MAC NEILLE COMPLETION OF CENTERS AND CENTERS OF MAC NEILLE COMPLETIONS OF LATTICE EFFECT ALGEBRAS

Martin Kalina

If element z of a lattice effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ is central, then the interval $[\mathbf{0}, z]$ is a lattice effect algebra with the new top element z and with inherited partial binary operation \oplus. It is a known fact that if the set $C(E)$ of central elements of E is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in E equals to the top element of E, then E is isomorphic to a subdirect product of irreducible effect algebras ([18). This means that if there exists a MacNeille completion \hat{E} of E which is its extension (i.e. E is densely embeddable into \hat{E}) then it is possible to embed E into a direct product of irreducible effect algebras. Thus E inherits some of the properties of \hat{E}. For example, the existence of a state in \hat{E} implies the existence of a state in E. In this context, a natural question arises if the MacNeille completion of the center of E (denoted as $\mathcal{M C}(C(E))$) is necessarily the same as the center of \hat{E}, i.e., if $\mathcal{M C}(C(E))=C(\hat{E})$ is necessarily true. We show that the equality is not necessarily fulfilled. We find a necessary condition under which the equality may hold. Moreover, we show also that even the completeness of $C(E)$ and its bifullness in E is not sufficient to guarantee the mentioned equality.

Keywords: lattice effect algebra, center, atom, MacNeille completion
Classification: 03G12, 03G27, 06B99

1. INTRODUCTION AND PRELIMINARIES

Effect algebras, introduced by D.J. Foulis and M.K. Bennett [3], have their importance in the investigation of uncertainty. Lattice ordered effect algebras generalize orthomodular lattices and MV-algebras. Thus they may include non-compatible pairs of elements as well as unsharp elements.

Definition 1.1. (Foulis and Bennett [3]) An effect algebra is a system $(E ; \oplus, \mathbf{0}, \mathbf{1})$ consisting of a set E with two different elements $\mathbf{0}$ and 1, called zero and unit, respectively and \oplus is a partially defined binary operation satisfying the following conditions for all $p, q, r \in E$:
(E1) If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q=q \oplus p$.
(E2) If $q \oplus r$ is defined and $p \oplus(q \oplus r)$ is defined, then $p \oplus q$ and $(p \oplus q) \oplus r$ are defined and $p \oplus(q \oplus r)=(p \oplus q) \oplus r$.
(E3) For every $p \in E$ there exists a unique $q \in E$ such that $p \oplus q$ is defined and $p \oplus q=1$.
(E4) If $p \oplus \mathbf{1}$ is defined then $p=\mathbf{0}$.
The element q in (E3) will be called the supplement of p, and will be denoted as p^{\prime}.
In the whole paper, for an effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$, writing $a \oplus b$ for arbitrary $a, b \in E$ will mean that $a \oplus b$ exists. On an effect algebra E we may define another partial binary operation \ominus by

$$
a \ominus b=c \quad \Leftrightarrow \quad b \oplus c=a .
$$

The operation \ominus induces a partial order on E. Namely, for $a, b \in E b \leq a$ if there exists a $c \in E$ such that $a \ominus b=c$. If E with respect to \leq is lattice ordered, we say that E is a lattice effect algebra. For the sake of brevity we will write just LEA. Further, in this article we often briefly write 'an effect algebra E ' skipping the operations.

If every pair x, y of elements of a LEA E is compatible, meaning that $x \vee y=$ $x \oplus(y \ominus(x \wedge y))$ then E is called an $M V$-effect algebra [1].
S. P. Gudder (5, 6]) introduced the notion of sharp elements and sharply dominating lattice effect algebras. Recall that an element x of the LEA E is called sharp if $x \wedge x^{\prime}=\mathbf{0}$. Jenča and Riečanová in [7] proved that in every lattice effect algebra E the set $S(E)=\left\{x \in E ; x \wedge x^{\prime}=\mathbf{0}\right\}$ of sharp elements is an orthomodular lattice which is a sub-effect algebra of E, meaning that if among $x, y, z \in E$ with $x \oplus y=z$ at least two elements are in $S(E)$ then $x, y, z \in S(E)$. Moreover $S(E)$ is a full sublattice of E, hence supremum of any set of sharp elements, which exists in E, is again a sharp element. Further, each maximal subset M of pairwise compatible elements of E, called block of E, is a sub-effect algebra and a full sublattice of E and $E=\bigcup\{M \subseteq E ; M$ is a block of $E\}$ (see 15 16]). Central elements and centers of effect algebras were defined in [4]. In [13) 14 it was proved that in every lattice effect algebra E the center

$$
\begin{equation*}
C(E)=\left\{x \in E ;(\forall y \in E) y=(y \wedge x) \vee\left(y \wedge x^{\prime}\right)\right\}=S(E) \cap B(E) \tag{1}
\end{equation*}
$$

where $B(E)=\bigcap\{M \subseteq E ; M$ is a block of $E\}$. Since $S(E)$ is an orthomodular lattice and $B(E)$ is an MV-effect algebra, we obtain that $C(E)$ is a Boolean algebra. Note that E is an orthomodular lattice if and only if $E=S(E)$ and E is an MVeffect algebra if and only if $E=B(E)$. Thus E is a Boolean algebra if and only if $E=S(E)=B(E)=C(E)$.

