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MAC NEILLE COMPLETION OF CENTERS

AND CENTERS OF MAC NEILLE COMPLETIONS

OF LATTICE EFFECT ALGEBRAS

Martin Kalina

If element z of a lattice effect algebra (E,⊕,0,1) is central, then the interval [0, z] is a
lattice effect algebra with the new top element z and with inherited partial binary operation
⊕. It is a known fact that if the set C(E) of central elements of E is an atomic Boolean
algebra and the supremum of all atoms of C(E) in E equals to the top element of E, then
E is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means
that if there exists a MacNeille completion Ê of E which is its extension (i.e. E is densely
embeddable into Ê) then it is possible to embed E into a direct product of irreducible
effect algebras. Thus E inherits some of the properties of Ê. For example, the existence of
a state in Ê implies the existence of a state in E. In this context, a natural question arises
if the MacNeille completion of the center of E (denoted as MC(C(E))) is necessarily the
same as the center of Ê, i.e., if MC(C(E)) = C(Ê) is necessarily true. We show that the
equality is not necessarily fulfilled. We find a necessary condition under which the equality
may hold. Moreover, we show also that even the completeness of C(E) and its bifullness
in E is not sufficient to guarantee the mentioned equality.
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1. INTRODUCTION AND PRELIMINARIES

Effect algebras, introduced by D.J. Foulis and M.K. Bennett [3], have their impor-
tance in the investigation of uncertainty. Lattice ordered effect algebras generalize
orthomodular lattices and MV-algebras. Thus they may include non-compatible
pairs of elements as well as unsharp elements.

Definition 1.1. (Foulis and Bennett [3]) An effect algebra is a system (E;⊕,0,1)
consisting of a set E with two different elements 0 and 1, called zero and unit,
respectively and ⊕ is a partially defined binary operation satisfying the following
conditions for all p, q, r ∈ E:

(E1) If p ⊕ q is defined, then q ⊕ p is defined and p ⊕ q = q ⊕ p.

(E2) If q ⊕ r is defined and p ⊕ (q ⊕ r) is defined, then p ⊕ q and (p ⊕ q) ⊕ r are
defined and p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r.
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(E3) For every p ∈ E there exists a unique q ∈ E such that p ⊕ q is defined and
p ⊕ q = 1.

(E4) If p ⊕ 1 is defined then p = 0.

The element q in (E3) will be called the supplement of p, and will be denoted as p′.
In the whole paper, for an effect algebra (E,⊕,0,1), writing a ⊕ b for arbitrary

a, b ∈ E will mean that a ⊕ b exists. On an effect algebra E we may define another
partial binary operation ⊖ by

a ⊖ b = c ⇔ b ⊕ c = a.

The operation ⊖ induces a partial order on E. Namely, for a, b ∈ E b ≤ a if there
exists a c ∈ E such that a ⊖ b = c. If E with respect to ≤ is lattice ordered,
we say that E is a lattice effect algebra. For the sake of brevity we will write just
LEA. Further, in this article we often briefly write ‘an effect algebra E’ skipping the
operations.

If every pair x, y of elements of a LEA E is compatible, meaning that x ∨ y =
x ⊕ (y ⊖ (x ∧ y)) then E is called an MV-effect algebra [1, 9].

S. P. Gudder ([5, 6]) introduced the notion of sharp elements and sharply domi-
nating lattice effect algebras. Recall that an element x of the LEA E is called sharp

if x ∧ x′ = 0. Jenča and Riečanová in [7] proved that in every lattice effect algebra
E the set S(E) = {x ∈ E; x ∧ x′ = 0} of sharp elements is an orthomodular lattice
which is a sub-effect algebra of E, meaning that if among x, y, z ∈ E with x⊕ y = z
at least two elements are in S(E) then x, y, z ∈ S(E). Moreover S(E) is a full

sublattice of E, hence supremum of any set of sharp elements, which exists in E,
is again a sharp element. Further, each maximal subset M of pairwise compatible
elements of E, called block of E, is a sub-effect algebra and a full sublattice of E
and E =

