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ON THE STRUCTURE OF NUMERICAL

EVENT SPACES
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The probability p(s) of the occurrence of an event pertaining to a physical system
which is observed in different states s determines a function p from the set S of states
of the system to [0, 1]. The function p is called a numerical event or multidimensional
probability. When appropriately structured, sets P of numerical events form so-called
algebras of S-probabilities. Their main feature is that they are orthomodular partially
ordered sets of functions p with an inherent full set of states. A classical physical system
can be characterized by the fact that the corresponding algebra P of S-probabilities is a
Boolean lattice. We give necessary and sufficient conditions for systems of numerical events
to be a lattice and characterize those systems which are Boolean. Assuming that only a
finite number of measurements is available our focus is on finite algebras of S-probabilties.
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1. INTRODUCTION

Let S be the set of states a physical system can accept during a certain experiment
and p(s) the probability of an event which is observed when the system is in state
s ∈ S.

Studying the physical system with regard to the occurrence of different events
leads to a set P of functions from S to [0, 1] which can be partially ordered by the
order ≤ of functions. We assume that

(1) 0 ∈ P (0 denotes the constant function with value 0),

(2) p′ := 1 − p ∈ P for all p ∈ P (1 denotes the constant function with value 1),

(3) If p, q, r ∈ P are pairwise orthogonal, i. e. p ≤ q′, q ≤ r′ and r ≤ p′, then
p + q + r ∈ P .

(+ and − refers to the sum and difference in R, respectively.)
If P satisfies (1) – (3) it is called an algebra of S-probabilities or algebra of nu-

merical events (cf. [2] and [3]).
We denote the orthogonality relation by ⊥ (p ⊥ q means p ≤ q′) and call three

pairwise orthogonal elements an orthogonal triple.
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We point out that (1) and (3) imply that if p, q ∈ P and p ⊥ q then p + q ∈ P ,
and moreover, that in this case p + q is the supremum p ∪ q of p and q (see [7]).

Axiom (3) is motivated by classical event fields, for which the pairwise orthogo-
nality of a triple A, B, C of events implies A ⊆ B′ ∩ C′ = (B ∪ C)′, which in terms
of functions means p ≤ 1 − (q + r).

We recall that an orthomodular poset (P,≤,′ ) is a poset (P,≤) with a least ele-
ment 0, a largest element 1 and a unary operation ′ which satisfies the following for
all x, y ∈ P :

(i) ′ is an orthocomplementation: x ≤ y implies x′ ≥ y′, x′′ = x, x ∩ x′ = 0 and
x ∪ x′ = 1 (∩ and ∪ denotes here the infimum and the supremum in (P,≤),
respectively),

(ii) if x ⊥ y, i. e., x ≤ y′ then x ∪ y exists in (P,≤),

(iii) if x ≤ y then y = x ∪ (y ∩ x′) (orthomodular law).

Any algebra of S-probabilities is an orthomodular poset (with respect to ≤ and ′)
which admits a full set of states {λs | s ∈ S} induced by S where λs : P → [0, 1]
is defined by λs(p) = p(s) for all p ∈ P . Vice versa, any orthomodular poset which
admits a full set of states is isomorphic to an algebra of S-probabilities (cf. [7]).

Algebras of S-probabilities have been studied mainly because they allow to dis-
tinguish a classical mechanical behaviour from a quantum mechanical one, namely,
a system is classical if and only if (P,≤) is a Boolean lattice (cf. [2] and [3]).

The first step in checking if one deals with a Boolean lattice often is to find
out whether one deals with a lattice at all. This is also of interest when studying
algebras of S-probabilities from the point of view of so-called Boolean quasirings
which correspond to orthomodular lattices in a way Boolean rings and Boolean
lattices do (cf. [1] and[4]).

According to this our main goal is to characterize among classes of algebras of
S-probabilities the ones which are lattices and those which are Boolean algebras (in
order to discern quantum phenomena and classical ones). We begin by studying
properties of algebras of numerical events that show how to perform calculations
within these structures and by giving some examples. Then we derive some general
results revealing the structure of algebras of numerical events and eventually we
focus on finite systems by studying representations by means of atoms. Most of the
obtained results can be generalized to the infinite case which, however, seems to be
less relevant for practical purposes.