Recall that an element p of an effect algebra E is called an atom if and only if p is a minimal non-zero element of E and E is atomic if for each $x \in E, x \neq \mathbf{0}$, there exists an atom $p \leq x$.

Definition 1.2. Let $(E, \oplus, 0)$ be an effect algebra. To each $a \in E$ we define its isotropic index, notation $\operatorname{ord}(a)$, as the maximal positive integer n such that

$$
n a:=\underbrace{a \oplus \cdots \oplus a}_{n \text {-times }}
$$

exists. We set $\operatorname{ord}(a)=\infty$ if $n a$ exists for each positive integer n. We say that E is Archimedean, if for each $a \in E, a \neq \mathbf{0}, \operatorname{ord}(a)$ is finite.

An element $u \in E$ is called finite, if there exists a finite system of atoms a_{1}, \ldots, a_{n} (which are not necessarily distinct) such that $u=a_{1} \oplus \cdots \oplus a_{n}$. An element $v \in E$ is called cofinite, if there exists a finite element $u \in E$ such that $v=u^{\prime}$.

We say that for a finite system $F=\left(x_{j}\right)_{j=1}^{k}$ of not necessarily different elements of an effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ is \oplus-orthogonal if $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}=\left(x_{1} \oplus x_{2} \oplus\right.$ $\left.\cdots \oplus x_{n-1}\right) \oplus x_{n}$ exists in E (briefly we will write $\bigoplus_{j=1}^{n} x_{j}$). We define also $\oplus \emptyset=\mathbf{0}$.

Definition 1.3. For a lattice (L, \wedge, \vee) and a subset $D \subseteq L$ we say that D is a bifull sublattice of L, if and only if for any $X \subseteq D, \bigvee_{L} X$ exists if and only if $\bigvee_{D} X$ exists and $\bigwedge_{L} X$ exists if and only if $\bigwedge_{D} X$ exists, in which case $\bigvee_{L} X=\bigvee_{D} X$ and $\wedge_{L} X=\bigwedge_{D} X$.

Recall that an element $a \in L$, where (L, \wedge, \vee) is a lattice, is called a compact element if for arbitrary $D \subset L$ with $\bigvee D \in L$, if $a \leq \bigvee D$ then $a \leq \bigvee F$ for some finite set $F \subseteq D$. The lattice L is called compactly generated if every element of L is a join of compact elements.

Lemma 1.4. Let $(E, \oplus, \vee, \wedge, \mathbf{0}, \mathbf{1})$ be an atomic Archimedean lattice effect algebra. Then
(i) (see 10) a block M of E is atomic if there exists a maximal pairwise compatible set A of atoms of E such that $A \subseteq M$ and if M_{1} is a block of E with $A \subseteq M_{1}$, then $M_{1}=M$. Moreover for all $x \in E$ and all $a \in A$ the following holds

$$
x \in M \quad \Leftrightarrow \quad x \leftrightarrow a,
$$

(ii) (see [17) to every nonzero element $x \in E$ there exist mutually distinct atoms $a_{\alpha} \in E$ and positive integers k_{α} for $\alpha \in \mathcal{I}$ such that

$$
x=\bigoplus_{\alpha \in \mathcal{I}}\left(k_{\alpha} a_{\alpha}\right)=\bigvee_{\alpha \in \mathcal{I}}\left(k_{\alpha} a_{\alpha}\right) .
$$

It is known that if E is a distributive effect algebra (i.e., the effect algebra E is a distributive lattice - e.g., if E is an MV-effect algebra) then $C(E)=S(E)$. If moreover E is Archimedean and atomic then the set of atoms of $C(E)=S(E)$ is the set $\left\{n_{a} a ; a \in E\right.$ is an atom of $\left.E\right\}$, where $n_{a}=\operatorname{ord}(a)$ (see 19]). Since $S(E)$ is a bifull sublattice of E if E is an Archimedean atomic LEA (see [12]), we obtain that

$$
\mathbf{1}=\bigvee_{C(E)}\{p \in C(E) ; p \text { is an atom of } C(E)\}=\bigvee_{E}\{p \in C(E) ; p \text { is an atom of } C(E)\}
$$

for every Archimedean atomic distributive lattice effect algebra E. In [8] it was shown that there exists a LEA E for which this property fails to be true. Important properties of Archimedean atomic lattice effect algebras with atomic center were proven by Riečanová in [20].

Theorem 1.5. (Riečanová [20]) Let E be an Archimedean atomic lattice effect algebras with atomic center $C(E)$. Denote by A_{E} the set of all atoms of E and by $A_{C(E)}$ the set of all atoms of $C(E)$. The following conditions are equivalent:

1. $\bigvee_{E} A_{C(E)}=1$.
2. For every atom $a \in A_{E}$ there exists an atom $p_{a} \in A_{C(E)}$ such that $a \leq p_{a}$.
3. For every $z \in C(E)$ it holds

$$
z=\bigvee_{C(E)}\left\{p \in A_{C(E)} ; p \leq z\right\}=\bigvee_{E}\left\{p \in A_{C(E)} ; p \leq z\right\}
$$

4. $C(E)$ is a bifull sub-lattice of E.