⋃
{M ⊆ E; M is a block of E} (see [15, 16]). Central elements and centers

of effect algebras were defined in [4]. In [13, 14] it was proved that in every lattice
effect algebra E the center

C(E) = {x ∈ E; (∀y ∈ E)y = (y ∧ x) ∨ (y ∧ x′)} = S(E) ∩ B(E), (1)

where B(E) =
⋂
{M ⊆ E; M is a block of E}. Since S(E) is an orthomodular

lattice and B(E) is an MV-effect algebra, we obtain that C(E) is a Boolean algebra.
Note that E is an orthomodular lattice if and only if E = S(E) and E is an MV-
effect algebra if and only if E = B(E). Thus E is a Boolean algebra if and only if
E = S(E) = B(E) = C(E).

Recall that an element p of an effect algebra E is called an atom if and only if p
is a minimal non-zero element of E and E is atomic if for each x ∈ E, x 6= 0, there
exists an atom p ≤ x.

Definition 1.2. Let (E,⊕, 0) be an effect algebra. To each a ∈ E we define its
isotropic index, notation ord(a), as the maximal positive integer n such that

na := a ⊕ · · · ⊕ a
︸ ︷︷ ︸

n-times



MacNeille completion 937

exists. We set ord(a) = ∞ if na exists for each positive integer n. We say that E is
Archimedean, if for each a ∈ E, a 6= 0, ord(a) is finite.

An element u ∈ E is called finite, if there exists a finite system of atoms a1, . . . , an

(which are not necessarily distinct) such that u = a1 ⊕ · · · ⊕ an. An element v ∈ E
is called cofinite, if there exists a finite element u ∈ E such that v = u′.

We say that for a finite system F = (xj)
k
j=1 of not necessarily different elements

of an effect algebra (E,⊕,0,1) is ⊕-orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕ x2 ⊕
· · · ⊕ xn−1)⊕xn exists in E (briefly we will write

⊕n

j=1 xj). We define also ⊕∅ = 0.

Definition 1.3. For a lattice (L,∧,∨) and a subset D ⊆ L we say that D is a bifull

sublattice of L, if and only if for any X ⊆ D,
∨

L X exists if and only if
∨

D X
exists and

∧

L X exists if and only if
∧

D X exists, in which case
∨

L X =
∨

D X and
∧

L X =
∧

D X .

Recall that an element a ∈ L, where (L,∧,∨) is a lattice, is called a compact element

if for arbitrary D ⊂ L with
∨

D ∈ L, if a ≤
∨

D then a ≤
∨

F for some finite set
F ⊆ D. The lattice L is called compactly generated if every element of L is a join of
compact elements.

Lemma 1.4. Let (E,⊕,∨,∧,0,1) be an atomic Archimedean lattice effect algebra.
Then

(i) (see [10]) a block M of E is atomic if there exists a maximal pairwise compatible
set A of atoms of E such that A ⊆ M and if M1 is a block of E with A ⊆ M1,
then M1 = M . Moreover for all x ∈ E and all a ∈ A the following holds

x ∈ M ⇔ x ↔ a,

(ii) (see [17]) to every nonzero element x ∈ E there exist mutually distinct atoms
aα ∈ E and positive integers kα for α ∈ I such that

x =
⊕

α∈I

(kαaα) =
∨

α∈I

(kαaα).