2. ELEMENTARY PROPERTIES AND EXAMPLES

We agree to denote the infimum and supremum of two elements of P , if they exist,
by ∩ and ∪, respectively, and summarize some properties concerning the internal
structure of algebras of S-probabilities:

Proposition 2.1. Let P ⊆ [0, 1]S be an algebra of S-probabilities. Then (a) – (c)
hold:
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(a) If p, q ∈ P and p ⊥ q then p + q = p ∪ q ∈ P .

(b) If p, q ∈ P and p ≤ q then q − p ∈ P and q − p = q ∩ p′.

(c) If p ∈ P , u ∈ [0, 1]S and p − u ∈ P then u ∈ P .

P r o o f . (a) was already pointed out above and proven in [7].

(b): p, q ∈ P and p ≤ q implies p ⊥ q′ and hence p ∪ q′ = p + q′ according to
(a). Therefore, since (P,≤,′ ) is an orthomodular poset, p′ ∩ q exists and p′ ∩ q =
(p ∪ q′)′ = (p + q′)′ = 1 − (p + 1 − q) = q − p.

(c): Since p ∈ P and v := p−u ∈ P it follows that v ≤ p and hence u = p−v ∈ P
according to (b). �

Proposition 2.2. P ⊆ [0, 1]S is an algebra of S-probabilities if and only if (1A) –

(3A) hold:

(1A) 1 ∈ P .

(2A) If p, q ∈ P and p ≤ q then q − p ∈ P .

(3A) If (p, q, r) is an orthogonal triple then p + q + r ≤ 1.

P r o o f . First suppose P is an algebra of S-probabilities. Then (1A) follows from
(1) and (2), (2A) follows from Proposition 2.1 (b), and (3A) follows from (3).

Conversely, assume that (1A) – (3A) hold. Then (1) follows from (1A) and (2A),
and (2) again follows from (1A) and (2A). As to (3): If p, q ∈ P and p ⊥ q then
p ≤ q′ and q′ ∈ P according to (1A) and (2A) and hence q′ − p ∈ P by (2A)
which shows p + q = 1 − (q′ − p) ∈ P because of (1A) and (2A). Therefore, if
(p, q, r) is an orthogonal triple, then p + q ∈ P and since (p + q) ⊥ r we have
p + q + r = (p + q) + r ∈ P . �

Remark 2.3. (3) can be substituted by requiring both

(3A) If (p, q, r) is an orthogonal triple then p + q + r ≤ 1.

(3B) If p, q ∈ P and p ⊥ q then p + q ∈ P .

P r o o f . First assume (3). Then (3A) holds. If p, q ∈ P and p ⊥ q then (p, q, 0) is
an orthogonal triple and hence p + q = p + q + 0 ∈ P .

Conversely, assume (3A) and (3B). If (p, q, r) is an orthogonal triple then p ⊥ q
and hence p + q ∈ P according to (3B). Moreover, according to (3A), (p + q) ⊥ r
and therefore p + q + r = (p + q) + r ∈ P again by (3B). �

Proposition 2.4. Let P ⊆ [0, 1]S be an algebra of S-probabilities and p ∈ P \{0, 1}.
Then neither p ≤ 1/2 nor p ≥ 1/2.
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P r o o f . Assume p ∈ P \ {0} and p ≤ 1/2 and put m := max{k ≥ 1 | kp ≤ 1}.
Then m ≥ 2, and because of p ⊥ p it follows that 2p ∈ P . If m ≥ 3 then 2p ⊥ p
and hence 3p ∈ P . The same argument leads us to tp ∈ P for t = 1, . . . , m. Since
((m − 1)p, p, p) is an orthogonal triple, (m + 1)p ∈ P contradicting the definition of
m. Therefore p 6≤ 1/2.

With p′ in the role of p it follows that no p ∈ P \ {1} can be ≥ 1/2. �

Next we point out that not only sums of orthogonal triples exist in P but also
sums within an arbitrary finite orthogonal set: O ⊆ P is called orthogonal if p ⊥ q
for all distinct p, q ∈ O.

Proposition 2.5. Let P ⊆ [0, 1]S be an algebra of S-probabilities and suppose O ⊆ P
is a finite orthogonal set. Then

∑
p∈O p ∈ P .

