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FORMULA FOR UNBIASED BASES

Maurice R. Kibler

The present paper deals with mutually unbiased bases for systems of qudits in d di-
mensions. Such bases are of considerable interest in quantum information. A formula for
deriving a complete set of 1 + p mutually unbiased bases is given for d = p where p is
a prime integer. The formula follows from a nonstandard approach to the representation
theory of the group SU(2). A particular case of the formula is derived from the introduc-
tion of a phase operator associated with a generalized oscillator algebra. The case when
d = pe (e ≥ 2), corresponding to the power of a prime integer, is briefly examined. Finally,
complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.
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1. INTRODUCTION

This paper is based on a talk given at the conference Analytic and algebraic methods

in physics VI (AAMP6) that took place in Prague, Czech Republic (8–11 May 2010).
In the oral presentation at AAMP6, the accent was put on phase operators and phase
states associated with a generalized oscillator algebra discussed in a group-theoretical
context involving SU(2) and SU(1, 1). Then, the whole material was applied to
the so-called mutually unbiased bases (MUBs), to be defined below, which are of
paramount importance in quantum information. In the present written presentation,
we prefer to start with a construction of MUBs since such a presentation can be of
interest to a larger audience. The connection with a phase operator for SU(2),
that leads to an unexpected relationship between MUBs and phase states, is thus
considered in a second part of the paper.

Two orthonormal bases Ba = {|aα〉 : α = 0, 1, . . . , d − 1} and Bb = {|bβ〉 : β =
0, 1, . . . , d−1} of C

d are said to be unbiased if and only if the inner product 〈aα|bβ〉
has a modulus independant of α and β. In other words

∀α ∈ Zd, ∀β ∈ Zd : |〈aα|bβ〉| = δa,bδα,β + (1 − δa,b)
1√
d

(1)

where Zd := Z/dZ. From Eq. (1), we see that if two MUBs undergo the same
unitary or antiunitary transformation, they remain mutually unbiased. It is well-
known that the maximum number N of MUBs in Cd is N = 1 + d and that this
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number is attained when d is a prime number p or a power pe (e ≥ 2) of a prime
number p [10, 12, 16, 28]. In the other cases (d 6= pe, p prime and e integer with
e ≥ 1), the number N is not known although it can be shown that 3 ≤ N ≤ 1 + d.
In the general composite case d =

∏

i pei

i , it is known that 1+min(pei

i ) ≤ N ≤ 1+d.
In the particular composite case d = 6, there is a large consensus according to which
N = 3. Indeed, in spite of an enormous amount of works, no more than N = 3
MUBs were found for d = 6 (see for example [6, 9, 15]).

The main aim of this paper is to report on a formula for obtaining N = 1+p MUBs
when d = p where p is a prime integer. The paper is organized as follows. The basic
formula is derived in Section 2 from a nonstandard approach to the representation
theory of SU(2). Sections 3 and 4 deal with complete sets of MUBs in the cases
where d is a prime integer and a power of a prime integer, respectively. A particular
case of the formula is obtained in Section 5 from the derivation of temporally stable
phase states associated with a generalized oscillator algebra. Finally in Section 6,
complete sets of MUBs for d = p prime are briefly discussed in a group-theoretical
approach.

2. A NONSTANDARD ANGULAR MOMENTUM BASIS

2.1. A nonstandard quantization scheme

The various irreducible representation classes of the group SU(2) are characterized
by a label j with 2j ∈ N. The standard irreducible matrix representation associated
with j is spanned by the orthonormal basis

B2j+1 := {|j, m〉 : m = j, j − 1, . . . ,−j}

where the vector |j, m〉 is a common eigenvector of the Casimir operator J2 and of
the Cartan operator Jz of the Lie algebra su(2) of SU(2). More precisely, we have
the relations

