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FINITE-TIME BOUNDEDNESS AND STABILIZATION

OF SWITCHED LINEAR SYSTEMS

Haibo Du, Xiangze Lin and Shihua Li

In this paper, finite-time boundedness and stabilization problems for a class of switched
linear systems with time-varying exogenous disturbances are studied. Firstly, the con-
cepts of finite-time stability and finite-time boundedness are extended to switched linear
systems. Then, based on matrix inequalities, some sufficient conditions under which the
switched linear systems are finite-time bounded and uniformly finite-time bounded are
given. Moreover, to solve the finite-time stabilization problem, stabilizing controllers and a
class of switching signals are designed. The main results are proven by using the multiple
Lyapunov-like functions method, the single Lyapunov-like function method and the com-
mon Lyapunov-like function method, respectively. Finally, three examples are employed to
verify the efficiency of the proposed methods.
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1. INTRODUCTION

A switched system belongs to a special class of hybrid systems. It consists of a family
of subsystems described by differential or difference equations and a switching law
that orchestrates switching between these subsystems [18]. Switched systems arise
as models for phenomena which can not be described by exclusively continuous or
exclusively discrete processes. Examples include manufacturing control [20], traffic
control [28], chemical processing [10] and communication networks [25], etc. Due
to their success in practical applications and importance in theory development,
switched systems have been attracting considerable attention during the last decades.

The basic research topics for switched systems are the issues of stability and
stabilizability which have attracted most of the attention [14, 8, 16, 7, 12, 21, 23,
24, 33, 15, 32, 22]. Due to the hybrid nature of switched systems operation, the
stability analysis of switched systems is more difficult to deal with than that of
continuous systems or discrete systems, and so becomes a challenging issue. In this
respect, Lyapunov stability theory and its variations or generalizations still play a
dominant role. Analysis method can be roughly divided into the common Lyapunov
function method, the single Lyapunov function method and the multiple Lyapunov
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functions method. For the former, a common Lyapunov function for all subsystems
guarantees stability under an arbitrary switching signal. However, many switched
systems, which may not possess a common Lyapunov function, yet still are stable
under some properly chosen switching signals. The multiple Lyapunov functions
and the single Lyapunov function methods have been proven to be powerful and
effective tools for finding such a switching signal (e. g., time-dependent switching
signals and state-dependent switching signals) [14, 7, 12, 21, 23, 24]. For more
analysis and synthesis results of switched systems, the readers are referred to the
literature [8, 16, 33, 15, 32, 22] and the references therein.

Up to now, most of the existing literature related to stability of switched systems
focuses on Lyapunov asymptotic stability, which is defined over an infinite time
interval. However, in many practical applications, the main concern is the behavior
of the system over a fixed finite time interval. For instance, the problem of sending
a rocket from a neighborhood of a point A to a neighborhood of a point B over a
fixed time interval; the problem, in a chemical process, of keeping the temperature,
pressure or some other parameters within specified bounds in a prescribed time
interval. In these cases, finite-time stability could be used, which focuses its attention
on the transient behavior over a finite time interval rather than on the asymptotic
behavior of a system response. More specifically, a system is said to be finite-time
stable if, given a bound on the initial condition, its state remains within prescribed
bounds in the fixed time interval. It should be noted that finite-time stability and
Lyapunov asymptotic stability are independent concepts: a system could be finite-
time stable but not Lyapunov asymptotically stable, and vice versa.

Some early results on finite-time stability problems can be found in [13, 9, 30].
Recently, based on the linear matrix inequality theory, many valuable results have
been obtained for this type of stability [3, 2, 34, 1, 35, 4, 5], to name just a few.
In [3, 2], the authors have extended the concept finite-time stability to finite-time
boundedness. In [34, 1], the definition of finite-time stability have been extended
to the systems with impulsive effects. In [35], finite-time control problem has been
discussed for the systems subject to time-varying exogenous disturbance. More
analysis and synthesis results of finite control problem can be found in [4, 5] and
the references therein. In addition, it should be pointed out that the authors of
[6, 19, 17, 29] have presented some results of finite-time stability for different systems,
but the finite-time stability which consists of Lyapunov stability and finite-time
convergence is different from that in this paper and [13, 9, 30, 3, 2, 34, 1, 35, 4, 5].

So far, the stability analysis for switched systems and the finite-time stability
for different systems have been extensively studied by many researchers. However,
little work has been done for the finite-time stability of switched systems. It is
well-known that a nonlinear time-varying system or a linear time-varying system
can often be approximated by using several linear time-invariant systems around
the equilibrium point. These linear systems being only valid around the equilibrium
point, it is important to be able to avoid large excursions of the states. Considering
such reason and the wide application of switched systems in practice, it motivates
us to investigate the finite-time stability and stabilization problems for a class of
switched linear systems. In [31], the authors have studied the finite-time stability and
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practical stability for a class of switched systems. However, the sufficient conditions
are difficult to test and the problem of controller design is not considered. To
the best of the authors’ knowledge, the proposed work in this paper on finite-time
boundedness and stabilization problems for switched linear systems has not been
studied in the previous literature.

The contribution of this paper is twofold. First, the definition of finite-time
boundedness is extended to switched linear systems and some sufficient conditions
are given in terms of matrix inequalities which are easy to test. Second, the prob-
lem of control synthesis including both switching signals and feedback switching
controllers is discussed. These switching signals contain time-dependent switching
signals and state-dependent signals, which are suitable for different cases.

