EVERY UNIFORMLY ARCHIMEDEAN ATOMIC MV-EFFECT ALGEBRA IS SHARPLY DOMINATING

Vladimír Olejček

Following the study of sharp domination in effect algebras, in particular, in atomic Archimedean MV-effect algebras it is proved that if an atomic MV-effect algebra is uniformly Archimedean then it is sharply dominating.

Keywords: lattice effect algebra, MV-algebra, sharp element, sharp domination, atom, Euclidean algorithm

Classification: 03G12, 06D35, 06F25, 81P10

1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras were introduced by D. J. Foulis and M. K. Bennett in 1994 [2] for modeling unsharp measurements in a Hilbert Space. In a general form they are very natural structures to be carriers of states or probability measures when events are unsharp, fuzzy or imprecise and some of them may be mutually non-compatible. Simultaneously, F. Kôpka and F. Chovanec $[7,8]$ introduced in a sense equivalent structures called D-posets.

Definition 1.1. (Foulis and Bennett [2]) A partial algebra $(E ; \oplus, 0,1)$ is called an effect algebra if 0,1 are two distinct elements of E and \oplus is a partially defined binary operation on E which satisfies the following conditions for any $x, y, z \in E$:
(i) $x \oplus y=y \oplus x$ if $x \oplus y$ is defined,
(ii) $(x \oplus y) \oplus z=x \oplus(y \oplus z)$ if one side is defined,
(iii) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y=1$ we put $x^{\prime}=y$,
(iv) if $1 \oplus x$ is defined then $x=0$.

We often denote the effect algebra $(E ; \oplus, 0,1)$ briefly by E. On every effect algebra E a partial order \leq and a partial binary operation \ominus can be introduced as follows:

$$
x \leq y \text { and } y \ominus x=z \text { iff } x \oplus z \text { is defined and } x \oplus z=y
$$

If E, with the partial order \leq defined above, is a lattice (a complete lattice) then ($E ; \oplus, 0,1$) is called a lattice effect algebra (a complete lattice algebra).

Lattice effect algebras generalize orthomodular lattices and MV-algebras. A lattice effect algebra is called an $M V$-effect algebra iff every two elements $x, y \in E$ are compatible, i. e. $x \vee y=x \oplus(y \ominus(x \wedge y))$ [6].

Recall that a minimal non-zero element of an effect algebra E is called an atom and E is called atomic if under every non-zero element of E there is an atom.

In an effect algebra E elements x and non x, denoted by x^{\prime}, need not be disjoint. The notions of a sharp element and sharply dominating effect algebra are due to S. P. Gudder $([3,4])$. An element w of an effect algebra E is called sharp, if $w \wedge w^{\prime}=0$, and E is called sharply dominating if for every $x \in E$ there exists the smallest sharp element w among all the sharp elements v with the property $x \leq v$.

For an element x of an effect algebra E we write $\operatorname{ord}(x)=\infty$ if $n x=x \oplus x \oplus \cdots \oplus x$ (n-times) exists for every positive integer n and we write $\operatorname{ord}(x)=n_{x}$ if n_{x} is the greatest positive integer such that $n_{x} x$ exists in E (n_{x} is called isotropic index of x). An effect algebra is called Archimedean if $\operatorname{ord}(x)<\infty$ for all $x \in E$.

Definition 1.2. A direct product $\prod\left\{E_{k} \mid k \in H\right\}$ of effect algebras E_{k} is the Cartesian product with $\oplus, 0,1$ defined "coordinate-wise", i.e. $\left(a_{k}\right)_{k \in H} \oplus\left(b_{k}\right)_{k \in H}$ exists iff $a_{k} \oplus b_{k}$ is defined for every $k \in H$ and then $\left(a_{k}\right)_{k \in H} \oplus\left(b_{k}\right)_{k \in H}=\left(a_{k} \oplus_{k} b_{k}\right)_{k \in H}$. Moreover, $0=\left(0_{k}\right)_{k \in H}, 1=\left(1_{k}\right)_{k \in H}$.

A sub-direct product of a family $\left\{E_{k}\right\}_{k \in H}$ of lattice effect algebras is a sub-lattice sub-effect algebra Q (i.e. Q is simultaneously a sub-lattice and a sub-effect algebra) of the direct product $\prod\left\{E_{k} \mid k \in H\right\}$ such that each restriction of the natural projection $p r_{k}$ to Q is onto E_{k}.

In [5] the following example of an atomic Archimedean MV-effect algebra that is not sharply dominating is given.