J2|j, m〉 = j(j + 1)|j, m〉, Jz|j, m〉 = m|j, m〉

which are familiar in angular momentum theory.
Following the works in [1, 17, 20], let us define the linear operators vra and h by

vra := ei2πjr |j,−j〉〈j, j| +
j−1
∑

m=−j

q(j−m)a|j, m + 1〉〈j, m| (2)

and

h :=

j
∑

m=−j

√

(j + m)(j − m + 1)|j, m〉〈j, m|

where

r ∈ R, q := e2πi/(2j+1), a ∈ Z2j+1
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It is important to note that there are two types of phase factors in Eq. (2). They
can be reduced to a single phase factor (viz. q(j−m)a) solely in the case where r = 0.
The introduction of r 6= 0 renders feasible to distinguish various sets of MUBs. It
can be checked that the three operators

J+ := hvra, J− := (vra)†h, Jz :=
1

2

[

h2 − (vra)†h2vra

]

(3)

where (vra)† stands for the adjoint of vra, satisfy the commutation relations

[Jz, J+] = +J+, [Jz, J−] = −J−, [J+, J−] = 2Jz

of the algebra su(2).
The operator vra is unitary while the operator h is Hermitian. Thus, Eq. (3)

corresponds to a polar decomposition of su(2) with the help of the operators vra

and h. It is obvious that vra and J2 commute. Therefore, the {J2, vra} scheme
constitutes an alternative to the {J2, Jz} quantization scheme (well-known in the
theory of angular momentum). To be more specific, we have the following result.

Theorem 2.1. For fixed j, r and a, the 2j + 1 vectors

|jα; ra〉 :=
1√

2j + 1

j
∑

m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j, m〉 (4)

with α = 0, 1, . . . , 2j, are common eigenvectors of vra and J2. The eigenvalues of
vra are given by

vra|jα; ra〉 = qj(r+a)−α|jα; ra〉

so that the spectrum of vra is nondegenerate.

2.2. Introduction of qudits

Alternatively, by introducing the notation

j + m ≡ n, d ≡ 2j + 1, |j, m〉 ≡ |d − 1 − n〉, |jα; ra〉 ≡ |aα; r〉 (5)

the eigenvectors of vra read

|aα; r〉 := q(d−1)2r/4 1√
d

d−1
∑

n=0

qn(d−n)a/2−n(d−1)r/2+nα|d − 1 − n〉 (6)

with α = 0, 1, . . . , d − 1.
For fixed d, r and a, the inner product

〈aα; r|aβ; r〉 = δα,β

shows that

Bra := {|aα; r〉 : α = 0, 1, . . . , d − 1} (7)
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is an orthonormal basis of Cd. This basis constitutes a nonstandard basis for the ir-
reducible representation of SU(2) associated with j. Each basis Bra (r ∈ R, a ∈ Zd)
provides us with an alternative to the standard basis B2j+1 ≡ Bd of angular momen-
tum theory, known as the computational (or Fock) basis in quantum information
and quantum computating.

Before giving two examples, let us mention that in some previous works by the au-
thor a notation different (although equivalent) was used in place of (5). The notation
used here ensures that the states |1/2, 1/2〉 ≡ |0〉 and |1/2,−1/2〉 ≡ |1〉 correspond
to the usual qubits with the good angular momentum label. More generally in di-
mension d, the qudits |0〉, |1〉, . . . , |d−1〉 correspond to the angular momentum states
|j, j〉, |j, j − 1〉, . . . , |j,−j〉, respectively.

Example 2.2. For d = 2, we have two families of bases: the Br0 family and the
Br1 family (a can take the values a = 0 and a = 1). Thus Eq. (6) leads to

|aα; r〉 =
1√
2
(qr/4|1〉 + qa/2−r/4+α|0〉)

with q = eiπ. In detail, we have

Br0 : |00; r〉 =
1√
2

(

eiπr/4|1〉 + e−iπr/4|0〉
)

|01; r〉 =
1√
2

(

eiπr/4|1〉 − e−iπr/4|0〉
)

Br1 : |10; r〉 =
1√
2

(

eiπr/4|1〉 + ie−iπr/4|0〉
)

|11; r〉 =
1√
2

(

eiπr/4|1〉 − ie−iπr/4|0〉
)

In particular, for r = 0 the bases B00 and B01 are (up to a rearrangement) nothing
but the familiar bases used in quantum information.