It is known that if E is a distributive effect algebra (i. e., the effect algebra E is
a distributive lattice – e. g., if E is an MV-effect algebra) then C(E) = S(E). If
moreover E is Archimedean and atomic then the set of atoms of C(E) = S(E) is
the set {naa; a ∈ E is an atom of E}, where na = ord(a) (see [19]). Since S(E) is a
bifull sublattice of E if E is an Archimedean atomic LEA (see [12]), we obtain that

1 =
∨

C(E)

{p ∈ C(E); p is an atom of C(E)} =
∨

E

{p ∈ C(E); p is an atom of C(E)}

for every Archimedean atomic distributive lattice effect algebra E. In [8] it was
shown that there exists a LEA E for which this property fails to be true. Important
properties of Archimedean atomic lattice effect algebras with atomic center were
proven by Riečanová in [20].
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Theorem 1.5. (Riečanová [20]) Let E be an Archimedean atomic lattice effect
algebras with atomic center C(E). Denote by AE the set of all atoms of E and by
AC(E) the set of all atoms of C(E). The following conditions are equivalent:

1.
∨

E AC(E) = 1.

2. For every atom a ∈ AE there exists an atom pa ∈ AC(E) such that a ≤ pa.

3. For every z ∈ C(E) it holds

z =
∨

C(E)

{p ∈ AC(E); p ≤ z} =
∨

E

{p ∈ AC(E); p ≤ z}.

4. C(E) is a bifull sub-lattice of E.

In this case E is isomorphic to a subdirect product of Archimedean atomic irreducible
lattice effect algebras.

2. MACNEILLE COMPLETION OF A LEA E WHOSE CENTER
IS NOT BIFULL IN E

This section is based on an example published by the author in [8]. For reader’s
comfort in Section 2.1 we repeat the substantial parts of this paper where the LEA E
whose center is not bifull in E, is constructed. In Section 2.2 we make the completion
of E.

2.1. Construction of a LEA E whose center is not bifull in E

Let us have the following sequences of elements (sets):

a0 = {(x, y) ∈ R2; 0 ≤ x ≤ 1, y ∈ R},

al = {(x, y) ∈ R2; l < x ≤ l + 1, y ∈ R}, for l = 1, 2, . . . ,

b0 = {(x, y) ∈ R2;−1 ≤ x < 0, y ∈ R},

bl = {(x, y) ∈ R2;−l − 1 ≤ x < −l, y ∈ R}, for l = 1, 2, . . . , (2)

cj = {(x, y) ∈ R2;−j ≤ x ≤ j, y ≤ j · x}, for j = 1, 2, . . . ,

dj = {(x, y) ∈ R2;−j ≤ x ≤ j, y > j · x}, for j = 1, 2, . . . ,

pj = {j}, for j = 1, 2, . . . .

For such a choice of elements, the elements q1 6= q2 are compatible if and only if
q1 ∩ q2 = ∅.

Denote B̂0, B̂j (for j = 1, 2, . . . ) complete atomic Boolean algebras with the
corresponding sets of atoms A0, Aj (j = 1, 2, . . . ), given by

A0 =

∞⋃

i=0

{ai} ∪
∞⋃

i=0

{bi} ∪
∞⋃

j=1

{pj}, (3)

Aj =

∞⋃

i=j

{ai} ∪
∞⋃

i=j

{bi} ∪
∞⋃

j=1

{pj} ∪ {cj, dj}. (4)
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Fig. 1. Illustration of sequences of elements (al)l, (bl)l, (pj)j , (cj)j , (dj)j .

Disjointness among some elements of the system (2) is equivalent with the fact that
A0 and Aj (j = 1, 2, . . . ) are unique maximal sets of pairwise compatible atoms.

For elements u1, u2 ∈ B̂l, l = 0, 1, 2, . . . , such that u1 ∩ u2 = ∅ we introduce the
partial operation ⊕l by

u1 ⊕l u2 = u1 ∪ u2. (5)

Observe that if u1, u2 ∈ B̂i ∩ B̂j , then

u1 ⊕i u2 = u1 ⊕j u2. (6)

This is the reason why we will omit the index denoting operation ⊕ in the whole
paper. Moreover we have the following equality

cj ⊕ dj =

j−1
⊕

i=0

(ai ⊕ bi) = {(x, y) ∈ R2;−j ≤ x ≤ j}, for all j = 1, 2, . . . . (7)

The complete Boolean algebras B̂0, B̂j , j = 1, 2, . . . , have the following top
elements:

R2 ∪ N = 1 = 10 = a0 ⊕ b0 ⊕
∞⊕

i=1

(ai ⊕ bi ⊕ pi) (8)

R2 ∪ N = 1 = 11 = (c1 ⊕ d1) ⊕
∞⊕

i=1

(ai ⊕ bi ⊕ pi) (9)

R2 ∪ N = 1 = 1j = (cj ⊕ dj) ⊕
∞⊕

i=j

(ai ⊕ bi ⊕ pi) ⊕

j−1
⊕

i=1

pi, (10)

for all j = 2, 3, . . . .

An element u ∈ B̂l is finite if and only if u = q1 ⊕ q2 ⊕ · · · ⊕ qn for an n ∈ N

and q1, q2, . . . , qn ∈ Al. Set Ql = {u ∈ Bl; u is finite}, l = 0, 1, 2, . . . . Then Ql

is a generalized Boolean algebra, since Bl = Ql ∪̇Q∗
l is a Boolean algebra, where
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Fig. 2. Illustration of the element a3 ⊕ b3 ⊕ c3 ⊕ d3.

Q∗
l = {u∗; u∗ = 1l ⊖ u and u ∈ Ql} (see [21], or [2, pp. 18-19]). This means that Bl

is a Boolean subalgebra of finite and cofinite elements of B̂l (l = 0, 1, 2, . . . ).

Theorem 2.1. (Kalina [8]) Denote E =
⋃∞

l=0 Bl. Then (E,⊕,∨,∧,0,1) is a com-
pactly generated LEA with the family (Bl)

∞
l=0 of atomic blocks of E. The center of

E, C(E), is not a bifull sublattice of E.

2.2. MacNeille completion of E

Let us denote

Ê =

∞⋃

l=0

B̂l. (11)

First we show the following lemma.

Lemma 2.2. (Ê,⊕,∧,∨,0,1) is a lattice effect algebra.

P r o o f . Equation (6) shows that ⊕ is well defined. We show that this operation
is commutative and associative. Let q1, q2, q3 ∈ Ê are elements such that q1 ⊕ q2 is
defined and (q1 ⊕ q2)⊕ q3 is also defined. Then q1, q2 are disjoint sets and (q1 ⊕ q2)
and q3 are also disjoint sets. These imply that q1, q2, q3 is a triple of pairwise disjoint
sets and hence the commutativity and associativity follows immediately. Followingly
(Ê,⊕) is an effect algebra.

We show now that (Ê,∧,∨,0,1) is a bounded lattice.

Let h1, h2 ∈ Ê be arbitrary elements. First assume that h1 ↔ h2. Then there
is an i ∈ {0, 1, 2, . . .} such that h1 ∈ B̂i, h2 ∈ B̂i. Since B̂i is a complete Boolean
algebra, h1 ∨ h2 and h1 ∧ h2 are well defined.
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Assume that h1 6↔ h2. Then there are some 0 ≤ i < s such that h1 ∈ B̂i and
h2 ∈ B̂s. This means that for h1 and h2 we have

h1 =







∞⊕

l=0

(αlal ⊕ βlbl) ⊕
∞⊕

j=1

πjpj , if i = 0,

γici ⊕ δidi ⊕
∞⊕

l=i

(αlal ⊕ βlbl) ⊕
∞⊕

j=1

πjpj, if i 6= 0,
(12)

h2 = γ′
scs ⊕ δsds ⊕

∞⊕

l=s

(α′
lal ⊕ β′

lbl) ⊕
∞⊕

m=1

π′
mpm, (13)

where αl, βl, γi, δi, πj ∈ {0, 1} for l = 0, 1, 2, . . . , i = 1, 2, . . . and j = 1, 2, . . . ,
α′

l, β
′
l , γ

′
s, δ

′
s, π

′
j ∈ {0, 1} for l = 1, 2, . . . , s = 1, 2, . . . and j = 1, 2, . . . . Because of

formula (7) and the non-compatibility of h1 and h2, if we denote by Γi all atoms
of Ai which are non-compatible with cs (or equivalently, which are non-compatible
with ds), for h1 we get that there exists a q ∈ Γi such that q ≤ h1 and at the same
time

s−1⊕

l=0

(al ⊕ bl) 6≤ h1, if i = 0,

ci ⊕ di ⊕
s−1⊕

l=i

(al ⊕ bl) 6≤ h1, if i 6= 0.