In this case E is isomorphic to a subdirect product of Archimedean atomic irreducible lattice effect algebras.

2. MACNEILLE COMPLETION OF A LEA E WHOSE CENTER IS NOT BIFULL IN E

This section is based on an example published by the author in [8]. For reader's comfort in Section 2.1 we repeat the substantial parts of this paper where the LEA E whose center is not bifull in E, is constructed. In Section 2.2 we make the completion of E.

2.1. Construction of a LEA E whose center is not bifull in E

Let us have the following sequences of elements (sets):

$$
\begin{align*}
a_{0} & =\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leq x \leq 1, y \in \mathbb{R}\right\}, \\
a_{l} & =\left\{(x, y) \in \mathbb{R}^{2} ; l<x \leq l+1, y \in \mathbb{R}\right\}, \quad \text { for } l=1,2, \ldots, \\
b_{0} & =\left\{(x, y) \in \mathbb{R}^{2} ;-1 \leq x<0, y \in \mathbb{R}\right\}, \\
b_{l} & =\left\{(x, y) \in \mathbb{R}^{2} ;-l-1 \leq x<-l, y \in \mathbb{R}\right\}, \quad \text { for } l=1,2, \ldots, \tag{2}\\
c_{j} & =\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j, y \leq j \cdot x\right\}, \quad \text { for } j=1,2, \ldots, \\
d_{j} & =\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j, y>j \cdot x\right\}, \quad \text { for } j=1,2, \ldots, \\
p_{j} & =\{j\}, \quad \text { for } j=1,2, \ldots
\end{align*}
$$

For such a choice of elements, the elements $q_{1} \neq q_{2}$ are compatible if and only if $q_{1} \cap q_{2}=\emptyset$.

Denote \hat{B}_{0}, \hat{B}_{j} (for $j=1,2, \ldots$) complete atomic Boolean algebras with the corresponding sets of atoms $A_{0}, A_{j}(j=1,2, \ldots)$, given by

$$
\begin{align*}
A_{0} & =\bigcup_{i=0}^{\infty}\left\{a_{i}\right\} \cup \bigcup_{i=0}^{\infty}\left\{b_{i}\right\} \cup \bigcup_{j=1}^{\infty}\left\{p_{j}\right\}, \tag{3}\\
A_{j} & =\bigcup_{i=j}^{\infty}\left\{a_{i}\right\} \cup \bigcup_{i=j}^{\infty}\left\{b_{i}\right\} \cup \bigcup_{j=1}^{\infty}\left\{p_{j}\right\} \cup\left\{c_{j}, d_{j}\right\} . \tag{4}
\end{align*}
$$

Fig. 1. Illustration of sequences of elements $\left(a_{l}\right)_{l},\left(b_{l}\right)_{l},\left(p_{j}\right)_{j},\left(c_{j}\right)_{j},\left(d_{j}\right)_{j}$.

Disjointness among some elements of the system (2) is equivalent with the fact that A_{0} and $A_{j}(j=1,2, \ldots)$ are unique maximal sets of pairwise compatible atoms.

For elements $u_{1}, u_{2} \in \hat{B}_{l}, l=0,1,2, \ldots$, such that $u_{1} \cap u_{2}=\emptyset$ we introduce the partial operation \oplus_{l} by

$$
\begin{equation*}
u_{1} \oplus_{l} u_{2}=u_{1} \cup u_{2} \tag{5}
\end{equation*}
$$

Observe that if $u_{1}, u_{2} \in \hat{B}_{i} \cap \hat{B}_{j}$, then

$$
\begin{equation*}
u_{1} \oplus_{i} u_{2}=u_{1} \oplus_{j} u_{2} . \tag{6}
\end{equation*}
$$

This is the reason why we will omit the index denoting operation \oplus in the whole paper. Moreover we have the following equality

$$
\begin{equation*}
c_{j} \oplus d_{j}=\bigoplus_{i=0}^{j-1}\left(a_{i} \oplus b_{i}\right)=\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j\right\}, \quad \text { for all } j=1,2, \ldots \tag{7}
\end{equation*}
$$

The complete Boolean algebras $\hat{B}_{0}, \hat{B}_{j}, j=1,2, \ldots$, have the following top elements:

$$
\begin{gather*}
\mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{0}=a_{0} \oplus b_{0} \oplus \bigoplus_{i=1}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \tag{8}\\
\mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{1}=\left(c_{1} \oplus d_{1}\right) \oplus \bigoplus_{i=1}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \tag{9}\\
\mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{j}=\left(c_{j} \oplus d_{j}\right) \oplus \bigoplus_{i=j}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \oplus \bigoplus_{i=1}^{j-1} p_{i}, \tag{10}\\
\\
\quad \text { for all } j=2,3, \ldots
\end{gather*}
$$

