Kybernetika 46 no. 6, 1098-1107, 2010

The Choquet integral as Lebesgue integral and related inequalities

Radko Mesiar, Jun Li and Endre Pap


\noindent The integral inequalities known for the Lebesgue integral are discussed in the framework of the Choquet integral. While the Jensen inequality was known to be valid for the Choquet integral without any additional constraints, this is not more true for the Cauchy, Minkowski, Hölder and other inequalities. For a fixed monotone measure, constraints on the involved functions sufficient to guarantee the validity of the discussed inequalities are given. Moreover, the comonotonicity of the considered functions is shown to be a sufficient constraint ensuring the validity of all discussed inequalities for the Choquet integral, independently of the underlying monotone measure.


Choquet integral, comonotone functions, integral inequalities, monotone measure, modularity


28E10, 26D15


  1. P. Benvenuti, R. Mesiar and D. Vivona: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol. II, Elsevier Science 2002, pp. 1329-1379.} \bibitem {denneberg94} D. Denneberg: \newblock{Non-Additive Measure and Integral.}\newblock{Kluwer Academic Publishers, Dordrecht 1994.   CrossRef
  2. G. Choquet: Theory of capacities. Ann. Inst. Fourier 5 (1953-54), 131-295.   CrossRef
  3. A. Flores-Franuli\v c and H. Roman-Flores: A Chebyshev type inequality for fuzzy integrals. J. Appl. Math. Comput. 190 (2007), 1178-1184.   CrossRef
  4. E. P. Klement, R. Mesiar and E. Pap: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Systems 18 (2010), 178-187.   CrossRef
  5. R. Mesiar and Y. Ouyang: General Chebyshev type inequalities for Sugeno. Fuzzy Sets and Systems {\mi 160} (2009), 58-64.   CrossRef
  6. Y. Narukawa: Distances defined by Choquet integral. In: Proc. IEEE Internat. Conference on Fuzzy Systems, London 2007, CD-ROM [$\sharp$1159].   CrossRef
  7. Y. Ouyang and R. Mesiar: On the Chebyshev type inequality for seminormed fuzzy integrals. Applied Math. Letters 22 (2009), 1810-1815.   CrossRef
  8. Y. Ouyang, R. Mesiar and H. Agahi: An inequality related to Minkowski type for Sugeno integrals. Inform. Sci. 180 (2010), 2793-2801.   CrossRef
  9. H. Roman-Flores, A. Flores-Franuli\v and Y. Chalco-Cano: A Jensen type inequality for fuzzy integrals. Inform. Sci. 177 (2007), 3192-3201.   CrossRef
  10. D. Schmeidler: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255-261.   CrossRef
  11. D. Schmeidler: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571-587.   CrossRef
  12. M. Sugeno, Y. Narukawa and T. Murofushi: Choquet integral and fuzzy measures on locally compact space. Fuzzy Sets and Systems {\mi 99}, (1998), 2, 205-211.   CrossRef
  13. R.-S. Wang: Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput., DOI 10.1007/212190/009/0358-y.   CrossRef
  14. Z. Wang and G. J. Klir: Generalized Measure Theory. Springer, Boston 2009.   CrossRef