Example 2.3. For d = 3, we have three families of bases, that is to say Br0, Br1

and Br2, since a can be 0, 1 and 2. In the case r = 0, Eq. (6) gives

|aα; 0〉 =
1√
3
(|2〉 + qa+α|1〉 + qa+2α|0〉)

which yields

B00 : |00; 0〉 =
1√
3

(|2〉 + |1〉 + |0〉)

|01; 0〉 =
1√
3

(

|2〉 + q|1〉 + q2|0〉
)

|02; 0〉 =
1√
3

(

|2〉 + q2|1〉 + q|0〉
)
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B01 : |10; 0〉 =
1√
3

(|2〉 + q|1〉 + q|0〉)

|11; 0〉 =
1√
3

(

|2〉 + q2|1〉 + |0〉
)

|12; 0〉 =
1√
3

(

|2〉 + |1〉 + q2|0〉
)

B02 : |20; 0〉 =
1√
3

(

|2〉 + q2|1〉 + q2|0〉
)

|21; 0〉 =
1√
3

(|2〉 + |1〉 + q|0〉)

|22; 0〉 =
1√
3

(|2〉 + q|1〉 + |0〉)

with q = ei2π/3.

3. THE CASE OF A PRIME DIMENSION

For d = 2 and fixed r, it can be checked that the bases Br0, Br1 and B2 (see Example
2.2) are 1 + d = 3 MUBs. A similar result follows for d = 3: the bases B00, B01,
B02 and B3 (see Example 2.3) are 1 + d = 4 MUBs. This can be generalized by the
following main result.

Theorem 3.1. For d = p, with p a prime number, the bases Br0, Br1, . . . , Brp−1, Bp

corresponding to a fixed value of r form a complete set of 1 + p MUBs. The p2

vectors |aα; r〉, with a, α = 0, 1, . . . , p− 1, of the bases Br0, Br1, . . . , Brp−1 are given
by a single formula (namely Eq. (6)). The index r makes it possible to distinguish
different sets of complete MUBs.

P r o o f . First, Eq. (6) can be seen as a quadratic discrete Fourier transform of
the states |0〉, |1〉, . . . , |d − 1〉 (quadratic because n2 occurs in the coefficients of the
transformation). Therefore

|〈p − 1 − n|aα; r〉| =
1√
p

holds for fixed r and for all n, a and α in the Galois field Fp so that each basis Bra

is unbiased with Bp. Second, we get

〈aα; r|bβ; r〉 =
1

p

p−1
∑

k=0

qk(p−k)(b−a)/2+k(β−α) (8)

or

〈aα; r|bβ; r〉 =
1

p

p−1
∑

k=0

eiπ{(a−b)k2+[p(b−a)+2(β−α)]k}/p (9)
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The right-hand side of (9) can be expressed in terms of a generalized quadratic Gauss
sum [7]

S(u, v, w) :=

|w|−1
∑

k=0

eiπ(uk2+vk)/w

where u, v and w are integers such that u and w are mutually prime, uw 6= 0 and
uw + v is even. This leads to

〈aα; r|bβ; r〉 =
1

p
S(u, v, w) (10)

with

u := a − b, v := −(a − b)p − 2(α − β), w := p (11)

The generalized Gauss sum S(u, v, w) in (10) // (11) can be calculated from the
methods described in [7]. We thus obtain

|〈aα; r|bβ; r〉| =
1√
p

which completes the proof. �

At this stage, it is interesting to note a connection between MUBs and generalized
Hadamard matrices (see also [27, 2, 6, 9, 19]). In the case where d is arbitrary, for
fixed r and a, let us introduce from (6) the d-dimensional matrix Fra defined by its
matrix elements

(Fra)nα :=
1√
d
q−n2a/2+n[da/2+α−(d−1)r/2]+(d−1)2r/4

where n, α = 0, 1, . . . , d−1. The matrix Fra is a unitary matrix for which each entry
has a modulus equal to 1/