Example 1.3. Let M be a direct product of countably many finite chains $C_{n}=$ $0,1, \ldots, n$ (and consequently MV-effect algebras). Then $M=\prod_{n=1}^{\infty}\{0,1, \ldots, n\}$ with coordinate-wise defined partial operation \oplus is a complete (consequently Archimedean by [9, Theorem 3.3]) atomic MV-effect algebra. Consider the subset E of M as $E=F_{0} \cup F_{1} . F_{0}$ is the set of all sequences of M with all but finitely many of even coordinates equal to 0 and all but finitely many of odd coordinates constant. F_{1} is the set of all sequences of M with all but finitely many of even coordinates equal to n and all but finitely many of odd coordinates smaller than n by a constant.

The essential property of the MV-effect algebra E in the above example is that the set of isotropic indices of its elements is unbounded. It leads to an idea of a "bounded isotropic index" for all elements of E defined here as a "uniformly Archimedean" MV-effect algebra. Thereafter we prove that such an atomic MV-algebra is sharply dominating.

2. MAIN RESULT

Definition 2.1. An effect algebra E is called uniformly Archimedean if there is a positive number $m \in N$ such that for every non-zero element $x \in E$ the isotropic index n_{x} of x does not exceed m.

Other terms playing key role in the proof of the following Theorem are local versions of "atom" and "isotropic index" in an MV-effect algebra E. According to [1] and [10], E can be isomorfically embedded into a product M of intervals $\left\{0,1, \ldots, n_{p}\right\}$, i.e.

$$
E \cong Q \subseteq M=\prod\left\{\left\{0,1, \ldots, n_{p}\right\} \mid p \in A\right\}
$$

where A is the set of all atoms of E. Every element x of E is represented as a function $x: A \rightarrow N=\{0,1, \ldots\}$, with the p th coordinate denoted by x_{p}.

Definition 2.2. Let x be an element of an MV-effect algebra E and let p be an atom in E with the isotropic index n_{p}, satisfying $p \leq x$. Denote q_{p} the greatest common divisor (GCD) of the numbers x_{p} and n_{p}. The element $q_{p} p$ is called local atom with respect to the atom p and to the element x. The number $r_{p}=n_{p} / q_{p}$ is called local isotropic index of the atom p with respect to the element x. Note that if $x_{p}=0$ then $q_{p}=n_{p}$ and $r_{p}=1$. Similarly, if $x_{p}>0$ then $q_{p} p \leq x_{p} \leq n_{p} p$. In both cases $r_{p} \geq 1$.

Theorem 2.3. Every uniformly Archimedean atomic MV-effect algebra is sharply dominating.

Proof. Assume that E is a uniformly Archimedean atomic effect algebra represented as above. Consider an arbitrary element $x \in E$. Obviously, y is a sharp element of M iff for every $p \in A, y_{p}=0$ or $y_{p}=n_{p}$. Hence, the element y with

$$
y_{p}= \begin{cases}0 & \text { if } x_{p}=0 \\ n_{p} & \text { if } x_{p}>0\end{cases}
$$

is the smallest element in M dominating x. It is enough to prove that y belongs to E.

In the following construction we will apply a simple version of the Euclidean algorithm for counting the greatest common divisor of two positive integers a, b. Define $c_{0}=a, c_{1}=b$ and

$$
\begin{equation*}
c_{n+2}=\max \left(c_{n+1}, c_{n}\right)-\min \left(c_{n+1}, c_{n}\right) \tag{1}
\end{equation*}
$$

for $n=0,1,2, \ldots$.
It is well known that after finitely many steps of the above construction zero output is obtained. The last non-zero output preceding the zero-output is the greatest common divisor d of the integers a, b. Note that if the algorithm continues, 0 is followed again by d and the pattern $d-0-d$ repeats ad infinitum. Apply the same algorithm for the inputs $x, 1 \in E$, i. e. denote $t^{(0)}=1_{E}, t^{(1)}=x$ and

$$
\begin{equation*}
t^{(n+2)}=\left(t^{(n+1)} \vee t^{(n)}\right) \ominus\left(t^{(n+1)} \wedge t^{(n)}\right) \tag{2}
\end{equation*}
$$

for $n=0,1,2, \ldots$. For every $p \in A, n_{p}$ and x_{p} are the two inputs and the last non-zero output q_{p} is GCD of the numbers n_{p} and x_{p}. Then element $q_{p} p$ is the local atom with respect to the atom p and to the element x.

The operations in (2) are lattice and MV-effect algebra operations. Thus, every output in each step is an element of E. Since the values of n_{p} are bounded, after finitely many, say L, steps of the algorithm, for every $p \in A$, the output $t_{p}^{(L)}$ is q_{p} or 0 . Moreover, for every $p \in A$, at least one of the outputs $t^{(L)}, t^{(L+1)}$ does not equal 0 . It follows that the join $t=t^{(L)} \vee t^{(L+1)}$ of the outputs after L and $L+1$ steps belongs to E and all its coordinates are equal to the local atoms coefficients q_{p}.