The rest of the paper is organized as follows. In Section 2, some notations and
problem formulations are presented. Section 3 provides the main results of this pa-
per. Some sufficient conditions which guarantee a class of switched linear systems
finite-time bounded and uniformly finite-time bounded are given. In Section 4, the
finite-time stabilization problem is investigated. Finally, three numerical examples
are presented to illustrate the efficiency of the proposed methods in Section 5. Con-
cluding remarks are given in Section 6.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, let P > 0(≥, <,≤ 0) denote a symmetric positive definite (positive-
semidefinite, negative definite, negative-semidefinite) matrix P . For any symmetric
matrix P , λmax(P ) and λmin(P ) denote the maximum and minimum eigenvalues of
matrix P , respectively. The identity matrix of order n is denoted as In (or, simply,
I if no confusion arises).

Consider a class of switched linear control systems of the form

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Gσ(t)ω(t), x(0) = x0, (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the control input and ω(t) ∈ R
r is the

exogenous disturbance. σ(t): [0,∞) → M = {1, 2, . . . , m} is the switching signal
which is a piecewise constant function depending on time t or state x(t). Ai, Bi and
Gi are constant real matrices for i ∈ M .

Assumption 2.1. The exogenous disturbance ω(t) is time-varying and satisfies the
constraint

∫∞

0
ωT (t)ω(t) dt ≤ d, d ≥ 0.

It should be pointed out that the assumption about the disturbance ω(t) in this
paper is different from that of [3, 34], where the external disturbance is constant.

Assumption 2.2. [14] The state of the switched linear system does not jump at the
switching instants, i. e., the trajectory x(t) is everywhere continuous. The switching
signal σ(t) has finite number of switching on any finite interval time.

Corresponding to the switching signal σ(t), we have the following switching sequence

{x0; (i0, t0), · · ·, (ik, tk), · · ·, |ik ∈ M, k = 0, 1, · · ·},
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which means that ikth subsystem is activated when t ∈ [tk, tk+1).

The aim of this paper is to find a class of switching signals under which system
(1) with zero input is finite-time bounded and deal with the finite-time stabilization
problem for system (1).

3. FINITE-TIME BOUNDEDNESS ANALYSIS

In this section, some finite-time boundedness criteria for switched linear control
system (1) with input u(t) = 0 are presented. Firstly, let us extend the definitions
of finite-time stability and finite-time boundedness in [3] to switched linear systems.

Definition 3.1. Given three positive constants c1, c2, Tf , with c1 < c2, a positive
definite matrix R, and a switching signal σ(t), the switched linear system

ẋ(t) = Aσ(t)x(t), x(0) = x0 (2)

is said to be finite-time stable with respect to (c1, c2, Tf , R, σ), if xT
0 Rx0 ≤ c1 ⇒

x(t)T Rx(t) < c2, ∀ t ∈ [0, Tf ].

Next, consider the case when the state is subject to some external disturbance
signals. This leads us to give the definition of finite-time boundedness, which recovers
Definition 3.1 as a special case.

Definition 3.2. Given four positive constants c1, c2, d, Tf , with c1 < c2, a positive
definite matrix R, and a switching signal σ(t), the switched linear system

ẋ(t) = Aσ(t)x(t) + Gσ(t)ω(t), x(0) = x0 (3)

is said to be finite-time bounded with respect to (c1, c2, d, Tf , R, σ), if xT
0 Rx0 ≤ c1 ⇒

x(t)T Rx(t) < c2, ∀ t ∈ [0, Tf ], ∀ω(t) :
∫ Tf

0
ωT (t)ω(t) dt ≤ d.

Remark 3.3. It should be remarked that the concepts of finite-time stability and
finite-time boundedness are different from the concept of reachable set. Reachable
set is defined as the set of states that a system attains under given some bounded
inputs and starting from some given initial conditions. In most analysis about
reachable set, it is assumed that the system is asymptotically stable [11]. However,
a system is finite-time stable (or bounded) if, given a bound on the initial state (and
bounded constant disturbances), the state remains within the prescribed bound in
the fixed time interval. In the analysis of finite-time stability (or boundedness),
the assumption of system asymptotic stability is unnecessary. For more detailed
discussions about the difference between two approaches can be found in Remark 4
of [3].

In the sequel, based on the multiple Lyapunov-like functions and the single
Lyapunov-like function methods, some sufficient conditions which guarantee system
(3) finite-time bounded are given, respectively.
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3.1. Sufficient conditions for finite-time boundedness based on multiple

Lyapunov-like functions

In this subsection, some sufficient conditions which guarantee system (3) finite-time
bounded are presented. Before giving the main result, let us review the definition of
average dwell-time which will be useful in the subsequent analysis.

Definition 3.4. [12]. For any T ≥ t ≥ 0, let Nσ(t, T ) denote the number of switch-
ing of σ(t) over (t, T ). If

Nσ(t, T ) ≤ N0 + (T − t)/τa

holds for τa > 0, N0 is a nonnegative integer, then τa is called average dwell-time.

Without loss of generality, in this paper we choose N0 = 0, as [24].
Now, based on the multiple Lyapunov-like functions method and an average dwell-

time technique, the following theorem provides sufficient conditions for finite-time
boundedness of system (3).

Theorem 3.5. For any i ∈ M , let P̃i = R−1/2PiR
−1/2 and suppose that there exist

matrices Pi > 0, Qi > 0 and constants αi ≥ 0, γi > 0 such that

(
AiP̃i + P̃iA

T
i − αiP̃i GiQi

QiG
T
i −γiQi

)
< 0, (4a)

c1

λ1
+

γd

λ3
<

c2

λ2
e−αTf . (4b)

If the average dwell-time of the switching signal σ satisfies

τa ≥ τ∗
a =

Tf lnµ

ln(c2/λ2) − ln(c1/λ1 + γd/λ3) − αTf
, (4c)

then system (3) is finite-time bounded with respect to (c1, c2, d, Tf , R, σ), where λ1 =
min∀ i∈M (λmin(Pi)), λ2 = max∀ i∈M (λmax(Pi)), λ3 = min∀ i∈M (λmin(Qi)), α =
max∀ i∈M (αi), γ = max∀ i∈M (γi), µ = λ2/λ1.