√
d. Thus, Fra is a generalized Hadamard matrix (see [13,

26] for a definition of a complex Hadamard matrix with two different normalizations).
Then, Eq. (8) can be rewritten as

〈aα; r|bβ; r〉 =
(

F †
raFrb

)

αβ

Therefore, going back to the case where d = p is a prime integer, we find that the
product F †

raFrb is another generalized Hadamard matrix for d prime.
To close this section, we may ask what becomes Theorem 3.1 when the prime

integer p is replaced by an arbitrary (not prime) integer d. In this case, the formula
(6) does not provide a complete set of 1 + d MUBs. However, it is possible to show
that the bases Bra, Bra⊕1 and Bd are 3 MUBs in C

d (the addition ⊕ is understood
modulo d) [19]. This result is in agreement with the well-known result according to
which the maximum number of MUBs in Cd, with d arbitrary, is greater or equal
to 3 (see for example [15]). Moreover, it can be proved [19] that the bases Bra and
Bra⊕2 are unbiased for d odd with d ≥ 3 (d prime or not prime).
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4. THE CASE OF A POWER OF A PRIME DIMENSION

Equation (6) can be used for deriving a complete set of 1 + pe MUBs in the case
where d = pe is a power (e ≥ 2) of a prime integer p. The general case is very much
involved. Hence, we shall start with the case p = e = 2 corresponding to two qubits.

Example 4.1. For d = 4, Eq. (7) yields four families of bases Bra (a = 0, 1, 2, 3).
For each family, the basis vectors can be determined from Eq. (6). As a matter
of fact, the bases Br0, Br1, Br2, Br3 and B4 do not form a complete set of 1 +
d = 5 MUBs. However, it is possible to construct a set of 5 MUBs from repeated
application of (6).

For the purpose of simplicity, we shall take r = 0 and adopt the notation

|aα〉 ≡ |aα; 0〉
Four of the 5 MUBs for d = 4 can be constructed from the direct products |aα〉⊗|bβ〉
which are eigenvectors of the operators v0a ⊗ v0b. Obviously, the set

B0a0b := {|aα〉 ⊗ |bβ〉 : α, β = 0, 1}
is an orthonormal basis in C4. It is evident that B0000 and B0101 are two unbiased
bases since the modulus of the inner product of |0α〉 ⊗ |0β〉 by |1α′〉 ⊗ |1β′〉 is

|〈0α|1α′〉〈0β|1β′〉| =
1√
4

A similar result holds for the two bases B0001 and B0100. However, the four bases
B0000, B0101, B0001 and B0100 are not mutually unbiased. A possible way to over-
come this uninteresting result is to keep the bases B0000 and B0101 intact and to
re-organize the vectors inside the bases B0001 and B0100 in order to obtain 4 MUBs.
We are thus left with 4 bases

W00 ≡ B0000, W11 ≡ B0101, W01, W10

which together with the computational basis B4 give 5 MUBs. In a detailed way,
we have

W00 := {|0α〉 ⊗ |0β〉 : α, β = 0, 1}
W11 := {|1α〉 ⊗ |1β〉 : α, β = 0, 1}
W01 := {λ|0α〉 ⊗ |1β〉 + µ|0α ⊕ 1〉 ⊗ |1β ⊕ 1〉 : α, β = 0, 1}
W10 := {λ|1α〉 ⊗ |0β〉 + µ|1α ⊕ 1〉 ⊗ |0β ⊕ 1〉 : α, β = 0, 1}

where

λ :=
1 − i

2
, µ :=

1 + i

2

and the vectors of type |aα〉 are given by the master formula (6). As a résumé, only
two formulas are necessary for obtaining the d2 = 16 vectors |ab, αβ〉 for the bases
Wab, namely

W00, W11 : |aa, αβ〉 := |aα〉 ⊗ |aβ〉 (12)