An element $u \in \hat{B}_{l}$ is finite if and only if $u=q_{1} \oplus q_{2} \oplus \cdots \oplus q_{n}$ for an $n \in \mathbb{N}$ and $q_{1}, q_{2}, \ldots, q_{n} \in A_{l}$. Set $Q_{l}=\left\{u \in B_{l} ; u\right.$ is finite $\}, l=0,1,2, \ldots$. Then Q_{l} is a generalized Boolean algebra, since $B_{l}=Q_{l} \dot{\cup} Q_{l}^{*}$ is a Boolean algebra, where

Fig. 2. Illustration of the element $a_{3} \oplus b_{3} \oplus c_{3} \oplus d_{3}$.
$Q_{l}^{*}=\left\{u^{*} ; u^{*}=1_{l} \ominus u\right.$ and $\left.u \in Q_{l}\right\}$ (see [21], or [2] pp. 18-19]). This means that B_{l} is a Boolean subalgebra of finite and cofinite elements of $\hat{B}_{l}(l=0,1,2, \ldots)$.

Theorem 2.1. (Kalina [8) Denote $E=\bigcup_{l=0}^{\infty} B_{l}$. Then $(E, \oplus, \vee, \wedge, \mathbf{0}, \mathbf{1})$ is a compactly generated LEA with the family $\left(B_{l}\right)_{l=0}^{\infty}$ of atomic blocks of E. The center of $E, C(E)$, is not a bifull sublattice of E.

2.2. MacNeille completion of E

Let us denote

$$
\begin{equation*}
\hat{E}=\bigcup_{l=0}^{\infty} \hat{B}_{l} \tag{11}
\end{equation*}
$$

First we show the following lemma.
Lemma 2.2. $(\hat{E}, \oplus, \wedge, \vee, \mathbf{0}, \mathbf{1})$ is a lattice effect algebra.

Proof. Equation (6) shows that \oplus is well defined. We show that this operation is commutative and associative. Let $q_{1}, q_{2}, q_{3} \in \hat{E}$ are elements such that $q_{1} \oplus q_{2}$ is defined and $\left(q_{1} \oplus q_{2}\right) \oplus q_{3}$ is also defined. Then q_{1}, q_{2} are disjoint sets and $\left(q_{1} \oplus q_{2}\right)$ and q_{3} are also disjoint sets. These imply that q_{1}, q_{2}, q_{3} is a triple of pairwise disjoint sets and hence the commutativity and associativity follows immediately. Followingly (\hat{E}, \oplus) is an effect algebra.

We show now that $(\hat{E}, \wedge, \vee, \mathbf{0}, \mathbf{1})$ is a bounded lattice.
Let $h_{1}, h_{2} \in \hat{E}$ be arbitrary elements. First assume that $h_{1} \leftrightarrow h_{2}$. Then there is an $i \in\{0,1,2, \ldots\}$ such that $h_{1} \in \hat{B}_{i}, h_{2} \in \hat{B}_{i}$. Since \hat{B}_{i} is a complete Boolean algebra, $h_{1} \vee h_{2}$ and $h_{1} \wedge h_{2}$ are well defined.

Assume that $h_{1} \nleftarrow h_{2}$. Then there are some $0 \leq i<s$ such that $h_{1} \in \hat{B}_{i}$ and $h_{2} \in \hat{B}_{s}$. This means that for h_{1} and h_{2} we have

$$
\begin{align*}
& h_{1}= \begin{cases}\bigoplus_{l=0}^{\infty}\left(\alpha_{l} a_{l} \oplus \beta_{l} b_{l}\right) \oplus \bigoplus_{j=1}^{\infty} \pi_{j} p_{j}, & \text { if } i=0, \\
\gamma_{i} c_{i} \oplus \delta_{i} d_{i} \oplus \bigoplus_{l=i}^{\infty}\left(\alpha_{l} a_{l} \oplus \beta_{l} b_{l}\right) \oplus \bigoplus_{j=1}^{\infty} \pi_{j} p_{j}, & \text { if } i \neq 0,\end{cases} \tag{12}\\
& h_{2}=\gamma_{s}^{\prime} c_{s} \oplus \delta_{s} d_{s} \oplus \bigoplus_{l=s}^{\infty}\left(\alpha_{l}^{\prime} a_{l} \oplus \beta_{l}^{\prime} b_{l}\right) \oplus \bigoplus_{m=1}^{\infty} \pi_{m}^{\prime} p_{m}, \tag{13}
\end{align*}
$$

where $\alpha_{l}, \beta_{l}, \gamma_{i}, \delta_{i}, \pi_{j} \in\{0,1\}$ for $l=0,1,2, \ldots, i=1,2, \ldots$ and $j=1,2, \ldots$, $\alpha_{l}^{\prime}, \beta_{l}^{\prime}, \gamma_{s}^{\prime}, \delta_{s}^{\prime}, \pi_{j}^{\prime} \in\{0,1\}$ for $l=1,2, \ldots, s=1,2, \ldots$ and $j=1,2, \ldots$. Because of formula (7) and the non-compatibility of h_{1} and h_{2}, if we denote by Γ_{i} all atoms of A_{i} which are non-compatible with c_{s} (or equivalently, which are non-compatible with d_{s}), for h_{1} we get that there exists a $q \in \Gamma_{i}$ such that $q \leq h_{1}$ and at the same time

$$
\begin{array}{ll}
\bigoplus_{l=0}^{s-1}\left(a_{l} \oplus b_{l}\right) \not \leq h_{1}, & \text { if } i=0 \\
c_{i} \oplus d_{i} \oplus \bigoplus_{l=i}^{s-1}\left(a_{l} \oplus b_{l}\right) \not \leq h_{1}, & \text { if } i \neq 0
\end{array}
$$