P r o o f . Choose a piecewise Lyapunov-like function as follows

V (t) = Vσ(t)(t) = xT (t)P̃−1
σ(t)x(t).

Step 1: When t ∈ [tk, tk+1), the derivative of V (t) with respect to t along the
trajectory of system (3) yields

V̇ (t) = xT (t)(P̃−1
σ(tk)Aσ(tk) + AT

σ(tk)P̃
−1
σ(tk))x(t) + xT (t)P̃−1

σ(tk)Gσ(tk)ω(t)

+ ωT (t)GT
σ(tk)P

−1
σ(tk)x(t)

=
(

xT (t), ωT (t)
)
(

P̃−1
σ(tk)Aσ(tk) + AT

σ(tk)P̃
−1
σ(tk) P̃−1

σ(tk)Gσ(tk)

GT
σ(tk)P̃

−1
σ(tk) 0

)(
x(t)
ω(t)

)
.

(5)
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Assuming condition (4a) is satisfied, then pre- and post-multiplying (4a) by the

positive symmetric matrix

0

B

B

@

P̃−1
i 0
0 Q−1

i

1

C

C

A

, we obtain the equivalent condition

(
P̃−1

i Ai + AT
i P̃−1

i − αiP̃
−1
i P̃−1

i Gi

GT
i P̃−1

i −γiQ
−1
i

)
< 0. (6)

Combining (5) and (6) leads to

V̇ (t) <
(

xT (t), ωT (t)
)
(

ασ(tk)P̃
−1
σ(tk) 0

0 γσ(tk)Q
−1
σ(tk)

)(
x(t)
ω(t)

)

= ασ(tk)Vσ(tk)(t) + γσ(tk)ω
T (t)Q−1

σ(tk)ω(t).

(7)

By calculation, we have

d

dt

(
e−ασ(tk)tVσ(tk)(t)

)
< e−ασ(tk)tγσ(tk)ω

T (t)Q−1
σ(tk)ω(t). (8)

Integrating (8) from tk to t gives

V (t) < eασ(tk)(t−tk)Vσ(tk)(tk) + γσ(tk)

∫ t

tk

eασ(tk)(t−s)ωT (s)Q−1
σ(tk)ω(s) ds. (9)

Then, due to the definitions of λ1 and λ2, for ∀ i, j ∈ M and ∀x ∈ R
n, we have

xT P−1
i x ≤ λmax(P

−1
i )xT x = (1/λmin(Pi))x

T x ≤ (1/λ1)x
T x,

xT P−1
j x ≥ λmin(P−1

j )xT x = (1/λmax(Pj))x
T x ≥ (1/λ2)x

T x.

Since λ2/λ1 = µ, then xT P−1
i x ≤ (1/λ1)x

T x ≤ (λ2/λ1)x
T P−1

j x = µxT P−1
j x. It

follows that xT R1/2P−1
i R1/2x ≤ µxT R1/2P−1

j R1/2x, i. e., xT P̃−1
i x ≤ µxT P̃−1

j x.

Without loss of generality, at the switching instant tk, assume σ(tk) = i, σ(t−k ) = j,
where σ(t−k ) = limv→0− σ(tk + v). Noticing that x(tk) = x(t−k ) from Assumption
(2.2), we obtain

Vσ(tk)(tk) ≤ µVσ(t−
k

)(t
−

k ), (10)

where x(t−k ) = limv→0− x(tk + v).

By (9) and (10), and noticing that α = max∀ i∈M (αi), γ = max∀ i∈M (γi), we have

V (t) < eα(t−tk)µVσ(t−
k

)(t
−

k ) + γ

∫ t

tk

eα(t−s)ωT (s)Q−1
σ(tk)ω(s) ds. (11)

Step 2: For any t ∈ (0, Tf), let N be the number of switching of σ(t) over (0, Tf ),
which implies that Nσ(0, t) ≤ N . Noticing that µ ≥ 1 since λ2 ≥ λ1, and using the
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iterative method in step 1, we have

V (t) < eαtµNVσ(0)(0) + γµN

∫ t1

0

eα(t−s)ωT (s)Q−1
σ(0)ω(s) ds

+ γµN−1

∫ t2

t1

eα(t−s)ωT (s)Q−1
σ(t1)ω(s) ds + · · · + γ

∫ t

tk

eα(t−s)ωT (s)Q−1
σ(tk)ω(s) ds

=eαtµNVσ(0)(0) + γ

∫ t

0

eα(t−s)µNσ(s,t)ωT (s)Q−1
σ(s)ω(s) ds

≤eαTf µNVσ(0)(0) + γeαTf µNλmax(Q
−1
σ(s))

∫ Tf

0

ωT (s)ω(s) ds

≤eαTf µNVσ(0)(0) + γeαTf µNd/λ3,

(12)

where λmax(Q
−1
σ(s)) = 1/λmin(Qσ(s)) = 1/λ3. The relation N ≤ Tf/τa leads to

V (t) < eαTf µ
Tf
τa

(
Vσ(0)(0) + γd/λ3

)
. (13)

On the other hand,

V (t) ≥ λmin(P−1
σ(t))x

T (t)Rx(t) =
1

λmax(Pσ(t))
xT (t)Rx(t) ≥ 1

λ2
xT (t)Rx(t), (14)

Vσ(0)(0) ≤ λmax(P
−1
σ(0))x

T (0)Rx(0) = [1/λmin(Pσ(0))]x
T (0)Rx(0) ≤ c1/λ1. (15)

Putting together (13), (14) and (15), we get

xT (t)Rx(t) ≤ λ2V (t) < λ2e
αTf µ

Tf
τa (c1/λ1 + γd/λ3). (16)

Assuming condition (4b) is satisfied, then the following proof can be divided into
two cases.