For h2 we get that either cs ≤ h2 or ds ≤ h2, and cs ⊕ ds 6≤ h2.
In all other cases we would get the compatibility of h1 and h2. Hence we have

h1 ∧ h2 =

∞⊕

l=s

(

α̃lal ⊕ β̃lbl

)

⊕
∞⊕

m=1

π̃mpm, (14)

h1 ∨ h2 = cs ⊕ ds ⊕
∞⊕

l=s

(

α̂lal ⊕ β̂lbl

)

⊕
∞⊕

m=1

π̂mpm

=

s−1⊕

l=0

(al ⊕ bl) ⊕
∞⊕

l=s

(

α̂lal ⊕ β̂lbl

)

⊕
∞⊕

m=1

π̂mpm, (15)

where α̃l = min{αl, α
′
l}, β̃l = min{βl, β

′
l}, α̂l = max{αl, α

′
l}, β̂l = max{βl, β

′
l} for

l ∈ {s, 2s + 1, . . . }, and π̃m = min{πm, π′
m}, π̂m = max{πm, π′

m} for m ∈ {1, 2, . . .}.
The fact that (Ê,⊕,∧,∨,0,1) is a LEA is due to formulas (5) and (6). �

In what follows we will denote the LEA (Ê,⊕,∧,∨,0,1) just briefly as Ê.

Theorem 2.3. Ê is a complete lattice.

P r o o f . Since Ê is the union of countably many blocks B̂i and each block B̂i is
a complete Boolean algebra, it is enough to show that Ê is a σ-complete lattice.
Each element q ∈ Ê has its supplement, hence we show just the σ-completeness
with respect to ∨. Assume that (hki

)∞i=1 be a sequence of pairwise non-compatible
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elements of Ê, where hki
∈ B̂ki

and (ki)
∞
i=1 is an increasing sequence of non-negative

integers. Then the element hk1
can be expressed by formula 12 replacing i by k1,

and hki
(for i > 1) can be expressed by formula (13) replacing s by ki. Then by

formula (15) we have that

t∨

i=1

hki
= ckt

⊕ dkt
⊕

∞⊕

j=kt

(

α̂jaj ⊕ β̂jbj

)

⊕
∞⊕

m=1

π̂mpm,

where

α̂j =

{
1, if aj ≤ hki

for an 1 ≤ i ≤ t,
0, otherwise,

β̂j =

{
1, if bj ≤ hki

for an 1 ≤ i ≤ t,
0, otherwise,

π̂j =

{
1, if pj ≤ hki

for an 1 ≤ i ≤ t,
0, otherwise.

Formulas (2) imply
t∨

i=1

(ckt
⊕ dkt

) = R2

which gives

∞∨

i=1

hki
= R2 ⊕

∞⊕

m=1

π̂mpm, where π̂j =

{
1, if pj ≤ hki

for an 1 ≤ i ≤ t,
0, otherwise.

This completes the proof that Ê is a complete lattice. �

Theorem 2.4. The atomic Archimedean LEA E =
⋃∞

l=0 Bl can be densely embed-

ded into Ê =
⋃∞

l=0 B̂l.