For h_{2} we get that either $c_{s} \leq h_{2}$ or $d_{s} \leq h_{2}$, and $c_{s} \oplus d_{s} \not \leq h_{2}$. In all other cases we would get the compatibility of h_{1} and h_{2}. Hence we have

$$
\begin{align*}
h_{1} \wedge h_{2} & =\bigoplus_{l=s}^{\infty}\left(\tilde{\alpha}_{l} a_{l} \oplus \tilde{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{\infty} \tilde{\pi}_{m} p_{m} \tag{14}\\
h_{1} \vee h_{2} & =c_{s} \oplus d_{s} \oplus \bigoplus_{l=s}^{\infty}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{\infty} \hat{\pi}_{m} p_{m} \\
& =\bigoplus_{l=0}^{s-1}\left(a_{l} \oplus b_{l}\right) \oplus \bigoplus_{l=s}^{\infty}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{\infty} \hat{\pi}_{m} p_{m} \tag{15}
\end{align*}
$$

where $\tilde{\alpha}_{l}=\min \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \tilde{\beta}_{l}=\min \left\{\beta_{l}, \beta_{l}^{\prime}\right\}, \hat{\alpha}_{l}=\max \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \hat{\beta}_{l}=\max \left\{\beta_{l}, \beta_{l}^{\prime}\right\}$ for $l \in\{s, 2 s+1, \ldots\}$, and $\tilde{\pi}_{m}=\min \left\{\pi_{m}, \pi_{m}^{\prime}\right\}, \hat{\pi}_{m}=\max \left\{\pi_{m}, \pi_{m}^{\prime}\right\}$ for $m \in\{1,2, \ldots\}$. The fact that $(\hat{E}, \oplus, \wedge, \vee, \mathbf{0}, \mathbf{1})$ is a LEA is due to formulas (5) and (6).

In what follows we will denote the LEA $(\hat{E}, \oplus, \wedge, \vee, \mathbf{0}, \mathbf{1})$ just briefly as \hat{E}.

Theorem 2.3. \hat{E} is a complete lattice.

Proof. Since \hat{E} is the union of countably many blocks \hat{B}_{i} and each block \hat{B}_{i} is a complete Boolean algebra, it is enough to show that \hat{E} is a σ-complete lattice. Each element $q \in \hat{E}$ has its supplement, hence we show just the σ-completeness with respect to V. Assume that $\left(h_{k_{i}}\right)_{i=1}^{\infty}$ be a sequence of pairwise non-compatible
elements of \hat{E}, where $h_{k_{i}} \in \hat{B}_{k_{i}}$ and $\left(k_{i}\right)_{i=1}^{\infty}$ is an increasing sequence of non-negative integers. Then the element $h_{k_{1}}$ can be expressed by formula 12 replacing i by k_{1}, and $h_{k_{i}}$ (for $i>1$) can be expressed by formula (13) replacing s by k_{i}. Then by formula (15) we have that

$$
\bigvee_{i=1}^{t} h_{k_{i}}=c_{k_{t}} \oplus d_{k_{t}} \oplus \bigoplus_{j=k_{t}}^{\infty}\left(\hat{\alpha}_{j} a_{j} \oplus \hat{\beta}_{j} b_{j}\right) \oplus \bigoplus_{m=1}^{\infty} \hat{\pi}_{m} p_{m}
$$

where

$$
\begin{aligned}
& \hat{\alpha}_{j}= \begin{cases}1, & \text { if } a_{j} \leq h_{k_{i}} \text { for an } 1 \leq i \leq t \\
0, & \text { otherwise },\end{cases} \\
& \hat{\beta}_{j}= \begin{cases}1, & \text { if } b_{j} \leq h_{k_{i}} \text { for an } 1 \leq i \leq t \\
0, & \text { otherwise }\end{cases} \\
& \hat{\pi}_{j}= \begin{cases}1, & \text { if } p_{j} \leq h_{k_{i}} \text { for an } 1 \leq i \leq t \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Formulas (2) imply

$$
\bigvee_{i=1}^{t}\left(c_{k_{t}} \oplus d_{k_{t}}\right)=\mathbb{R}^{2}
$$

which gives

$$
\bigvee_{i=1}^{\infty} h_{k_{i}}=\mathbb{R}^{2} \oplus \bigoplus_{m=1}^{\infty} \hat{\pi}_{m} p_{m}, \quad \text { where } \quad \hat{\pi}_{j}= \begin{cases}1, & \text { if } p_{j} \leq h_{k_{i}} \text { for an } 1 \leq i \leq t \\ 0, & \text { otherwise }\end{cases}
$$

This completes the proof that \hat{E} is a complete lattice.