P r o o f . We show the assertion by induction on n := |O|. For n ≤ 3 the proposition
is clear.

n → n + 1: Let O = {p1, . . . , pn+1}. By the induction hypothesis we may

assume that
∑n

i=1
pi,

∑n+1

i=2
pi ∈ P . In particular this means that

∑n
i=1

pi ≤ 1 and∑n+1

i=2
pi ≤ 1. The former implies p1 ⊥

∑n

i=2
pi, from the latter we infer

∑n

i=2
pi ⊥

pn+1. Since O is orthogonal we also have p1 ⊥ pn+1. Hence (p1,
∑n

i=2
pi, pn+1) is

an orthogonal triple and by (3) we obtain
∑n+1

i=1
pi ∈ P . �

Next we give some examples for algebras of S-probabilities and specify a proce-
dure how to construct examples.

Example 2.6. An important example of an algebra of S-probabilities which is not a
Boolean lattice but, indeed, is a lattice, is the following (cf. [3]): Let H be a Hilbert
space, S the set of one-dimensional subspaces of H , and for every s ∈ S let as be
a fixed unit vector in s. With P (H) for the set of orthogonal projections of H and
〈., .〉 for the inner product in H , the set of functions {s 7→ 〈Qas, as〉 |Q ∈ P (H)}
is an algebra of S-probabilities which is a lattice, more precisely, an orthomodular
lattice.

Example 2.7. Suppose that every p ∈ P can only assume the values 0 and 1. In this
case one can show (cf. [5]) that P = {IX | X ∈ M}, where IX denotes the indicator
function on X and M ⊆ 2S satisfies (i) ∅ ∈ M, (ii) if A ∈ M then A′ := S \A ∈ M,
and (iii) if A, B ∈ M and A ∩B = ∅ then A ∪B ∈ M. Moreover, (P,≤) is a lattice
if and only if (M,⊆) is a lattice, and (P,≤) is a Boolean lattice if A∪B ∈ M holds
for all A, B ∈ M without the restriction A ∩ B = ∅. In literature these algebras of
S-probabilities are known as concrete logics, cf., e.g., [8].

Theorem 2.8. For every i ∈ I let Si be mutually disjoint sets, Pi an algebra of

Si-probabilities, S :=
⋃

i∈I Si and P := {f ∈ [0, 1]S : f↾Si
∈ Pi for all i ∈ I}. Then

P is an algebra of S-probabilities and (P,≤) is order-isomorphic to
∏

i∈I(Pi,≤).

P r o o f . 0 ∈ Pi for all i ∈ I and hence 0 ∈ P .
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If f ∈ P then f↾Si
∈ Pi for all i ∈ I and hence (1 − f)↾Si

= 1 − f↾Si
∈ Pi for all

i ∈ I, from which we obtain 1 − f ∈ P .
If (f, g, h) is an orthogonal triple in (P,≤) then for all i ∈ I (f↾Si

, g↾Si
, h↾Si

) is
an orthogonal triple in (Pi,≤) and therefore (f + g + h)↾Si

= f↾Si
+g↾Si

+h↾Si
∈ Pi

for all i ∈ I, whence f + g + h ∈ P .
This shows that P is an algebra of S-probabilities. Obviously f 7→ (f↾Si

; i ∈ I)
is an order isomorphism from (P,≤) to

∏
i∈I(Pi,≤). �

Remark 2.9.
∏

i∈I(Pi,≤) is a lattice if and only if (Pi,≤) is a lattice for every
i ∈ I.

3. GENERAL RESULTS

First we assume that the number of states is ≤ 2. The case |S| = 1 is trivial:
Because of Proposition 2.4 it immediately follows that there is only one algebra of
S-probabilities, namely the two-element Boolean algebra consisting of the constant
functions 0 and 1.

Lemma 3.1. P ⊆ [0, 1]2 is an algebra of {1, 2}-probabilities if and only if there

exists an antichain A in ([0, 1/2)× (1/2, 1],≤) such that P = A∪A′ ∪ {0, 1} (where

A′ = {α′ |α ∈ A}).

P r o o f . Assume P to be an algebra of {1, 2}-probabilities, define A := P ∩
([0, 1/2) × (1/2, 1]) and suppose there exist α = (a, b) and β = (c, d) in A with
α 6= β and α ≤ β. Then α, β′ ∈ P , and because of α ⊥ β′ it follows that α +β′ ∈ P .
Since b > 1/2 and c′ > 1/2 we have a + c′ > 1/2 and b + d′ > 1/2, which, accord-
ing to Proposition 2.4, means that α + β′ = 1. Thus β′ = α′ and hence α = β,
a contradiction. Therefore (A,≤) is an antichain. According to Proposition 2.4,
P = A ∪ A′ ∪ {0, 1}.