P r o o f . Since each of the atomic complete Boolean algebras B̂l, for l = 0, 1, 2, . . . ,
is generated by countably many atoms, the completeness of each particular B̂l is
equivalent with its σ-completeness. Further, the atomic Boolean algebras Bl contain
all finite elements of B̂l. This implies that each Bl can be densely embedded into
B̂l. Hence we have that E =

⋃∞

l=0 Bl can be densely embedded into Ê =
⋃∞

l=0 B̂l,
and the proof is finished. �

Let us denote by B̃0, B̃j (for j = 1, 2, . . . ) the following complete Boolean algebras

generated by corresponding sets of atoms Ã0, Ãj :

Ã0 =
∞⋃

l=0

{al} ∪
∞⋃

l=0

{bl},

Ãj =

∞⋃

i=j

{ai} ∪
∞⋃

i=j

{bi} ∪ {cj , dj}.
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Further we denote

Ê1 =
∞⋃

i=0

B̃i. (16)

We can embed Ê1 into Ê. In this sense Ê1 is equipped with the partial operation ⊕
inherited from Ê.

Lemma 2.5. Ê1 is a complete atomic Archimedean LEA with its center equal to
C(Ê1) = {0

Ê1

,1
Ê1

} and 1
Ê1

is an infinite element.

P r o o f . To show that Ê1 is a complete atomic Archimedean LEA we could repeat
the proofs of Lemma 2.2 and of Theorem 2.3, just skipping the atoms {p1, p2, . . . }
from all formulas.

We show now that C(Ê1) = {0
Ê1

,1
Ê1

}. Formulas (2) imply that 1
Ê1

= R2.

Assume that there is yet another element of C(Ê1). Let us denote this element by z.
Assume that no atom from the set of atoms {c1, d1, c2, d2, . . . , cj , dj , . . . } is below z.
Since z 6= 0

Ê1

, there exists an atom ai ≤ z (or bi ≤ z). Then we get that ci+1∩z 6= ∅
and ci+1 6≤ z and hence ci+1 6↔ z. We may conclude that z is not a central element in
this case. Assume that cj ≤ z (or dj ≤ z) for some j = 1, 2, . . . and there is a k such
that (ck ⊕ dk) 6≤ z. Then formulas (2) imply that either ck or dk in non-compatible
with z and followingly z is not a central element. This consideration gives that if z is
a central element then all atoms from the set of atoms {c1, d1, c2, d2, . . . , cj , dj , . . . }
are below z. Since

∞∨

j=1

(cj ⊕ dj) = R2,

we get that C(Ê1) = {0
Ê1

,1
Ê1

}.

To conclude the proof we have to show that 1
Ê1

is an infinite element of Ê1. This

is due to the fact that 1
Ê1

is an infinite element of each of the blocks B̃l. �

Lemma 2.6. Let us denote by B̂ the complete Boolean algebra generated by the
set of atoms {p1, p2, . . . , pj , . . . }. Then Ê is isomorphic to the direct product B̂×Ê1.

P r o o f . The isomorphism between Ê =
⋃∞

l=0 B̂l and the direct product B̂ × Ê1

follows from the fact that each of the blocks B̂l is isomorphic to the direct product
B̂ × B̃l. �

Theorem 2.7. Let E =
⋃∞

l=0 Bl and Ê =
⋃∞

l=0 B̂l. Denote MC(C(E)) the Mac-
Neille completion of C(E). Then the following holds

MC(C(E)) ( C(Ê).

P r o o f . Set 1
Ê1

the top element of Ê1. Then 1
Ê1

∈ C(Ê). Since there is no

non-zero central element of Ê below 1
Ê1

, we may conclude that 1
Ê1

is an atom of

C(Ê).
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On the other hand 1
Ê1

is neither a finite nor a cofinite element of Ê and hence

1
Ê1

/∈ C(E). Since 1
Ê1

is an atom of C(Ê), we get immediately 1
Ê1

/∈ MC(C(E))
and the proof of the theorem is finished. �

Theorem 2.7 can be generalized into the following

Theorem 2.8. Let E be an atomic Archimedean LEA with atomic center C(E) that
is not a bifull sublattice of E . Let MC (C(E)) be the MacNeille completion of C(E)
and Ê the MacNeille completion of E . Then the following holds

MC (C(E)) ( C
(

Ê
)

.