W01, W10 : |aa ⊕ 1, αβ〉 := λ|aα〉 ⊗ |a ⊕ 1β〉 + µ|aα ⊕ 1〉 ⊗ |a ⊕ 1β ⊕ 1〉 (13)
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for all a, α, β in Z2. By developing (12) and (13) with the help of (6), we end up
with the results given in [19]. By introducing the triplet

t1 := |0〉 ⊗ |0〉, t0 :=
1√
2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉), t−1 := |1〉 ⊗ |1〉 (14)

which spans the irreducible representation of SU(2) associated with j = 1, and the
singlet

s :=
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) (15)

which spans the irreducible representation of SU(2) associated with j = 0, we can
write (up to irrelevant phase factors) the vectors of the 5 MUBs for d = 4 as follows.

The W00 basis :

|00, 00〉 =
1

2
(t1 +

√
2t0 + t−1)

|00, 01〉 =
1

2
(t1 −

√
2s − t−1)

|00, 10〉 =
1

2
(t1 +

√
2s − t−1)

|00, 11〉 =
1

2
(t1 −

√
2t0 + t−1)

The W11 basis :

|11, 00〉 =
1

2
(t1 + i

√
2t0 − t−1)

|11, 01〉 =
1

2
(t1 − i

√
2s + t−1)

|11, 10〉 =
1

2
(t1 + i

√
2s + t−1)

|11, 11〉 =
1

2
(t1 − i

√
2t0 − t−1)

The W01 basis :

|01, 00〉 =
1

2
(t1 +

√
2λt0 +

√
2µs + it−1)

|01, 11〉 =
1

2
(t1 −

√
2λt0 −

√
2µs + it−1)

|01, 01〉 =
1

2
(t1 −

√
2µt0 −

√
2λs − it−1)

|01, 10〉 =
1

2
(t1 +

√
2µt0 +

√
2λs − it−1)
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The W10 basis :

|10, 00〉 =
1

2
(t1 +

√
2λt0 −

√
2µs + it−1)

|10, 11〉 =
1

2
(t1 −

√
2λt0 +

√
2µs + it−1)

|10, 01〉 =
1

2
(t1 +

√
2µt0 −

√
2λs − it−1)

|10, 10〉 =
1

2
(t1 −

√
2µt0 +

√
2λs − it−1)

The computational basis :

|0〉 ⊗ |0〉 = t1, |0〉 ⊗ |1〉 =
1√
2
(t0 + s), |1〉 ⊗ |0〉 =

1√
2
(t0 − s), |1〉 ⊗ |1〉 = t−1

Each of the 3 vectors (14) and the vector (15) transform under the the group S2

(generated by the interchange |i〉⊗ |j〉 ↔ |j〉⊗ |i〉) as the irreducible representations
[2] and [12], respectively. It should be noted that only 6 of the 20 quartits for d = 4
transform as an irreducible representation of S2 (viz. the symmetric representation
[2]). Furthermore, the vectors of the W00 and W11 bases are not intricated (i. e.,
each vector is the direct product of two vectors) while the vectors of the W01 and
W10 bases are intricated (i. e., each vector is not the direct product of two vectors).

Generalization of (12) and (13) can be obtained in more complicated situations
(two qupits, three qubits, . . . ). The generalization of (12) is immediate. The gener-
alization of (13) can be achieved by taking linear combinations of vectors such that
each linear combination is made of vectors corresponding to the same eigenvalue of
the relevant tensor product of operators of type vra. By way of illustration, let us
consider the case p = e − 1 = 2 corresponding to three qubits.