Conversely, assume P = A∪A′∪{0, 1} with A an arbitrary antichain in ([0, 1/2)×
(1/2, 1],≤). Clearly, (1) and (2) are fulfilled. According to Remark 2.3 we are done
if (3A) and (3B) are satisfied.

(3A): Let (p, q, r) be an orthogonal triple in P . If {p, q, r} ∩ {0, 1} 6= ∅ then
0 ∈ {p, q, r} and hence p + q + r ≤ 1. If {p, q, r} ∩ {0, 1} = ∅ then p, q, r ∈ A ∪ A′

contradicting the fact that these elements are pairwise orthogonal because (A,≤) is
an antichain: If, without loss of generality, p ∈ A then because of p ≤ q′ also q′ ∈ A,
which means q = p′, and analogously that r = p′. Therefore q = r and q ⊥ r, i. e.
q ≤ 1/2 contradicting Proposition 2.4.

(3B): Assume p, q ∈ P and p ⊥ q. If {p, q} ∩ {0, 1} 6= ∅ then 0 ∈ {p, q} and hence
p + q ∈ P . If {p, q} ∩ {0, 1} = ∅ and, without loss of generality, p ∈ A then q′ ∈ A
since p ≤ q′ and hence p = q′. Therefore p + q = 1 ∈ P . �

Theorem 3.2. For |S| = 2 all algebras of S-probabilities are lattices, and the only

Boolean lattices among them are the two-element and the four-element one. In

particular, any algebra of S-probabilities with |S| = 2 is isomorphic to the two-

element lattice or a lattice MOn, n a positive integer, or MO∞, respectively.
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P r o o f . The proof follows from Lemma 3.1. �

In the following we always assume that P is an arbitrary algebra of S-probabilities.
As we have already indicated in Section 1, if (P,≤) is a lattice, it is orthomodular.

Lemma 3.3. If (P,≤) is a lattice then (P1) holds:

(P1) For all p, q ∈ P there exists a unique r ∈ P with r ≥ p, q and (r−p)∩(r−q) = 0.

P r o o f . p ∪ q ≥ p, q, and by Proposition 2.1 (b)

((p ∪ q) − p) ∩ ((p ∪ q) − q) = ((p ∪ q) ∩ p′) ∩ ((p ∪ q) ∩ q′) = (p ∪ q) ∩ p′ ∩ q′ = 0.

So p ∪ q might serve for an r as required in (P1).
If s is another element of P with s ≥ p, q and (s− p)∩ (s− q) = 0 then s ≥ p∪ q

and hence, due to orthomodularity

s = (p ∪ q) ∪ (s ∩ (p ∪ q)′) = (p ∪ q) ∪ (s ∩ p′ ∩ q′) = (p ∪ q) ∪ 0 = p ∪ q,

because (s ∩ p′) ∩ (s ∩ q′) was assumed to be 0. �

Theorem 3.4. (P,≤) is a lattice if and only if (P1) holds and for all u, v, w ∈ P \{0}
(u∩ v)∩w = 0 is equivalent to u∩ (v ∩w) = 0 (in the sense that if one of these two

expressions exists and equals to 0 then the other also exists and equals to 0).

P r o o f . According to Lemma 3.3 the conditions of Theorem 3.4 are necessary. As
for the sufficient part, assume p, q ∈ P . If p and q are comparable then p ∪ q exists.
Now assume that p and q are not comparable. Then because of (P1) there exists an
r ∈ P with r ≥ p, q and

(r − p) ∩ (r − q) = (r ∩ p′) ∩ (r ∩ q′) = 0.

r ∩ p′ = 0 would imply q ≤ r = p, a contradiction. If we assume r = 0 we also
obtain a contradiction, namely p = q = 0. Also q′ cannot be 0, because this would
imply q = 1 ≥ p. Hence r ∩ p′, r, q′ ∈ P \ {0} and therefore according to the second
condition in Theorem 3.4

0 = ((r ∩ p′) ∩ r) ∩ q′ = (r ∩ p′) ∩ q′.

Since besides r, q′ 6= 0 also p′ 6= 0, because p′ = 0 would mean p = 1 ≥ q, we further
obtain 0 = r ∩ (p′ ∩ q′) which shows that p′ ∩ q′ and hence p ∪ q exists. �

Theorem 3.5. An algebra P of S-probabilities is a Boolean lattice if and only if for

all p, q ∈ P there exist g, h ∈ P with g ⊥ p, h ⊥ q and g ⊥ h such that p+ g = q +h.

