′N = 0.

To determine the off-diagonal entries of G′, we calculate, using (11) and (19),

(KG)(x, y) = G†K(x, · )(y)

=















−λ1{y≤x}
ρ(y)

H(x)
− dx+1

ρ(x + 1)

H(x)
δx(y) + bx+1

ρ(x)

H(x)
δx+1(y) if x < M,

−λρ(y) + λδM+1(y) if x = M,

−bx+1δx(y) + bx+1δx+1(y) if x > M.

(24)
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In order to find G′, we need to express these formulas, as functions of y, as linear
combinations of the basis vectors (K(x, · ))0≤x≤N . To that aim, we observe that

δx = K(x, · ) (M + 1 ≤ x ≤ N), (25)

while for 1 ≤ x ≤ M , we have

δx(y)=
(

1{y≤x} − 1{y≤x−1}

)ρ(y)

ρ(x)

=
H(x)

ρ(x)
1{y≤x}

ρ(y)

H(x)
−

H(x − 1)

ρ(x)
1{y≤x−1}

ρ(y)

H(x − 1)

=
H(x)

ρ(x)
K(x, y) −

H(x − 1)

ρ(x)
K(x − 1, y).

(26)

Inserting this into (24), we find that

N
∑

x′=0

G′(x, x′)K(x′, y) := (KG)(x, y)

=















































































































−λK(0, y)− d1
ρ(1)

H(0)
K(0, y)

+b1
ρ(0)

H(0)

(H(1)

ρ(1)
K(1, y) −

H(0)

ρ(1)
K(0, y)

)

if x = 0,

−λK(x, y) − dx+1
ρ(x + 1)

H(x)

(H(x)

ρ(x)
K(x, y)

−
H(x − 1)

ρ(x)
K(x − 1, y)

)

+bx+1
ρ(x)

H(x)

(H(x + 1)

ρ(x + 1)
K(x + 1, y)

−
H(x)

ρ(x + 1)
K(x, y)

)

if 0 < x < M,

−λK(M, y) + λK(M + 1, y) if x = M,

−bx+1K(x, y) + bx+1K(x + 1, y) if x > M.

(27)

From this, we can read off the off-diagonal entries of G′. Indeed,

b′x+1 = G′(x, x + 1)=















bx+1
ρ(x)H(x + 1)

H(x)ρ(x + 1)
if x < M,

λ if x = M,

bx+1 if x > M,

d′x = G′(x, x − 1)=







dx+1
ρ(x + 1)H(x − 1)

H(x)ρ(x)
if 0 < x < M,

0 if x ≥ M,

(28)

and all other off-diagonal entries are zero. �
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Remark. The proof of Proposition 2.2 is straightforward except for the clever
choice of K in (21) – (22). For some motivation of this choice and the way the
authors arrived at it we refer to [2].

Using Proposition 2.2 we can construct a sequence of kernels K(N−1)+, . . . , K(1)+

and generators G(N−1),+, . . . , G(0) + satisfying the intertwining relations (17), such
that G+ := G(0) + is a pure birth process with birth rates b+

1 , . . . , b+
N > 0, say. It is

now easy to see that the composed kernel

K+ := K(1)+ · · ·K(N−1)+ (29)

satisfies K+(x, {0, . . . , x}) = 1 (0 ≤ x ≤ N), K+(N, N) = 1 and K+G = G+K+.
It is straightforward to check that the eigenvalues of G′ are −b+

1 , . . . ,−b+
N , 0. Since

G = (K+)−1G+K+, the operators G and G+ have the same spectrum.
We claim that b+

1 > · · · > b+
N > 0. To see this, recall from the proofs of Lemma 2.1

and Proposition 2.2 that −b+
M is the Perron–Frobenius eigenvalue of the process with

generator G(M) + stopped at M+1. It follows from the intertwining relation (17) that
−b+

M−1 is also an eigenvalue of this process, corresponding to a different eigenvector,
hence by the Perron–Frobenius theorem, bM−1 > bM .

2.3. Intertwining the slow process

In the previous section, we have constructed a kernel K+ and generator of a pure
birth process G+ such that (8) (i) holds. In this section, we construct a kernel K−

and generator of a pure birth process G− satisfying (8) (ii). The proof will be very
similar to the previous case, except that some things will ‘go he other way around’.
In particular, using terminology introduced at the end of Section 1.2, G− will be
the generator of an avaraged Markov process X− on X while in the previous section
we constructed a pure birth process X+ such that X is an averaged Markov process
on X+.