Theorem 2.4. The atomic Archimedean LEA $E=\bigcup_{l=0}^{\infty} B_{l}$ can be densely embedded into $\hat{E}=\bigcup_{l=0}^{\infty} \hat{B}_{l}$.

Proof. Since each of the atomic complete Boolean algebras \hat{B}_{l}, for $l=0,1,2, \ldots$, is generated by countably many atoms, the completeness of each particular \hat{B}_{l} is equivalent with its σ-completeness. Further, the atomic Boolean algebras B_{l} contain all finite elements of \hat{B}_{l}. This implies that each B_{l} can be densely embedded into \hat{B}_{l}. Hence we have that $E=\bigcup_{l=0}^{\infty} B_{l}$ can be densely embedded into $\hat{E}=\bigcup_{l=0}^{\infty} \hat{B}_{l}$, and the proof is finished.

Let us denote by $\tilde{B}_{0}, \tilde{B}_{j}($ for $j=1,2, \ldots)$ the following complete Boolean algebras generated by corresponding sets of atoms $\tilde{A}_{0}, \tilde{A}_{j}$:

$$
\begin{aligned}
\tilde{A}_{0} & =\bigcup_{l=0}^{\infty}\left\{a_{l}\right\} \cup \bigcup_{l=0}^{\infty}\left\{b_{l}\right\} \\
\tilde{A}_{j} & =\bigcup_{i=j}^{\infty}\left\{a_{i}\right\} \cup \bigcup_{i=j}^{\infty}\left\{b_{i}\right\} \cup\left\{c_{j}, d_{j}\right\}
\end{aligned}
$$

Further we denote

$$
\begin{equation*}
\hat{E}_{1}=\bigcup_{i=0}^{\infty} \tilde{B}_{i} . \tag{16}
\end{equation*}
$$

We can embed \hat{E}_{1} into \hat{E}. In this sense \hat{E}_{1} is equipped with the partial operation \oplus inherited from \hat{E}.

Lemma 2.5. \hat{E}_{1} is a complete atomic Archimedean LEA with its center equal to $C\left(\hat{E}_{1}\right)=\left\{\mathbf{0}_{\hat{E}_{1}}, \mathbf{1}_{\hat{E}_{1}}\right\}$ and $\mathbf{1}_{\hat{E}_{1}}$ is an infinite element.

Proof. To show that \hat{E}_{1} is a complete atomic Archimedean LEA we could repeat the proofs of Lemma 2.2 and of Theorem [2.3] just skipping the atoms $\left\{p_{1}, p_{2}, \ldots\right\}$ from all formulas.

We show now that $C\left(\hat{E}_{1}\right)=\left\{\mathbf{0}_{\hat{E}_{1}}, \mathbf{1}_{\hat{E}_{1}}\right\}$. Formulas (2) imply that $\mathbf{1}_{\hat{E}_{1}}=\mathbb{R}^{2}$. Assume that there is yet another element of $C\left(\hat{E}_{1}\right)$. Let us denote this element by z. Assume that no atom from the set of atoms $\left\{c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{j}, d_{j}, \ldots\right\}$ is below z. Since $z \neq \mathbf{0}_{\hat{E}_{1}}$, there exists an atom $a_{i} \leq z$ (or $b_{i} \leq z$). Then we get that $c_{i+1} \cap z \neq \emptyset$ and $c_{i+1} \not \leq z$ and hence $c_{i+1} \nleftarrow z$. We may conclude that z is not a central element in this case. Assume that $c_{j} \leq z$ (or $\left.d_{j} \leq z\right)$ for some $j=1,2, \ldots$ and there is a k such that $\left(c_{k} \oplus d_{k}\right) \not \leq z$. Then formulas (2) imply that either c_{k} or d_{k} in non-compatible with z and followingly z is not a central element. This consideration gives that if z is a central element then all atoms from the set of atoms $\left\{c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{j}, d_{j}, \ldots\right\}$ are below z. Since

$$
\bigvee_{j=1}^{\infty}\left(c_{j} \oplus d_{j}\right)=\mathbb{R}^{2}
$$

we get that $C\left(\hat{E}_{1}\right)=\left\{\mathbf{0}_{\hat{E}_{1}}, \mathbf{1}_{\hat{E}_{1}}\right\}$.
To conclude the proof we have to show that $\mathbf{1}_{\hat{E}_{1}}$ is an infinite element of \hat{E}_{1}. This is due to the fact that $\mathbf{1}_{\hat{E}_{1}}$ is an infinite element of each of the blocks \tilde{B}_{l}.

Lemma 2.6. Let us denote by $\hat{\mathbf{B}}$ the complete Boolean algebra generated by the set of atoms $\left\{p_{1}, p_{2}, \ldots, p_{j}, \ldots\right\}$. Then \hat{E} is isomorphic to the direct product $\hat{\mathbf{B}} \times \hat{E}_{1}$.