Case 1: µ = 1, which is a trivial case, from (4b), we have

λ2e
αTf (c1/λ1 + γd/λ3) < c2. (17)

Substituting (17) into (16) leads to xT (t)Rx(t) < c2.
Case 2: µ > 1, from (4b), we obtain ln(c2/λ2) − ln(c1/λ1 + γd/λ3) − αTf > 0.

Then, assuming condition (4c) is satisfied, we have

Tf

τa
≤

ln
c2

λ2
− ln(

c1

λ1
+

γd

λ3
) − αTf

lnµ
=

ln(
c2

λ2(c1/λ1 + γd/λ3)
e−αTf )

lnµ
.

This leads to

µ
Tf
τa ≤ c2

λ2(c1/λ1 + γd/λ3)
e−αTf . (18)

Therefore, it follows from (16) and (18) that

xT (t)Rx(t) < c2. (19)

Noticing that the trajectory of system (3) remains continuous at instant Tf , we
conclude that (19) holds for all t ∈ [0, Tf ]. �
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Remark 3.6. Let N = 0, which implies that there is no switching over [0, Tf ], then
the system (3) degenerates into an ordinary linear system and Theorem 3.5 contains
Lemma 6 of [3] as a special case.

Remark 3.7. The function V (t) in the proof of Theorem 3.5 belongs to multiple
Lyapunov-like functions. Unlike the classical (quadratic) Lyapunov function for
switched (linear) systems in the case of asymptotical stability, there is no requirement
of negative definiteness or negative semidefiniteness on V̇ (t). This is the specifical
difference between these two kinds of Lyapunov functions. Actually, if the exogenous
disturbance ω(t) = 0 and we limit the constants αi < 0 (∀ i ∈ M), then V̇ (t) will
be a negative definite function. In this case, we can obtain that the system (3)
is asymptotically stable on the infinite interval [0, +∞) if the average dwell-time
τa ≥ −(lnµ)/α. The detailed proof can be found in [14].

In the case of finite-time stability for system (2), it is easy to obtain the sufficient
conditions from Theorem 3.5, i. e., the case of d = 0.

Corollary 3.8. For any i ∈ M , let P̃i = R−1/2PiR
−1/2 and suppose that there

exist matrices Pi > 0 and constants αi ≥ 0 such that

AiP̃i + P̃iA
T
i − αiP̃i < 0, (20a)

µ <
c2

c1
e−αTf . (20b)

If the average dwell-time of the switching signal σ satisfies

τa ≥ τ∗
a =

Tf lnµ

ln(c2/c1) − lnµ − αTf
, (20c)

then system (2) is finite-time stable with respect to (c1, c2, Tf , R, σ), where λ1 =
min∀ i∈M (λmin(Pi)), λ2 = max∀ i∈M (λmax(Pi)), α = max∀ i∈M (αi), µ = λ2/λ1.

The advantage of multiple Lyapunov-like functions lies in their flexibility, since
different Lyapunov-like functions are constructed for each subsystem. From Re-
mark 3.6, we know that conditions (4a), (4b) imply that each subsystem is finite-
time bounded with respect to (c1, c2, d, Tf , R). That is to say, if the switching is
slow enough satisfying condition (4c), then the whole switched systems is finite-
time bounded. However, in some practical cases, all subsystems are not finite-time
bounded, then the condition (4a) can not be guaranteed. In this case, the whole
switched systems may still be finite-time bounded by properly choosing the switching
signal. In the next subsection, we will investigate this case.

3.2. Sufficient conditions for finite-time boundedness based on a single

Lyapunov-like function

In this subsection, some sufficient conditions for finite-time boundedness of system
(3) are derived by applying a single Lyapunov-like function method. Assume each
subsystem of system (3) is not finite-time bounded. This assumption is due to that
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if at least one of the individual subsystems is finite-time bounded, this problem is
trivial (just keep σ(t) = p, where p is the index of this finite-time bounded subsys-
tem). In the sequel, a class of state-dependent switching signals are designed such
that system (3) is finite-time bounded.

Theorem 3.9. For any i ∈ M , let P̃ = R−1/2PR−1/2 and suppose that there exist
matrices P > 0, Q > 0 and constants α ≥ 0, βi ≥ 0, γ > 0,

∑m
i=1 βi = 1, such that




m∑
i=1

βi(AiP̃ + P̃AT
i ) − αP̃

m∑
i=1

βiGiQ

m∑
i=1

βiQGT
i −γQ


 < 0, (21a)

c1

λmin(P )
+

γd

λmin(Q)
<

c2

λmax(P )
e−αTf . (21b)

If the switching signal σ(t) is designed as

σ(t) =

{
i, if yT (t)Ωiy(t) < 0 and σ(t−) = i;
argmin{yT (t)Ωjy(t), j ∈ M}, if yT (t)Ωiy(t) ≥ 0 and σ(t−) = i,

(21c)

then system (3) is finite-time bounded with respect to (c1, c2, d, Tf , R, σ), where
argmin stands for the index which attains the minimum among M ,
σ(0) = argmin{yT (0)Ωjy(0), j ∈ M},

y(t) =

(
x(t)
ω(t)

)
, Ωi =

(
P̃−1Ai + AT

i P̃−1 − αP̃−1 P̃−1Gi

GT
i P̃−1 −γQ−1

)
.