As in the previous section, the kernel K− will be constructed as the concatention
of an inductively defined sequence of kernels K(1)−, . . . , K(N−1)−. Associated with
these kernels is a sequence of generators G(1),−, . . . , G(N−1)− of birth-and-death
processes in {0, . . . , N} satisfying the intertwining relations

G(M−1)−K(M)− = K(M)−G(M)− (1 ≤ M ≤ N − 1), (30)

where the process with generator G(M) has birth rates b
(M)
1 , . . . , b

(M)
N > 0 and death

rates d
(M)
1 = · · · = d

(M)
M = 0, d

(M)
M+1, . . . , d

(M)
N−1 > 0, and d

(M)
N = 0. We again refer to

Figure 1 for an illustration.

The core of the argument is the following proposition.

Proposition 2.3. (Inductive step) Let 0 ≤ M ≤ N−2 and let G be the generator
of a birth-and-death process in {0, . . . , N} with birth rates b1, . . . , bN > 0 and death
rates d1 = · · · = dM = 0, dM+1, . . . , dN−1 > 0, and dN = 0. Then there exists a
probability kernel K on {0, . . . , N} satisfying

K(x, {0, . . . , x}) = 1 (0 ≤ x ≤ N) and K(x, x) = 1 (x 6∈ {M, . . . , N −1}), (31)
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and a generator Ġ of a birth-and-death process in {0, . . . , N} with birth rates
ḃ1, . . . , ḃN > 0 and death rates ḋ1 = · · · = ḋM+1 = 0, ḋM+2, . . . , ḋN−1 > 0, and
ḋN = 0, such that GK = KĠ.

P r o o f . It follows from Lemma 2.1 applied to the process restricted to {M, . . . , N}
that there exists a function f : {0, . . . , N} → R such that f = 0 on {0, . . . , M − 1},
f is strictly decreasing on {M, . . . , N}, f(M) = 1, f(N) = 0, and

Gf(x) = −λf(x) + bMδM−1(x) (0 ≤ x ≤ N), (32)

where
λ = bM+1

(

1 − f(M + 1)
)

> 0. (33)

We set
K(x, y) := 1{x=y} (y 6∈ {M, . . . , N − 1}). (34)

For y = M, . . . , N − 1, we claim that we can inductively define the kernel K(x, y)
and contants Cy > 0 in such a way that

(i) K(x, y) := Cy1{y≤x}f(x),

(ii)

y
∑

y′=M

K(y, y′) = 1,















(M ≤ y ≤ N − 1). (35)

To see that this is all right, note that for y = M (35) (i) and (ii) are satisfied by
choosing CM := 1, while for M +1 ≤ y ≤ N −1 (35) (i) and (ii) imply that we must
choose

Cy :=
1

f(y)

(

1 −

y−1
∑

y′=M

K(y, y′)
)

. (36)

Since f is strictly decreasing on {M, . . . , N}, one has, by induction,

y−1
∑

y′=M

K(y, y′) =

y−1
∑

y′=M

Cy′f(y) <

y−1
∑

y′=M

Cy′f(y − 1) =

y−1
∑

y′=M

K(y − 1, y′) = 1, (37)

which shows that Cy > 0. We now calculate

(GK)(x, y) = GK( · , y)(x)

=



































byδy−1(x) − by+1δy(x) if 0 ≤ y ≤ M − 1,

−λf(x) + bMδM−1(x) if y = M,

−λCy1{y≤x}f(x) + byCyδy−1(x)

−dyCy

(

f(y − 1) − f(y)
)

δy(x) if M + 1 ≤ y ≤ N − 1,

bNδN−1(x) if y = N.