Example 4.2. For d = 8, we can start from the eight bases

B0a0b0c := {|aα〉 ⊗ |bβ〉 ⊗ |cγ〉 : α, β, γ = 0, 1}

for all a, b and c in Z2. The analogs of (12) are

W000 ≡ B000000, W111 ≡ B010101

Clearly, W000 and W111 are unbiased. Similarly, the bases B000001 and B010100 are
mutually unbiased but are not unbiased with W000 and W111. Then, we can replace
B000001 and B010100 respectively by W001 and W110 defined by

Waaa⊕1 := {|aaa⊕ 1, αβγ〉 : α, β, γ = 0, 1}, a = 0, 1 (16)
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with

|aaa ⊕ 1, αβγ〉 :=
λ√
2
|aα〉 ⊗ |aβ〉 ⊗ |a ⊕ 1γ〉

+
µ√
2
|aα〉 ⊗ |aβ ⊕ 1〉 ⊗ |a ⊕ 1γ ⊕ 1〉

+
λ√
2
|aα ⊕ 1〉 ⊗ |aβ〉 ⊗ |a ⊕ 1γ ⊕ 1〉

− µ√
2
|aα ⊕ 1〉 ⊗ |aβ ⊕ 1〉 ⊗ |a ⊕ 1γ〉 (17)

It can be seen that the bases W000, W111, W001 and W110 together with the com-
putational basis B8 form a set of 5 MUBs. Four more MUBs can be derived from
B0a0a⊕10a and B0a⊕10a0a (with a = 1, 2). This leads to the bases Waa⊕1a and Wa⊕1aa

(with a = 1, 2) defined by formuls analogous to (16) and (17) up to permutations.

5. UNBIASED BASES AND PHASE OPERATOR

A connection between MUBs and a phase operator associated with a generalized
oscillator algebra was recently addressed in two works [11, 3]. We establish here a
link between these works and the results in Section 2.

The starting point is to consider the one-parameter algebra Aκ spanned by the
three linear operators a−, a+ and N satisfying

[a−, a+] = I + 2κN, [N, a±] = ±a±,
(

a−
)†

= a+, N † = N

where I is the identity operator and κ a real parameter. For κ < 0, by putting

J− :=
1√−κ

a−, J+ :=
1√−κ

a+, J3 :=
1

2κ
(I + 2κN)

it is immediate to see that J−, J+ and J3 span the Lie algebra of SU(2). Similarly
for κ > 0, the operators

K− :=
1√
κ

a−, K+ :=
1√
κ

a+, K3 :=
1

2κ
(I + 2κN)

generate the Lie algebra of SU(1, 1).
In both cases (Aκ ∼ su(2) or su(1, 1)), we can consider the Hilbertian represen-

tation of Aκ defined by the following actions

a+|n〉 =
√

F (n + 1)e−i[F (n+1)−F (n)]ϕ|n + 1〉
a−|n〉 =

√

F (n)e+i[F (n)−F (n−1)]ϕ|n − 1〉 (18)

a−|0〉 = 0, N |n〉 = n|n〉

of the operators a+, a− and N on a Hilbert space Fκ, with an orthonormal basis
{|n〉 : n = 0, 1, . . . , dκ}. The function F : N → R+ satisfies

F (n + 1) − F (n) = 1 + 2κn, F (0) = 0 ⇒ F (n) = n[1 + κ(n − 1)]
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and ϕ is an arbitrary real parameter. In the case κ > 0, corresponding to Aκ ∼
su(1, 1), the dimension of Fκ is infinite. In the case κ < 0, corresponding to Aκ ∼
su(2), Fκ is finite-dimensional with a dimension d given by

d := dκ + 1 = 1 − 1

κ
, − 1

κ
∈ N

∗

We now continue with the case κ < 0.
In order to transcribe (18) in the language of the representation theory of SU(2),

we introduce the correspondence

|n〉 ↔ |j, m〉, n ↔ j + m, d = 2j + 1 = 1 − 1

κ
⇔ 2jκ = −1

where |j, m〉 is an eigenvector of Jz and of the Casimir operator J2 := J+J− +
Jz(Jz − 1). As a result, (18) yields

J+|j, m〉 =
√

(j − m)(j + m + 1)e−2imκϕ|j, m + 1〉
J−|j, m〉 =

√

(j + m)(j − m + 1)e2i(m−1)κϕ|j, m − 1〉
J3|j, m〉 = m|j, m〉

which differ from the standard relations of angular momentum theory by two phase
factors.