P r o o f . Choose a single Lyapunov-like function as follows

V (t) = xT (t)P̃−1x(t).

According to (21c), we assume that the ith subsystem is active when t ∈ [tk, tk+1)
without loss of generality, which means that σ(t) = σ(tk) = i, when t ∈ [tk, tk+1).
Then the derivative of V (t) with respect to t along the trajectory of system (3) yields

V̇ (t) = xT (t)(P̃−1Aσ(tk) + AT
σ(tk)P̃

−1)x(t) + xT (t)P̃−1Gσ(tk)ω(t)

+ ωT (t)GT
σ(tk)P

−1x(t)

=
(

xT (t), ωT (t)
)
(

P̃−1Aσ(tk) + AT
σ(tk)P̃

−1 P̃−1Gσ(tk)

GT
σ(tk)P̃

−1 0

)(
x(t)
ω(t)

)
.

(22)

In what follows, we will show that

(
xT (t), ωT (t)

)
(

P̃−1Aσ(tk) + AT
σ(tk)P̃

−1 P̃−1Gσ(tk)

GT
σ(tk)P̃

−1 0

)(
x(t)
ω(t)

)

<
(

xT (t), ωT (t)
)( αP̃−1 0

0 γQ−1

)(
x(t)
ω(t)

)
,

(23)
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holds for any t ∈ [tk, tk+1).

If (23) is not true, then there exists a time t ∈ [tk, tk+1) and a non-zero state
(xT (t), ωT (t))T , such that

(
xT (t), ωT (t)

)
(

P̃−1Aσ(tk) + AT
σ(tk)P̃

−1 − αP̃−1 P̃−1Gσ(tk)

GT
σ(tk)P̃

−1 −γQ−1

)(
x(t)
ω(t)

)
≥ 0.

(24)
By the definitions of y(t) and Ωi, (24) implies that yT (t)Ωσ(tk)y(t) ≥ 0. Then
according to the switching law (21c), we have yT (t)Ωjy(t) ≥ 0, ∀ j ∈ M. Since
βi ≥ 0,

∑m
i=1 βi = 1, we obtain

∑m
i=1 βiy

T (t)Ωiy(t) ≥ 0, i. e.,

yT (t)




m∑
i=1

βi(P̃
−1Ai + AT

i P̃−1) − αP̃−1
m∑

i=1

βiP̃
−1Gi

m∑
i=1

βiG
T
i P̃−1 −γQ−1


 y(t) ≥ 0. (25)

Assuming condition (21a) is satisfied, then pre- and post-multiplying (21a) by the

positive symmetric matrix

(
P̃−1 0

0 Q−1

)
, we obtain the equivalent condition




m∑
i=1

βi(P̃
−1Ai + AT

i P̃−1) − αP̃−1
m∑

i=1

βiP̃
−1Gi

m∑
i=1

βiG
T
i P̃−1 −γQ−1


 < 0. (26)

Obviously, combining (25) and (26) leads a contradiction since y(t) 6= 0. Thus, (23)
holds for any t ∈ [tk, tk+1). By (22) and (23), we have for any t ∈ [tk, tk+1),

V̇ (t) <
(

xT (t), ωT (t)
)( αP̃−1 0

0 γQ−1

)(
x(t)
ω(t)

)
= αV (t) + γωT (t)Q−1ω(t).

(27)
By calculation, we have

d

dt

(
e−αtV (t)

)
< e−αtγωT (t)Q−1ω(t). (28)

Note that V (t) remains continuous at any switching instant due to the definition
of V (t) and (28) holds for any subsystem if the subsystem is active. Integrating (28)
from 0 to t gives

V (t) < eαtV (0) + γ

∫ t

0

eα(t−s)ωT (s)Q−1ω(s) ds

≤ eαTf V (0) + γeαTf

∫ Tf

0

ωT (s)Q−1ω(s) ds ≤ eαTf

(
V (0) +

γd

λmin(Q)

)
.

(29)
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On the other hand,

V (t) = xT (t)P̃−1x(t) + ωT Q−1ω ≥ λmin(P−1)xT (t)Rx(t) =
1

λmax(P )
xT (t)Rx(t),

(30)

V (0) = xT (0)P̃−1x(0) ≤ λmax(P
−1)xT (0)Rx(0) = [1/λmin(P )]xT (0)Rx(0). (31)

Putting together (29)-(31), we get

xT (t)Rx(t) ≤ λmax(P )V (t) < λmax(P )eαTf (V (0) + γd/λmin(Q))

≤ λmax(P )eαTf (c1/λmin(P ) + γd/λmin(Q)).
(32)

Assuming condition (21b) is satisfied, then we obtain xT (t)Rx(t) < c2. �

Remark 3.10. Note that even though each subsystem of system (3) is not finite-
time bounded with respect to (c1, c2, d, Tf , R), the switched system (3) may still
be finite-time bounded with respect to (c1, c2, Tf , R, σ) by properly choosing the
switching signal σ. In the case of asymptotical stability of switched systems, under
the assumption that all the subsystems are not asymptotical stable, how to design the
switching signals is an interesting topic. Here, in the case of finite-time boundedness
of switched systems, we have discussed the similar topic in Theorem 3.9.

Similarly, in the case of finite-time stability for system (2), we have the following
corollary.