Proof. The isomorphism between $\hat{E}=\bigcup_{l=0}^{\infty} \hat{B}_{l}$ and the direct product $\hat{\mathbf{B}} \times \hat{E}_{1}$ follows from the fact that each of the blocks \hat{B}_{l} is isomorphic to the direct product $\hat{\mathbf{B}} \times \tilde{B}_{l}$.

Theorem 2.7. Let $E=\bigcup_{l=0}^{\infty} B_{l}$ and $\hat{E}=\bigcup_{l=0}^{\infty} \hat{B}_{l}$. Denote $\mathcal{M C}(C(E))$ the MacNeille completion of $C(E)$. Then the following holds

$$
\mathcal{M C}(C(E)) \subsetneq C(\hat{E})
$$

Proof. Set $\mathbf{1}_{\hat{E}_{1}}$ the top element of \hat{E}_{1}. Then $\mathbf{1}_{\hat{E}_{1}} \in C(\hat{E})$. Since there is no non-zero central element of \hat{E} below $\mathbf{1}_{\hat{E}_{1}}$, we may conclude that $\mathbf{1}_{\hat{E}_{1}}$ is an atom of $C(\hat{E})$.

On the other hand $\mathbf{1}_{\hat{E}_{1}}$ is neither a finite nor a cofinite element of \hat{E} and hence $\mathbf{1}_{\hat{E}_{1}} \notin C(E)$. Since $\mathbf{1}_{\hat{E}_{1}}$ is an atom of $C(\hat{E})$, we get immediately $\mathbf{1}_{\hat{E}_{1}} \notin \mathcal{M C}(C(E))$ and the proof of the theorem is finished.

Theorem 2.7 can be generalized into the following
Theorem 2.8. Let \mathcal{E} be an atomic Archimedean LEA with atomic center $C(\mathcal{E})$ that is not a bifull sublattice of \mathcal{E}. Let $\mathcal{M C}(C(\mathcal{E}))$ be the MacNeille completion of $C(\mathcal{E})$ and $\hat{\mathcal{E}}$ the MacNeille completion of \mathcal{E}. Then the following holds

$$
\mathcal{M C}(C(\mathcal{E})) \subsetneq C(\hat{\mathcal{E}}) .
$$

Proof. Because $C(\mathcal{E})$ is not a bifull sublattice of \mathcal{E}, due to Theorem 1.5 we have that

$$
\bigvee_{\mathcal{E}}\{q \in C(\mathcal{E}) ; q \text { is an atom of } C(\mathcal{E})\}
$$

does not exist in \mathcal{E} but

$$
\bigvee_{C(\mathcal{E})}\{q \in C(\mathcal{E}) ; q \text { is an atom of } C(\mathcal{E})\}=\mathbf{1}
$$

Set $z=\left(\bigvee_{\hat{\mathcal{E}}}\{q \in C(\mathcal{E}) ; q \text { is an atom of } C(\mathcal{E})\}\right)^{\prime}$. Then obviously

$$
z \in \hat{\mathcal{E}}
$$

holds and at the same time, since there is no non-zero element of $C(\mathcal{E})$ that is below $z, z \notin \mathcal{M C}(C(\mathcal{E}))$.

3. SEARCHING FOR A SUFFICIENT CONDITION UNDER WHICH $\mathcal{M C}(C(\mathcal{E}))=C(\hat{\mathcal{E}})$ HOLDS

Theorem 2.8 gives us a necessary condition under which, for an atomic Archimedean lattice effect algebra \mathcal{E} the equality

$$
\begin{equation*}
\mathcal{M C}(C(\mathcal{E}))=C(\hat{\mathcal{E}}) \tag{17}
\end{equation*}
$$

is valid. Once we have find a necessary condition, it is natural to look for a sufficient condition. We are going to present an example helping us to solve this problem.

Let us take the complete atomic Archimedean LEA \hat{E}_{1} given by formula 16 and its isomorphic copy denoted by \hat{E}_{2}. Since all atoms of \hat{E}_{1} are compact elements, the following assertion is straightforward
Lemma 3.1. The Archimedean atomic LEA $\hat{E}_{1} \times \hat{E}_{2}$ is compactly generated. Further, its center $C\left(\hat{E}_{1} \times \hat{E}_{2}\right)$ has the following elements

$$
C\left(\hat{E}_{1} \times \hat{E}_{2}\right)=\left\{\mathbf{0}, \mathbf{1}, \mathbf{1}_{\hat{E}_{1}}, \mathbf{1}_{\hat{E}_{2}}\right\}
$$

where $\mathbf{1}_{\hat{E}_{1}}$ and $\mathbf{1}_{\hat{E}_{2}}$ are the top elements of \hat{E}_{1} and \hat{E}_{2}, respectively.

Let us denote E_{f} the set of all finite and cofinite elements of $\hat{E}_{1} \times \hat{E}_{2}$.