We now define the operator Ed via

J− = Ed

√

J+J−

Consequently

Ed|j, m〉 = e2i(m−1)κϕ|j, m − 1〉 for m 6= −j

and

Ed|j,−j〉 = e−iϕ|j, j〉 for m = −j

which show that Ed is unitary. Let us look for vectors |z〉 such that

Ed|z〉 = z|z〉, |z〉 :=

j
∑

m=−j

dmzj+m|j, m〉, z ∈ C, dm ∈ C

The solution requires

z2j+1 = 1 ⇒ z = qα, q = e2πi/(2j+1), α = 0, 1, . . . , 2j

As a result, |z〉 depends on a continuous parameter ϕ and a discrete parameter α.
In detail, we have

|z〉 ≡ |ϕ, α〉 =
1√

2j + 1

j
∑

m=−j

ei(j+m)(j−m+1)κϕq(j+m)α|j, m〉
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which has a form similar to (4).
We are now ready to establish a connection with MUBs. By assuming

ϕ = −π
2j

2j + 1
a ⇔ κϕ =

π

2j + 1
a, a = 0, 1, . . . , 2j (19)

the state vector |ϕ, α〉 becomes

|ϕ, α〉 ≡ |aα〉 =
1√

2j + 1

j
∑

m=−j

q(j+m)(j−m+1)a/2+(j+m)α|j, m〉

to be compared with (4). We thus obtain the state |jα; ra〉 with r = 0. Furthermore,
it can be shown that the operators Ed and v0a

† are linearly dependent.

6. MUTUALLY UNBIASED BASES AND LIE AGEBRAS

6.1. Weyl pairs

Let us denote Vra the matrix of the operator vra builded on the basis vectors |j, j〉 ≡
|0〉, |j, j − 1〉 ≡ |1〉, . . . , |j,−j〉 ≡ |d − 1〉 (with the lines and columns in the order
0, 1, . . . , d− 1 from top to bottom and from left to right). From (2), we thus obtain
the d-dimensional unitary matrix

Vra =















0 qa 0 . . . 0
0 0 q2a . . . 0
...

...
... . . .

...

0 0 0 . . . q(d−1)a

eiπ(d−1)r 0 0 . . . 0















(Recall that r is a real parameter, q := e2πi/d is a primitive root of unity and a
belongs to the ring Zd with d = 2j + 1.)

The matrix Vra can be decomposed as

Vra = PrXZa

where

Pr :=















1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . eiπ(d−1)r















and

X :=















0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
1 0 0 . . . 0















, Z :=















1 0 0 . . . 0
0 q 0 . . . 0
0 0 q2 . . . 0
...

...
... . . .

...
0 0 0 . . . qd−1
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The unitary matrices X and Z q-commute in the sense that

XZ − qZX = 0 (20)

In addition, they satisfy
Xd = Zd = Id (21)

where Id is the d-dimensional unit matrix. Equations (20) and (21) show that X
and Z constitute a Weyl pair. The Weyl pair (X, Z) turns out to be an integrity
basis for generating a set {XaZb : a, b ∈ Zd} of d2 generalized Pauli matrices in
d dimensions (see for instance [14, 21, 5, 23, 25, 18] in the context of MUBs and
[24, 4, 22] in group-theoretical contexts). In this respect, note that for d = 2 we
have

X = σx, Z = σz , XZ = −iσy, X0Z0 = σ0

in terms of the ordinary Pauli matrices σ0 = I2, σx, σy and σz . Equations (20) and
(21) can be generalized through

VraZ − qZVra = 0, (Vra)d = eiπ(d−1)(r+a)Id, Zd = Id

so that other pairs of Weyl can be obtained from Vra and Z.

6.2. MUBs and the special linear group

In the case where d is a prime integer or a power of a prime integer, it is known that
the set {XaZb : a, b = 0, 1, . . . , d− 1} of cardinality d2 can be partitioned into 1 + d
subsets containing each d− 1 commuting matrices (cf. [5]). Let us give an example.