Corollary 3.11. For any i ∈ M , let P̃ = R−1/2PR−1/2 and suppose that there
exist a matrix P > 0 and constants α ≥ 0, βi ≥ 0,

∑m
i=1 βi = 1, such that

m∑

i=1

βi(AiP̃ + P̃AT
i ) − αP̃ < 0, (33a)

c1

λmin(P )
+

d

λmin(Q)
<

c2

λmax(P )
e−αTf . (33b)

If the switching signal σ(t) is designed as

σ(t) =

{
i, if xT (t)Ωix(t) < 0 and σ(t−) = i;
argmin{xT (t)Ωjx(t), j ∈ M}, if xT (t)Ωix(t) ≥ 0 and σ(t−) = i,

(33c)
then system (2) is finite-time stable with respect to (c1, c2, Tf , R, σ), where σ(0) =

argmin{xT (0)Ωjx(0), j ∈ M}, Ωi = P̃−1Ai + AT
i P̃−1 − αP̃−1.

The multiple Lyapunov-like functions and the single Lyapunov-like function meth-
ods have been employed to design different switching signals in different cases. How-
ever, by the condition (4c), (21c), there are some constraints on the switching signals.
Hence, Theorems 3.5 and 3.9 may not be suitable for the cases of fast switching or
stochastic switching. In the following, we will give some conditions which guarantee
system (3) finite-time bounded under an arbitrary switching.
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3.3. Sufficient conditions for uniform finite-time boundedness

In the above two subsections, sufficient conditions for finite-time boundedness of
switched linear system (3) are presented. To solve the case of arbitrary switching, the
common Lyapunov-like function method will be used. In the sequel, some sufficient
conditions are presented for finite-time boundedness of system (3) under un arbitrary
switching, which is called uniform finite-time boundedness in this paper.

Definition 3.12. Given four positive constants c1, c2, d, Tf , with c1 < c2, and a
positive definite matrix R, the switched linear system (3) is said to be uniformly
finite-time bounded with respect to (c1, c2, d, Tf , R), if xT

0 Rx0 ≤ c1 ⇒ x(t)T Rx(t) <

c2, ∀ t ∈ (0, Tf ], ∀ω(t) :
∫ Tf

0 ωT (t)ω(t) dt ≤ d holds for any switching signal σ(t).

Remark 3.13. The meaning of ’uniformity’ in Definition 3.12 and in [14] are iden-
tical, which is with respect to the switching signal, rather than time.

Theorem 3.14. For any i ∈ M , let P̃ = R−1/2PR−1/2 and suppose that there
exist matrices P > 0, Q > 0 and constants αi ≥ 0, γi > 0 such that

(
AiP̃ + P̃AT

i − αiP̃ GiQ
QGT

i −γiQ

)
< 0, (34a)

c1

λmin(P )
+

γd

λmin(Q)
<

c2

λmax(P )
e−αTf , (34b)

then system (3) is uniformly finite-time bounded with respect to (c1, c2, d, Tf , R),
where α = max∀ i∈M (αi), γ = max∀ i∈M (γi).

P r o o f . Choose a common Lyapunov-like function as follows V (x(t)) = xT (t)P̃−1x(t).

Substituting P̃σ(t), Qσ(t) with P̃ , Q into the proof of Theorem 3.5, it is easy to get
the conclusion. �

4. FINITE-TIME STABILIZATION

Having given the finite-time boundedness analysis for the switched linear systems
(3), in the following, let us investigate the finite-time stabilization issue. Here, in
this paper, the following switching state feedback controller

u(t) = Kσ(t)x(t) (35)

is designed to stabilize system (1). Substituting (35) into system (1), we get the
closed-loop system (36) as follows

ẋ(t) = (Aσ(t) + Bσ(t)Kσ(t))x(t) + Gσ(t)ω(t), x(0) = x0. (36)

In the sequel, some sufficient conditions for finite-time stabilization and uniform
finite-time stabilization of system (1) are presented, respectively.
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Theorem 4.1. For any i ∈ M , let P̃i = R−1/2PiR
−1/2 and suppose that there exist

matrices Pi > 0, Qi > 0, Mi and constants αi ≥ 0, γi > 0 such that
(

AiP̃i + P̃iA
T
i + BiMi + MT

i BT
i − αiP̃i GiQi

QiG
T
i −γiQi

)
< 0, (37a)

c1

λ1
+

γd

λ3
<

c2

λ2
e−αTf . (37b)

Then, under the feedback controller u(t) = Kix(t) = MiP̃
−1
i x(t) and any switching

signal σ with average dwell-time satisfying

τa ≥ τ∗
a =

Tf lnµ

ln(c2/λ2) − ln(c1/λ1 + γd/λ3) − αTf
, (37c)

system (1) is finite-time bounded with respect to (c1, c2, d, Tf , R, σ), where λ1 =
min∀ i∈M (λmin(Pi)), λ2 = max∀ i∈M (λmax(Pi)), λ3 = min∀ i∈M (λmin(Qi)), α =
= max∀ i∈M (αi), γ = max∀ i∈M (γi), µ = λ2/λ1.

P r o o f . Applying Theorem 3.5 to the closed-loop system (36) and changing vari-

ables as Mσ(t)
△
= Kσ(t)P̃σ(t), it is easy to obtain the result. �

Actually, in Theorem 4.1, it is easy to find that each subsystem of system (1)
can be finite-time stabilized by linear state feedback controller (just keep σ(t) =
i, ∀ i ∈ M). However, in some cases, although each subsystem can not be finite-
time stabilized by any linear state feedback, the whole switched system may still be
finite-time stabilized under a suitable switching signal.