P r o o f . Because C(E) is not a bifull sublattice of E , due to Theorem 1.5 we have
that ∨

E

{q ∈ C(E); q is an atom of C(E)}

does not exist in E but
∨

C(E)

{q ∈ C(E); q is an atom of C(E)} = 1

Set z =
(∨

Ê
{q ∈ C(E); q is an atom of C(E)}

)′
. Then obviously

z ∈ Ê

holds and at the same time, since there is no non-zero element of C(E) that is below
z, z /∈ MC (C(E)). �

3. SEARCHING FOR A SUFFICIENT CONDITION UNDER WHICH
MC (C(E)) = C

(

Ê
)

HOLDS

Theorem 2.8 gives us a necessary condition under which, for an atomic Archimedean
lattice effect algebra E the equality

MC (C(E)) = C
(

Ê
)

(17)

is valid. Once we have find a necessary condition, it is natural to look for a sufficient
condition. We are going to present an example helping us to solve this problem.

Let us take the complete atomic Archimedean LEA Ê1 given by formula 16 and
its isomorphic copy denoted by Ê2. Since all atoms of Ê1 are compact elements, the
following assertion is straightforward

Lemma 3.1. The Archimedean atomic LEA Ê1 × Ê2 is compactly generated. Fur-
ther, its center C(Ê1 × Ê2) has the following elements

C
(

Ê1 × Ê2

)

=
{

0,1,1
Ê1

,1
Ê2

}

,

where 1
Ê1

and 1
Ê2

are the top elements of Ê1 and Ê2, respectively.
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Let us denote Ef the set of all finite and cofinite elements of Ê1 × Ê2.

Theorem 3.2. Ef is an atomic Archimedean LEA which is densely embeddable

into Ê1 × Ê2. The center of Ef is the following

C(Ef ) = {0,1}.

P r o o f . The fact that Ef is an atomic Archimedean LEA which is densely embed-

dable into Ê1 × Ê2, follows from Lemma 3.1. Since 1
Ê1

and 1
Ê2

are neither finite

nor cofinite elements of Ê1 × Ê2, we have that C(Ef ) = {0,1}. �

Let B̃ be an arbitrary atomic Boolean algebra and qi, for i running throu an
appropriate index set I, be atoms of B̃. Then, due to Theorem 1.5, B̃ is isomorphic
with a subdirect product of {0B̃, zi}i∈I .

Theorem 3.3. There exists an atomic Archimedean LEA EB̃ whose center is iso-

morphic with B̃ and for which equality (17) does not hold.

P r o o f . B̃ is a subdirect product of {0B̃, zi} for i ∈ I. Instead of {0B̃, z1} we take
the atomic Archimedean LEA Ef . Then the center of the corresponding subdirect

product of Ef and of the system {0B̃, zi} for i ∈ I \ {1} is isomorphic to B̃, but due
to Lemma 3.1 we have

MC (C(EB̃)) = MC(B̃) ( MC (EB̃) .

�

4. CONCLUSIONS

In this paper we studied the equality

MC(C(E)) = C
(

Ê
)

,

where E is an atomic Archimedean LEA and Ê its MacNeille completion. Partic-
ularly, we were interested in finding conditions expressible by means of properties
of C(E), under which the equality holds. We proved that there exists an atomic
Archimedean LEA E for which equality is violated. Further, we proved that the
bifullness of the center C(E) in E is necessary for the equality to be true. Moreover
we showed that even the completness of the center and the bifulness of C(E) in E is
not sufficient to guarantee the above equality and for an arbitrary atomic Boolean
algebra B there exists an atomic Archimedean LEA whose center is equal to B and
for which the above equality is not fulfilled.
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[11] K. Mosná, J. Paseka, and Z. Riečanová: Order convergence and order and interval
topologies on posets and lattice effect algebras. In: Proc. internat. seminar UNCER-
TAINTY 2008, Publishing House of STU 2008, pp. 45–62.
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