P r o o f . We define f := p + g = q + h. Then p = f − g = f ∩ g′ and hence
p′ = f ′∪g = f ′ + g since f ′ ⊥ g. Analogously, q′ = f ′∪h = f ′ +h. This means that
p′ and q′ can be represented by an orthogonal triple (f ′, g, h) such that p′ = f ′ ∪ g
and q′ = f ′ ∪ h which by a result in [1] is equivalent to (P,≤) being a Boolean
lattice. �

An orthomodular poset is called a Boolean poset if a ∩ b = 0 implies a ≤ b′. As
shown in [7], for algebras of S-probabilities this is equivalent to
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(P2) If for p, q ∈ P the only common lower bound is 0, then p + q ∈ P .

Theorem 3.6. If P is an algebra of S-probabilities in which (P2) holds then (P,≤)
is a Boolean lattice if and only if (P1) holds in (P,≤).

P r o o f . If (P,≤) is a Boolean lattice then p ∩ q = 0 implies p = p ∩ (q ∪ q′) =
(p ∩ q) ∪ (p ∩ q′) = p ∩ q′ ≤ q′, hence, as stated above, (P2) holds, and according to
Lemma 3.3 also (P1) is true.

Conversely, assume that (P1) and (P2) hold. (P1) implies that for all p, q ∈ P
there exist g, h ∈ P with p ⊥ g, q ⊥ h and g ∩ h = 0: Just take r − p for g and r − q
for h. Because g ∩ h = 0 we obtain g ≤ h′, i. e. g ⊥ h, hence by Theorem 3.5 (P,≤)
is a Boolean lattice. �

Performing actual measurements only the necessary conditions of Theorems 3.4,
3.5 and 3.6 will be of practical significance: In general, it is easier to show that a
condition is violated than having to check all possibilities. As for Theorem 3.4, one
will try to contradict (P1) by finding an appropriate pair of functions p and q.

4. REPRESENTATION BY MEANS OF ATOMS

As we have already mentioned, with respect to practical measurements we focus on
finite algebras of S-probabilities. However, most of the results can be generalized to
the infinite case.

In this section we assume that (P,≤,′ ) is a finite algebra of S-probabilities and A
denotes the set of its atoms (an atom a is an upper neighbour of 0, i. e. if 0 < x ≤ a
then x = a).

Proposition 4.1. Every p ∈ P can be represented in the form

p =
∑

a∈Op

a =
⋃

a∈Op

a,

where Op is an appropriate orthogonal set of atoms.

P r o o f . If p = 0 then choose Op = ∅. Now suppose p > 0. Since P is finite
there exists a1 ∈ A with a1 ≤ p. If p = a1 we are done, otherwise we consider
p1 := p − a1 = p ∩ a′

1 ∈ P due to Proposition 2.1. We have p = a1 + p1 = a1 ∪ p1

because a1 ⊥ p1. If p1 is not an atom we apply the same argument once more and
get p2 ∈ P and a2 ∈ A such that p = a1 + a2 + p2 = a1 ∪ a2 ∪ p2. Now a2 6= a1 since
2a 6≤ 1 for any a ∈ P \ {0} according to Proposition 2.4. Repeating this procedure
we finally end up with a representation of p as a sum (and therefore because of
Proposition 2.5 also as a supremum) of orthogonal atoms. �

Remark 4.2. For p, q ∈ P the join p ∪ q may exist in (P,≤) whereas p + q 6≤ 1.
However, if p + q ∈ P then p ⊥ q and p + q = p ∪ q.

For p ∈ P let Ap = {a ∈ A | a ≤ p}. Next we investigate the representation of
elements as a sum of (orthogonal) atoms in more detail.
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Lemma 4.3. Suppose O is an orthogonal set of atoms and O ⊆ Ap for some p ∈ P .

Then
∑

a∈O a ∈ P and
∑

a∈O a ≤ p.