Theorem 4.2. For any i ∈ M , let P̃ = R−1/2PR−1/2 and suppose that there exist
matrices P > 0, Q > 0, Mi, and constants α ≥ 0, βi ≥ 0, γ > 0,

∑m
i=1 βi = 1, such

that



m∑
i=1

βi(AiP̃ + P̃AT
i + BiMi + MT

i BT
i ) − αP̃

m∑
i=1

βiGiQ

m∑
i=1

βiQGT
i −γQ


 < 0, (38a)

c1

λmin(P )
+

γd

λmin(Q)
<

c2

λmax(P )
e−αTf . (38b)

Then, if the feedback controller is chosen as u(t) = Kix(t) = MiP̃
−1x(t) and the

switching signal σ(t) is designed as

σ(t) =

{
i, if yT (t)Ωiy(t) < 0 and σ(t−) = i;
argmin{yT (t)Ωjy(t), j ∈ M}, if yT (t)Ωiy(t) ≥ 0 and σ(t−) = i,

(38c)

system (1) is finite-time bounded with respect to (c1, c2, d, Tf , R, σ), where σ(0) =
argmin{yT (0)Ωjy(0), j ∈ M}, yT (t) = (xT (t), ωT (t)),

Ωi =

(
P̃−1(Ai + BiMiP̃

−1) + (Ai + BiMiP̃
−1)T P̃−1 − αP̃−1 P̃−1Gi

GT
i P̃−1 −γQ−1

)
.
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P r o o f . Applying Theorem 3.9 to the closed-loop system (36) and changing vari-

ables as Mσ(t)
△
= Kσ(t)P̃ , it is easy to obtain the result. �

Consequently, the uniform finite-time stabilization problem for switched linear
control system (1) can be easily solved by Theorem 3.14.

Theorem 4.3. For any i ∈ M , let P̃ = R−1/2PR−1/2 and suppose that there exist
matrices P > 0, Q > 0, Mi and constants αi ≥ 0, γi > 0 such that

(
AiP̃ + P̃AT

i + BiMi + MT
i BT

i − αiP̃ GiQ
QGT

i −γiQ

)
< 0, (39a)

c1

λmin(P )
+

γd

λmin(Q)
<

c2

λmax(P )
e−αTf . (39b)

Then, under the feedback controller u(t) = Kix(t) = MiP̃
−1x(t), system (1) is uni-

formly finite-time bounded with respect to (c1, c2, d, Tf , R), where α = max∀ i∈M (αi),
γ = max∀ i∈M (γi).

P r o o f . Applying Theorem 3.14 to the closed-loop system (36) and changing vari-

ables as Mσ(t)
△
= Kσ(t)P̃ , we obtain the result. �

Remark 4.4. From a viewpoint of computation, two remarks are given. First,
it should be noted that the conditions in Theorem 3.5 to Theorem 4.3, i. e., con-
ditions (4a), (21a), (34a), (37a), (38a) and (39a), are not standard linear matrix
inequalities (LMIs) conditions. Actually, these matrix inequalities are bilinear ma-
trix inequalities (BMIs) [26, 27] due to the product of unknown scalars and matrices.
As suggested in [15, 21], one possible way to compute the BMI problem is to grid up
the unknown scalars, and then solve a set of LMIs for fixed values of these param-
eters. That is to say, once some values are fixed for αi, βi, γi, these conditions can
be translated into LMIs conditions and thus solved involving Matlab’s LMI control
toolbox. Second, the conditions (4b), (21b), (34b), (37b), (38b) and (39b), are not
linear matrix inequalities (LMIs) conditions. For convenience of computation, as in
[3], these conditions can be guaranteed by the following LMI conditions, ∀ i ∈ M ,

θ1I < Pi < I, (40a)

θ2I < Qi, (40b)




c2e
−αTf

√
c1

√
γd√

c1 θ1 0√
γd 0 θ2


 > 0, (40c)

for some positive numbers θ1 and θ2. It should be pointed out that the condition
(40) is just a sufficient condition for the conditions (4b), (21b), (34b), (37b), (38b)
and (39b). To some extent, this sufficient condition is conservative.
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Remark 4.5. Finite-time boundedness and stabilization problems have been dis-
cussed based on three kinds of Lyapunov-like functions. In practical applications, the
choosing order is given as follows: First, we choose the common Lyapunov-like func-
tion method. If there exists a common Lyapunov-like function for all subsystems,
then the finite-time boundedness can be guaranteed under an arbitrary switching.
However, in many cases, it is difficult to find a common Lyapunov-like function. Sec-
ond, we choose the multiple Lyapunov-like functions method. If there exist different
Lyapunov-like functions for each subsystem, then the finite-time boundedness can be
guaranteed if the switching is slow enough. However, if there are some subsystems
which are not finite-time bounded, then the common Lyapunov-like function and
the multiple Lyapunov-like functions methods can not be applied. Third, we need
to employ the single Lyapunov-like function method. Even all the subsystems are
not finite-time bounded, the whole system may still be finite-time bounded under a
suitable switching signal.

