Kybernetika 46 no. 5, 831-849, 2010

Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra

Ülle Kotta, Palle Kotta and Miroslav Halás


The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the `tangent linearized system' equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, $q$-shift and $q$-difference operators.


nonlinear control systems, input-output models, reduction, pseudo-linear algebra, transfer equivalence


93C10, 93B20, 93B25


  1. S. A. Abramov, H. Q. Le and Z. Li: Univariate Ore polynomial rings in computer algebra. J. Math. Sci. {\it 131} (2005), 5885-5903.   CrossRef
  2. E. Aranda-Bricaire, \"U. Kotta and C. H. Moog: Linearization of discrete-time systems. SIAM J. Control Optim. {\it 34} (1996), 1999-2023.   CrossRef
  3. Z. Bartosiewicz, \"U. Kotta, E. Pawluszewicz and M. Wyrwas: Differential rings associated with control systems on regular time scales. In: Proc. European Control Conference, Budapest 2009, pp. 242-247.   CrossRef
  4. H. Bourles: Structural properties of discrete and continuous linear time-varying systems: a unified approach. In: Lecture Notes in Control and Inform. Sci. {\it 311} (F. Lamnabhi-Lagarrigue et al., eds.), Springer-Verlag, London 2005, pp. 225-280.   CrossRef
  5. M. Bronstein and M. Petkovsek: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. {\it 157} (1996), 3-33.   CrossRef
  6. D. Casagrande, \"U. Kotta, M. Wyrwas and M. T\~onso: Transfer equivalence and reduction of nonlinear delta differential equations on homogeneous time scale. In: Proc. American Control Conference, Seattle 2008.   CrossRef
  7. F. Chyzak, A. Quadrat and D. Robertz: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. {\it 16} (2005), 319-376.   CrossRef
  8. F. Chyzak, A. Quadrat and D. Robertz: OREMODULES: A symbolic package for the study of multidimensional linear systems. In: Applications of time-delay systems. Lecture Notes in Control and Inform. Sci. {\it 352} (J. Chiasson and J.-J. Loiseau, eds.), Springer-Verlag, Berlin 2007, pp. 233-264.   CrossRef
  9. R. M. Cohn: Difference Algebra. Wiley-Interscience, New York 1965.   CrossRef
  10. G. Conte, C. H. Moog and A. M. Perdon: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Lecture Notes in Control and Inform. Sci., Springer, London 2007.   CrossRef
  11. E. Delaleau: Classical electrical engineering questions in the light of Fliess's differential algebraic framework of non-linear control systems. Internat. J. Control {\it 81}, (2008), 3, 382-397.   CrossRef
  12. M. Fliess: Some basic structural properties of generalized linear systems. Syst. Contr. Lett. {\it 15} (1990), 391-396.   CrossRef
  13. M. Fliess and M. Mounier: Controllability and observability of linear delay systems: an algebraic approach. ESAIM Control, Optimization and Calculus of Variations {\it 3}, (1998), 301-314.   CrossRef
  14. M. Hal\'{a}s: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica {\it 44} (2008), 1181-1190.   CrossRef
  15. M. Hal\'{a}s and \"U. Kotta: Pseudo-linear algebra: a powerful tool in unification of the study of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 684-689.   CrossRef
  16. M. Hal\'{a}s, \"U. Kotta, Z. Li, H. Wang and C. Yuan: Submersive rational difference systems and formal accessibility. In: Proc. Internat. Symposium on Symbolic and Algebraic Computation, Seoul 2009.   CrossRef
  17. K. Johnson: K\"ahler differentials and differential algebra. Ann. of Math. {\it 89}, (1969), 92-98.   CrossRef
  18. \"U. Kotta: Irreducibility conditions for nonlinear input-output difference equations. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 3404-3408.   CrossRef
  19. \"U. Kotta: Decomposition of discrete-time nonlinear control systems. Proc. Estonian Academy of Sci. Phys. Math. {\it 54}, (2005), 3, pp. 154-161.   CrossRef
  20. \"U. Kotta, Z. Bartosiewicz, E. Pawluszewicz and M. Wyrwas: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Systems Control Lett. {\it 58}, (2009), 646-651.   CrossRef
  21. \"U. Kotta, F.N. Chowdhury and S. N\~omm: On realizability of neural networks-based input-output models in the classical state-space form. Automatica {\it 42} (2006), 1211-1216.   CrossRef
  22. \"U. Kotta and M. T\~onso: Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems. In: Proc. 6th IFAC Symposium NOLCOS, Stuttgart 2004.   CrossRef
  23. \"U. Kotta, A. S. I. Zinober and P. Liu: Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica {\it 37} (2001), 1771-1778.   CrossRef
  24. J. C. McConnell and J. C. Robson: Noncommutative noetherian rings. With the cooperation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987.   CrossRef
  25. O. Ore: Theory of non-commutative polynomials. Ann. of Math. {\it 32} (1933), 480-508.   CrossRef
  26. A.-M. Perdon, C. H. Moog and G. Conte: The pole-zero structure of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 690-693.   CrossRef
  27. R. Toth: Modeling and Identification of Linear Parameter-Varying Systems. PhD. thesis. Delft University of Technology 2008.   CrossRef
  28. J. F. Pommaret and A. Quadrat: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. {\it 37} (1999), 247-260.   CrossRef
  29. X. Xia, L. A. Marques, P. Zagalak and C. H. Moog: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica {\it 38} (2002), 1549-1555.   CrossRef
  30. R. Ylinen: Application of polynomial systems theory to nonlinear systems. In: Proc. 16th IFAC World Congress, Prague 2005.   CrossRef
  31. C. Zhang and Y. Zheng: A polynomial approach to discrete-time nonlinear system controllability. Internat. J. Control {\it 77} (2004), 491-477.   CrossRef
  32. Y. Zheng, J. Willems and C. Zhang: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control {\it 46} (2001), 1782-1788.   CrossRef