P r o o f . Induction on n := |O|: Obviously the assertion is true for n = 0 and n = 1.
n → n + 1: Let O = {a1, . . . , an+1}. O is an orthogonal set, and by Proposi-

tion 2.5 we obtain
∑n+1

i=1
ai ∈ P . This means that an+1 ⊥

∑n

i=1
ai. By induction

hypothesis we have
∑n

i=1
ai ≤ p, and an+1 ≤ p since O ⊆ Ap. Hence we obtain

that (
∑n

i=1
ai, an+1, p

′) is an orthogonal triple and therefore
∑n+1

i=1
ai +p′ ≤ 1 which

implies
∑n+1

i=1
ai ≤ p. �

Lemma 4.4. For p, q ∈ P we have p ≤ q if and only if Ap ⊆ Aq.

P r o o f . The given condition is necessary: If p ≤ q and a ∈ Ap then a ≤ p ≤ q, and
thus a ∈ Aq.

Now we prove that the condition is also sufficient: By Proposition 4.1 there exists
an orthogonal set Op ⊆ Ap such that

∑
a∈Op

a = p. Since we have Op ⊆ Ap ⊆ Aq,

Lemma 4.3 yields p =
∑

a∈Op
a ≤ q. �

Lemma 4.5. If p ≤ q and p =
∑

a∈Op
a then there exists Oq ⊆ Aq, Oq orthogonal

and Oq ⊇ Op such that
∑

a∈Oq
a = q.

P r o o f . If p ≤ q then there is r ∈ P with q = p+r (Proposition 2.1). By Lemma 4.1
we can represent r in the form r =

∑
a∈Or

a with Or a finite orthogonal set of atoms.
Assembling the representations for p and r we obtain q = p + r =

∑
a∈Op∪Or

a with

Op ∩ Or = ∅ because a ∈ Op ∩ Or would imply a ≤ p ≤ r′ ≤ a′, a contradiction.
Thus Oq := Op ∪ Or satisfies all what is required in the condition. �

Now we are able to characterize the Boolean algebras among the algebras of
S-probabilities by means of the sets Ap, p ∈ P .

Theorem 4.6. A finite algebra of S-probabilities (P,≤,′ ) is a Boolean algebra if

and only if ({Ap | p ∈ P},⊆) is a join-semilattice with sup{Ap, Aq} = Ap ∪ Aq for

all p, q ∈ P where ∪ here denotes the set-theoretical union.

P r o o f . The necessity of the condition is the core of the Stone Representation
Theorem for finite Boolean algebras.

Now we prove that the condition is sufficient. First we show that ≤ is a lattice
order on P . The given condition means that for all p, q ∈ P there is r ∈ P such that
Ar = Ap ∪ Aq. Hence we have Ap, Aq ⊆ Ar and by Lemma 4.4 we infer p, q ≤ r, so
r is an upper bound of p and q. Considering an arbitrary upper bound t of p and q
we obtain At ⊇ Ap, Aq and thus also At ⊇ Ap ∪Aq = Ar which again by Lemma 4.4
provides t ≥ r showing that r = p ∪ q.

Because (P,≤,′ ) is an orthomodular poset p ∩ q = (p′ ∪ q′)′ showing that (P,≤)
is lattice ordered. Up to now we know that (P,≤,′ ) is an orthomodular lattice
(P,∩,∪, 0, 1,′ ). Let us assume that (P,∩,∪, 0, 1,′ ) is not a Boolean algebra. Then
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there exists a subalgebra of (P,∩,∪, 0, 1,′ ) isomorphic to MO2 or MO2 × {0, 1} (cf.
e. g. [6], ch. 1; MO2 denotes the (only) orthomodular lattice with six elements where
the four elements 6= 0, 1 are pairwise incomparable). We consider the case with a
subalgebra {0, x, y, x′, y′, 1} ∼= MO2 in detail, the other case runs along the same
lines: Due to our condition there exists z ∈ P such that Az = Ax ∪ Ay. As before
this implies z = x∪y = 1 and thus Ax∪Ay = A is the set of all atoms in P . The four
atoms x, y, x′, y′ of the subalgebra are incomparable, in particular we have x′ 6≤ y.
By Lemma 4.4 there exists a ∈ Ax′ \ Ay, i. e. a /∈ Ay . Because Ax ∪ Ay = A this
implies a ∈ Ax. But we also have a ∈ Ax′ thus a ≤ x, x′, a contradiction. �

Remark 4.7. If (P,≤,′ ) is a lattice then Ap ∩ Aq = Ap∩q: By Lemma 4.4 we get
Ap∩q ⊆ Ap ∩ Aq and if a ∈ Ap ∩ Aq then a ≤ p ∩ q which means a ∈ Ap∩q.