5. NUMERICAL EXAMPLES AND SIMULATIONS

Example 5.1. Consider the switched linear system given by

ẋ(t) = Aσ(t)x(t) + Gσ(t)ω (41)

with A1 =

(
0 −1
2 0

)
, A2 =

(
0 −2
1 0

)
, G1 = G2 =

(
1 0
0 1

)
, x(0) = (1 0)T ,

ω(t) = (0.02 sin(2t + 2) 0.01(sin(3t) + cos(0.5t)))T .
Note that each subsystem is not asymptotically stable because A1 and A2 are not

Hurwitz. Then, we consider the finite-time boundedness. The parameters are given
as c1 = 1, c2 = 20, d = 0.0034, Tf = 10 and matrix R = I. We first apply Theorem
3.14, i. e., the common Lyapunov-like function method. We can not find any feasible
solution. Then, we apply Theorem 3.5 and solve corresponding matrix inequalities.
Solving (4a) and (40) for αi = γi = 0.01 (∀ i ∈ M) leads to feasible solutions

P1 =

(
0.4347 0.0001
0.0001 0.8693

)
, P2 =

(
0.8693 0.0001
0.0001 0.4347

)
,

Q1 =

(
0.0024 0.0000
0.0000 0.0029

)
, Q2 =

(
0.0029 0.0000
0.0000 0.0024

)
,

which satisfy the condition (4b). Therefore, according to (4c), for any switching
signal σ1(t) with average dwell-time τa ≥ τ∗

a = 4.0245, system (41) is finite-time
bounded with respect to (1, 20, 0.0034, 10, I, σ1). Fig. 1(a) shows the state trajectory
over 0 ∼ 10s under a periodic switching signal σ1 with interval time △T = 4.05s from
the initial state x(0). From Fig. 1(b), it is easy to see that system (41) is finite-time
bounded with respect to (1, 20, 0.0034, 10, I, σ1). If the switching is too frequent, it
is possible that the system is not finite-time bounded. Fig. 2(a) shows the state
trajectory of system (41) over 0 ∼ 10s under a periodic switching signal σ2 with
interval time △T = 1.35s from the initial state x(0). From Fig. 1(b), we can find
that system (41) is not finite-time bounded with respect to (1, 20, 0.0034, 10, I, σ2).
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Fig. 1. The response of system (41) under the switching signal σ1.
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Fig. 2. The response of system (41) under the switching signal σ2.

In the next example, we consider the case that each subsystem is not finite-time
bounded. However, by properly choosing the switching signal, the switched system
is still finite-time bounded.

Example 5.2. Consider the switched linear system given by

ẋ(t) = Aσ(t)x(t) + Gσ(t)ω (42)

with A1 =




−0.7 0.4 0
0.67 0.7 −0.7
0.7 1 −1.4



 , A2 =




0.2 1.1 0
1.37 −1.7 −0.7
0.7 1 0.3



 , G1 = G2 = I,

ω(t) =
(

0.1 sin(t), 0.1 cos(t), −0.16(sin(t) + 2 cos(t))
)T

, x(0) = (1, 0, 0)T .
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Fig. 3. The state trajectories for switched system (42) and each subsystem.

The parameters are given as c1 = 1, c2 = 20, d = 0.37, Tf = 10 and matrix
R = I. Firstly, we apply Theorems 3.5 and 3.14, we can not get any feasible
solution. Actually, it is shown that both the subsystems are not finite-time founded
with respect to (1, 20, 0.37, 10, I) by simulations. Fig. 3 shows the state trajectories
of all subsystems over 0 ∼ 10s from the initial state x(0). Then, we apply Theorem
3.9 and solve corresponding matrix inequalities. Solving (21a) and (40) for α = 0.05,
β1 = 0.65, β2 = 0.35, γ = 0.01 leads to feasible solutions

P =




0.5472 −0.1919 0.2962
−0.19190 0.5534 0.2545
0.2962 0.2545 0.7419


 , Q =




0.0057 −0.0052 0.0003
−0.0052 0.0071 0.0006
0.0003 0.0006 0.0040


 .

Therefore, according to Theorem 3.9, if the switching signal σ3(t) is designed as
(21c), system (42) is finite-time bounded with respect to (1, 20, 0.37, 10, I, σ3). Fig.
3 shows the state trajectory of switched system (42) over 0 ∼ 10s under the switching
signal σ3(t) from the initial state x(0). It is easy to see that system (42) is finite-
time bounded with respect to (1, 20, 0.37, 10, I, σ3) from Fig. 4(a), which presents
the state trajectory of system (42) under the switching signal σ3(t). Moreover, the
switching signal σ3(t) is shown in Fig. 4(b).

Example 5.3. Consider the finite-time stabilization problem for switched system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Gσ(t)ω(t). (43)

The corresponding parameters are specified as follows
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Fig. 4. The state trajectory of switched system (42) and the switching signal σ3.

A1 =

(
1 3
0 −0.25

)
, B1 =

(
1
0

)
, A2 =

(
0.01 0
−1 −3

)
, B2 =

(
0

0.5

)
, G1 =

G2 = I, ω(t) =

(
−0.4 cos(10t + 3)

0.2 sin(3t)

)
, c1 = 1, c2 = 10, d = 1, Tf = 1, R = I.

By Theorem 4.3, solving (39a) and (40), we obtain the matrix solutions for αi =

γi = 0.6 (∀ i ∈ M) as follows P =

(
0.9115 0

0 0.8934

)
, Q =

(
0.3054 0

0 0.4798

)
,

M1 =
(
−50.3443 −2.6803

)
, M2 =

(
1.8230 −93.8059

)
. Thus, according to

Theorem 4.3, under the following state feedback controllers

u1(t) =
(
−55.2313 −3.0000

)
x(t), u2(t) =

(
2.0000 −104.9933

)
x(t),

system (43) is uniformly finite-time bounded with respect to (1, 10, 1, 1, I).

6. CONCLUSION

In this paper, finite-time boundedness and stabilization problems have been inves-
tigated for a class of switched linear systems. Some sufficient conditions have been
provided for finite-time boundedness of switched linear systems. In addition, the
finite-time stabilization problem has also been studied. A challenging and inter-
esting future research topic is how to extend the results in this paper to switched
nonlinear systems.
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