Theorem 3.2. E_{f} is an atomic Archimedean LEA which is densely embeddable into $\hat{E}_{1} \times \hat{E}_{2}$. The center of E_{f} is the following

$$
C\left(E_{f}\right)=\{\mathbf{0}, \mathbf{1}\} .
$$

Proof. The fact that E_{f} is an atomic Archimedean LEA which is densely embeddable into $\hat{E}_{1} \times \hat{E}_{2}$, follows from Lemma 3.1 Since $\mathbf{1}_{\hat{E}_{1}}$ and $\mathbf{1}_{\hat{E}_{2}}$ are neither finite nor cofinite elements of $\hat{E}_{1} \times \hat{E}_{2}$, we have that $C\left(E_{f}\right)=\{\mathbf{0}, \mathbf{1}\}$.

Let \tilde{B} be an arbitrary atomic Boolean algebra and q_{i}, for i running throu an appropriate index set I, be atoms of \tilde{B}. Then, due to Theorem 1.5 \tilde{B} is isomorphic with a subdirect product of $\left\{\mathbf{0}_{\tilde{B}}, z_{i}\right\}_{i \in I}$.

Theorem 3.3. There exists an atomic Archimedean LEA $E_{\tilde{B}}$ whose center is isomorphic with \tilde{B} and for which equality (17) does not hold.

Proof. \tilde{B} is a subdirect product of $\left\{\mathbf{0}_{\tilde{B}}, z_{i}\right\}$ for $i \in I$. Instead of $\left\{\mathbf{0}_{\tilde{B}}, z_{1}\right\}$ we take the atomic Archimedean LEA E_{f}. Then the center of the corresponding subdirect product of E_{f} and of the system $\left\{\mathbf{0}_{\tilde{B}}, z_{i}\right\}$ for $i \in I \backslash\{1\}$ is isomorphic to \tilde{B}, but due to Lemma 3.1] we have

$$
\mathcal{M C}\left(C\left(E_{\tilde{B}}\right)\right)=\mathcal{M C}(\tilde{B}) \subsetneq \mathcal{M C}\left(E_{\tilde{B}}\right)
$$

4. CONCLUSIONS

In this paper we studied the equality

$$
\mathcal{M C}(C(E))=C(\hat{E})
$$

where E is an atomic Archimedean LEA and \hat{E} its MacNeille completion. Particularly, we were interested in finding conditions expressible by means of properties of $C(E)$, under which the equality holds. We proved that there exists an atomic Archimedean LEA E for which equality is violated. Further, we proved that the bifullness of the center $C(E)$ in E is necessary for the equality to be true. Moreover we showed that even the completness of the center and the bifulness of $C(E)$ in E is not sufficient to guarantee the above equality and for an arbitrary atomic Boolean algebra B there exists an atomic Archimedean LEA whose center is equal to B and for which the above equality is not fulfilled.

ACKNOWLEDGEMENT

The support of Science and Technology Assistance Agency under the contract No. APVV-$0375-06$, and of the VEGA grant agency, grant number $1 / 0373 / 08$, is kindly acknowledged. The author is grateful to the anonymous reviewers for their valuable comments helping to improve the manuscript.
(Received June 30, 2010)

REFERENCES

[1] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[2] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000.
[3] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346.
[4] R. J. Greechie, D. J. Foulis, and S. Pulmannová: The center of an effect algebra. Order 12 (1995), 91-106.
[5] S. P. Gudder: Sharply dominating effect algebras. Tatra Mountains Math. Publ. 15 (1998), 23-30.
[6] S. P. Gudder: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915-923.
[7] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
[8] M. Kalina: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 4, 609-620.
[9] F. Kôpka: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525-1531.
[10] K. Mosná: About atoms in generalized efect algebras and their effect algebraic extensions. J. Electr. Engrg. 57 (2006), 7/s, 110-113.
[11] K. Mosná, J. Paseka, and Z. Riečanová: Order convergence and order and interval topologies on posets and lattice effect algebras. In: Proc. internat. seminar UNCERTAINTY 2008, Publishing House of STU 2008, pp. 45-62.
[12] J. Paseka and Z. Riečanová: The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states. Soft Computing, DOI: 10.1007/s00500-010-0561-7.
[13] Z. Riečanová: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151-158.
[14] Z. Riečanová: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys., 38 (1999), 3209-3220.
[15] Z. Riečanová: Generalization of blocks for D-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231-237.
[16] Z. Riečanová: Orthogonal sets in effect algebras. Demontratio Mathematica 34 (2001), 525-532.
[17] Z. Riečanová: Smearing of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511-1524.
[18] Z. Riečanová: Subdirect decompositions of lattice effect algebras. Internat. J. Theor. Phys. 42 (2003), 1425-1433.
[19] Z. Riečanová: Distributive atomic effect akgebras. Demontratio Mathematica 36 (2003), 247-259.
[20] Z. Riečanová: Lattice effect algebras densely embeddable into complete ones. Kybernetika, to appear.
[21] Z. Riečanová and I. Marinová: Generalized homogenous, prelattice and MV-effect algebras. Kybernetika 41 (2005), 129-142.

Martin Kalina, Dept. of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava. Slovak Republic.
e-mail: kalina@math.sk