Our next goal is to consider the uniqueness of representations. For this we first
need

Lemma 4.8. If Op is an arbitrary maximal orthogonal subset of Ap then
∑

a∈Op

a = p.

P r o o f . Lemma 4.3 implies that
∑

a∈Op
a =: p1 ≤ p. Assuming p1 < p we have

p − p1 = p ∩ p′1 > 0 according to Proposition 2.1 (b). Therefore there exists a∗ ∈ A
with a∗ ≤ p − p1 ≤ p, i. e. a∗ ∈ Ap. Moreover, a∗ +

∑
a∈Op

a = a∗ + p1 ≤ p hence

a∗ ⊥ a for all a ∈ Op and consequently Op ∪ {a∗} is orthogonal which contradicts
the maximality of Op. �

Theorem 4.9. A finite algebra of S-probabilities (P,≤,′ ) is a Boolean algebra if

and only if the representation of an element p ∈ P as a sum of atoms is unique for

all p ∈ P .

P r o o f . If (P,≤,′ ) is a finite Boolean algebra of S-probabilities then every element
can be uniquely represented as a join of atoms. Distinct atoms are orthogonal in a
Boolean algebra and thus the join of atoms coincides with their sum.

Now we suppose that the representation as a sum of atoms is unique. First
we claim that

∑
a∈A a = 1: Due to Proposition 4.1 there exists a representation

1 =
∑

a∈O1
a with an appropriate orthogonal set of atoms O1. If O1 ⊂ A there

would exist an element b ∈ A \ O1 and a maximal orthogonal set O ⊆ A = A1 with
b ∈ O. Due to Lemma 4.8 we conclude

∑
a∈O a = 1 and by the uniqueness of the

representation of 1 we obtain O = O1 and hence b ∈ O1, a contradiction.

From the representation
∑

a∈A a = 1 we infer that all atoms are pairwise orthog-
onal. Therefore any subset of A can be summed up in P and one can see easily that
the map ϕ : P → 2A, ϕ(p) = Ap, is a bijection which is compatible with order and
complement. This implies that (P,≤,′ ) is isomorphic to (2A,⊆,′ ) and hence is a
Boolean algebra of S-probabilities. �

Corollary 4.10. Any finite algebra of S-probabilities with at most four atoms is

lattice ordered.
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P r o o f . Let n = |A| and A = {a1, . . . , an}, n ≤ 4. The case n ≤ 2 is obvious and
leads to the Boolean algebras with two or four elements, respectively.

Now suppose n ≥ 3. Due to Proposition 4.1 the element a′

1 can be represented in
the form a′

1 =
∑

a∈Ō a with some orthogonal set of atoms Ō. Since no element 6= 0
is orthogonal to itself (Proposition 2.4) we have a1 /∈ Ō.

n = 3: In case |Ō| = 1, say a′

1 = a2, we have A = {a1, a
′

1, a3}: If a′

3 = a1 = a′

2

or a′

3 = a2 = a′

1 then a3 = a2 or a3 = a1, respectively, a contradiction. The case
a′

3 = a1 + a2 = a1 + a′

1 = 1 is also impossible since then a3 = 0.
If |Ō| = 2 then a′

1 = a2 + a3 and all atoms are pairwise orthogonal. As shown in
the proof of Theorem 4.9, P is a Boolean algebra and thus a lattice.

n = 4: We first consider the case |Ō| = 1, say a′

1 = a2, and check the possibilities
for a′

3: If a′

3 = a4 then all atoms are coatoms as well, and P is isomorphic to MO2

which is a lattice. All other cases will lead to a contradiction to our assumptions: if
a′

3 = a1+a4 then a2 = a′

1 = a3+a4 is not an atom, if a′

3 = a1+a2 or a′

3 = a1+a2+a4

then a3 = 0.

In case of |Ō| = 2 with a′

1 = a2 + a3 the set O := {a1, a2, a3} is a maximal
orthogonal set of atoms. When forming sums over subsets of O we obtain a Boolean
algebra with eight elements. Also a′

4 and thus a4 is among these sums which leads
to a contradiction to |A| = 4.

Finally, if |Ō| = 3 then a1+a2+a3+a4 = 1, i. e. all atoms are pairwise orthogonal
and P is isomorphic to the Boolean algebra with four atoms and thus a lattice. �
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