Define $z^{(1)} \in M$ as $z^{(1)}=x \wedge t$. Then $z^{(1)} \in E$ and

$$
z_{p}^{(1)}= \begin{cases}0 & \text { if } x_{p}=0 \\ q_{p} & \text { if } x_{p}>0\end{cases}
$$

Note that the zero element in E is a sharp element, thus, we can assume that $x \neq 0$, whence $z^{(1)}$ is not identically equal to 0 . Denote $m_{1}=\min \left\{r_{p} \mid p \in A, z_{p}^{(1)}>0\right\}$ and put $z^{(2)}=z^{(1)} \wedge\left(m_{1} z^{(1)}\right)^{\prime}$. Then $z^{(2)} \in E$ and

$$
z_{p}^{(2)}= \begin{cases}0 & \text { if } r_{p} \leq m_{1} \\ q_{p} & \text { if } r_{p}>m_{1}\end{cases}
$$

Continue by induction. Suppose $z^{(i)}, m_{i}$ were already constructed by the induction, i. e. $z^{(i)} \in E, z^{(i)}$ is not identically equal to 0 and $m_{i}=\min \left\{r_{p} \mid p \in A, z_{p}^{(i)}>0\right\}$. Put $z^{(i+1)}=z^{(i)} \wedge\left(m_{i} z^{(i)}\right)^{\prime}$ and $m_{i+1}=\min \left\{r_{p} \mid p \in A, z_{p}^{(i)}>0\right\}$. Then $z^{(i+1)} \in E$ and

$$
z_{p}^{(i+1)}= \begin{cases}0 & \text { if } r_{p} \leq m_{i} \\ q_{p} p & \text { if } r_{p}>m_{i}\end{cases}
$$

Note that $z_{p}^{(i)}>0, i \geq 3$ for some p implies $z_{p}^{(i+1)}<z_{p}^{(i)}<\cdots<z_{p}^{(2)}<z_{p}^{(1)}$. Since E is uniformly Archimedean, the set $\left\{n_{p} \mid p \in A\right\}$ is bounded, hence finite. Consequently the set $\left\{r_{p} \mid p \in A\right\}$ is finite. Hence, there is an index $k+1$ such that $z^{(k+1)}$ is, and $z^{(k)}$ is not identically equal to 0 . We will show that

$$
y=\bigvee\left\{m_{i} z^{(i)} \mid i=1,2, \ldots, k\right\}
$$

Let $p \in A$. If $x_{p}=0$ then $z_{p}^{(i)}=0$ for all $i=1,2, \ldots, k$, whence $y_{p}=0$. If $0<x_{p} \leq$ m_{1} then $z_{p}^{(1)}=q_{p}$ and $z_{p}^{(i)}=0$ for all $i=2, \ldots, k$. Hence $y_{p}=m_{1} z_{p}^{(1)}=r_{p} q_{p}=n_{p}$. Finally, for any $j=2, \ldots, k$, if $m_{j-1}<x_{p} \leq m_{j}$ we have $z_{p}^{(i)}=q_{p}$ for all $i, i \leq j$ and $z_{p}^{(i)}=0$ for all $i, i>j$. Hence $y_{p}=\max \left\{m_{i} z_{p}^{(i)} \mid i=1,2, \ldots, j\right\}=m_{j} z_{p}^{(j)}=$ $r_{p} q_{p}=n_{p}$.
(Received June 14, 2010)

REFERENCES

[1] R. Cignoli and D. Mundici: An elementary presentation of the equivalence between MV-algebras and ℓ-groups with strong unit. Studia Logica 61 (1998), 49-64.
[2] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346.
[3] S. P. Gudder: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23-30.
[4] S. P. Gudder: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915-923.
[5] M. Kalina, M. Olejček, J. Paseka, and Z. Riečanová: Sharply Dominating MV-Effect Algebras. Internat. J. Theor. Phys. (2010), doi: 10.1007/s10773-010-0338-x
[6] F. Kôpka: Boolean D-posets as factor spaces. Internat. J. Theor. Phys. 37 (1998), 93-101.
[7] F. Kôpka: D-posets of fuzzy sets. Tatra Mt. Math. Publ. 1 (1992), 83-87.
[8] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21-34.
[9] Z. Riečanová: Archimedean and block-finite lattice effect algebras. Demonstr. Math. 33 (2000), 443-452.
[10] Z. Riečanová: Subdirect Decompositions of Lattice Effect Algebras. Interernat. J. Theor. Phys. 42 (2003), 1415-1423.

Vladimír Olejček, Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava. Slovak Republic.
e-mail: vladimir.olejcek@stuba.sk