(38)

By the same arguments as those in the previous section, there exists a unique linear
operator Ġ such that GK = KĠ. In order to check that Ġ is the generator of
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a birth-and-death process in {0, . . . , N} with birth rates ḃ1, . . . , ḃN > 0 and death
rates ḋ1 = · · · = ḋM+1 = 0, ḋM+2, . . . , ḋN−1 > 0, and ḋN = 0, it suffices to check
that the off-diagonal entries Ġ(x, y) have the desired form. In order to do this, we
must express the formulas in (38), as functions of x, as linear combinations of the
basis vectors (K( · , y))0≤y≤N . We observe that

δy(x) = K( · , y)
(

y 6∈ {M, . . . , N − 1}
)

, (39)

while for M ≤ y ≤ N − 2, we have

δy(x) =
(

1{y≤x} − 1{y+1≤x}

)f(x)

f(y)

=
1

f(y)Cy

Cy1{y≤x}f(x) −
1

f(y)Cy+1
Cy+11{y+1≤x}f(x)

=
1

f(y)Cy

K(x, y) −
1

f(y)Cy+1
K(x, y + 1),

(40)

and

δN−1(x) =
1

f(N − 1)CN−1
K(x, N − 1). (41)

Inserting this into (38), we obtain

∑

y′

K(x, y′)Ġ(y′, y) = (GK)(x, y)

=































































































byK(x, y − 1) − by+1K(x, y) if 0 ≤ y ≤ M − 1,

−λK(x, M) + bMK(x, M − 1) if y = M,

−λK(x, y) + byCy

( K(x, y − 1)

f(y − 1)Cy−1
−

K(x, y)

f(y + 1)Cy

)

−dyCy

(

f(y − 1) − f(y)
)

(K(x, y)

f(y)Cy

−
K(x, y + 1)

f(y)Cy+1

)

if M + 1 ≤ y

≤ N − 2
,

−λK(x, y) + byCy

( K(x, y − 1)

f(y − 1)Cy−1
−

K(x, y)

f(y + 1)Cy

)

−dyCy

(

f(y − 1) − f(y)
)K(x, y)

f(y)Cy

if y = N − 1,

bN

K(x, N − 1)

f(N − 1)CN−1
if y = N,

(42)
where we use the convention that b0 = 0 and hence b0K(x,−1) = 0, regardless of
the (fictive) value of K(x,−1). From (42) we can read off the off-diagonal entries
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of Ġ. Indeed,

ḃy = Ġ(y − 1, y)=







by if 1 ≤ y ≤ M,

by

Cy

f(y − 1)Cy−1
if M + 1 ≤ y ≤ N,

ḋy+1 = Ġ(y + 1, y)=







0 if y 6∈ {M + 1, . . . , N − 2},

dy

Cy(f(y − 1) − f(y))

Cy+1f(y)
if M + 1 ≤ y ≤ N − 2,

(43)
and all other off-diagonal entries are zero. We note that in particular, by (33) and
the definition of the Cy’s,

ḃM+1 =
bM+1CM+1

f(M)CM

= bM+1CM+1 = bM+1

(

1 − f(M + 1)) = λ. (44)

�

Remark. As in the case of Proposition 2.2, the proof of Proposition 2.3 is straight-
forward except for the choice of the kernel K. We have guessed formula (35) by
analogy with formula (21), which is due to [2].

With the help of Proposition 2.3, we can inductively define kernels K(1)−, . . . ,

K(N−1)− and operators G(1),−, . . . , G(N−1)−. Setting G− := G(N−1)− and

K− = K(1)− · · ·K(N−1)− (45)

now yields a generator of a pure birth process with birth rates b−1 , . . . , b−N and a
kernel K− with the properties described in (7) – (8).

In the same way as in the previous section, we see that 0,−b−1 , . . . ,−b−N are the
eigenvalues of G. To see that 0 < b1 < · · · < bN we observe from (44) that −b−M
is the Perron–Frobenius eigenvalue of the process with generator G(M)− restricted
to {M, . . . , N}. It follows from the intertwining relation (30) that −b+

M+1 is also
an eigenvalue of this process, corresponding to a different eigenvector, hence by the
Perron–Frobenius theorem, bM < bM+1.

2.4. Proof of the main theorem

P r o o f o f T h e o r e m 1.3. The existence of generators G−, G+ and kernels K−,
K+ satisfying (7) – (8) has been proved in the previous sections. By Proposition 1.2,
it follows that X+ and X can be coupled such that (9) (i) holds. By applying
Proposition 1.2 to the kernel L from {0, . . . , N}2 to {0, . . . , N} given by

L
(

(x, y), z
)

:= K−(y, z) (0 ≤ x, y, z ≤ N), (46)

we see that (X+, X) and X− can be coupled in such a way that both (9) (i) and (ii)
hold. �
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