Example 6.1. For d = 5, we have the 6 following sets of 4 commuting matrices

V0 := {01, 02, 03, 04}
V1 := {10, 20, 30, 40}
V2 := {11, 22, 33, 44}
V3 := {12, 24, 31, 43}
V4 := {13, 21, 34, 42}
V5 := {14, 23, 32, 41}

where ab is used as an abbreviation of XaZb.

More generally, for d = p with p prime, the 1+p sets of p−1 commuting matrices
are easily seen to be

V0 := {X0Za : a = 1, 2, . . . , p − 1}
V1 := {XaZ0 : a = 1, 2, . . . , p − 1}
V2 := {XaZa : a = 1, 2, . . . , p − 1}
V3 := {XaZ2a : a = 1, 2, . . . , p − 1}

...

Vp−1 := {XaZ(p−2)a : a = 1, 2, . . . , p − 1}
Vp := {XaZ(p−1)a : a = 1, 2, . . . , p − 1}
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Each of the 1+ p sets V0,V1, . . . ,Vp can be put in a one-to-one correspondance with
one basis of the complete set of 1 + p MUBs. In fact, V0 is associated with the
computational basis while V1,V2, . . . ,Vp are associated with the p remaining MUBs
in view of

V0a ∈ Va⊕1, a = 0, 1, . . . , p − 1

Keeping into account the fact that the set {XaZb : a, b = 0, 1, . . . , p − 1} \ {X0Z0}
spans the Lie algebra of the special linear group SL(p, C), we have the following
result.

Corollary 6.2. For d = p, with p a prime integer, the Lie algebra sl(p, C) of the
group SL(p, C) can be decomposed into a sum (vector space sum) of 1 + p abelian
subalgebras each of dimension p − 1, i. e.

sl(p, C) ≃ v0 ⊎ v1 ⊎ . . . ⊎ vp

where the 1 + p subalgebras v0, v1, . . . , vp are Cartan subalgebras generated respec-
tively by the sets V0,V1, . . . ,Vp containing each p − 1 commuting matrices.

Corollary 6.2 can be extended when d = pe with p a prime integer and e an integer
(e ≥ 2): there exists a decomposition of sl(pe, C) into 1 + pe abelian subalgebras of
dimension pe − 1 (cf. [22, 8, 19]).

7. CONCLUSION

There exist numerous ways of constructing sets of MUBs. In many of the papers
dealing with the construction of MUBs, the explicit derivation of the bases requires
the diagonalization of a set of matrices. Theorem 2.1 of the present paper gives a
closed form formula which in last analysis corresponds to the diagonalization of a
single matrix, the matrix Vra. This formula is easily codable on a classical computer.
It makes it possible to derive in one step the (1 + p)p vectors of the 1 + p MUBs in
dimension p, with p a prime integer (Theorem 3.1). It can be useful equally well in
the case where p is replaced by a power pe by considering tensor products of order
e of vectors in Cp.

Indeed, the formula can be understood as the quadratic discrete Fourier transform
of the computational basis. This formula can also be applied in arbitrary dimension
d. However for d 6= pe with p prime and e ≥ 1, the formula does give a complete
sets of MUBs. It was shown that a special case of the formula, corresponding to the
eigenvectors of the matrix V0a, follows from the diagonalization of a phase operator
for a generalized oscillator algebra. As an open question, it would be interesting to
find the significance of the quantization condition (19) which is required to establish
a connection between the phase operator and MUBs.

To close, let us note that from the master matrix Vra we can deduce the Weyl
pair (X, Z) via

X = V00, Z = V †
00V01

The operators X and Z are known as the flip or shift and clock operators, respec-
tively. For d arbitrary, they are at the root of the Pauli group, a finite subgroup of
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order d3 of the group U(d), of considerable importance in quantum information and
quantum computing (e. g., see [18]). The matrix Vra is thus central for the study
of the Pauli group. Finally, another interest of the Weyl pair (X, Z) is provided
by Corollary 6.2 concerning the decomposition for d = p prime of the Lie algebra
sl(p, C) into 1 + p Cartan subalgebras of dimension p − 1.
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