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TREE AND LOCAL COMPUTATIONS

IN A CROSS–ENTROPY MINIMIZATION PROBLEM

WITH MARGINAL CONSTRAINTS

Francesco M. Malvestuto

In probability theory, Bayesian statistics, artificial intelligence and database theory the
minimum cross-entropy principle is often used to estimate a distribution with a given set
P of marginal distributions under the proportionality assumption with respect to a given
“prior” distribution q. Such an estimation problem admits a solution if and only if there
exists an extension of P that is dominated by q. In this paper we consider the case that q

is not given explicitly, but is specified as the maximum-entropy extension of an auxiliary
set Q of distributions. There are three problems that naturally arise: (1) the existence of
an extension of a distribution set (such as P and Q), (2) the existence of an extension of P

that is dominated by the maximum entropy extension of Q, (3) the numeric computation of
the minimum cross-entropy extension of P with respect to the maximum entropy extension
of Q. In the spirit of a divide-and-conquer approach, we prove that, for each of the three
above-mentioned problems, the global solution can be easily obtained by combining the
solutions to subproblems defined at node level of a suitable tree.
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1. INTRODUCTION

The maximum entropy (ME) and minimum cross-entropy (MCE) principles are pow-
erful tools used in probability theory, Bayesian statistics, in database theory and
artificial intelligence to estimate probability distributions when only partial infor-
mation is available. The ME and MCE principles have sound theoretical bases
[9, 21, 24, 53]. A classical MCE problem consists in estimating an unknown prob-
ability distribution with given marginals under the hypothesis of proportionality to
a given prior distribution [12, 13, 18, 25, 54]:

Given a finite set X of discrete variables, a set P of distributions over X
and a distribution q over X , if there exists an extension of P dominated
by q, then compute the MCE extension of P with respect to q.

This problem can be solved as follows. Let Ω be the state space of X and let
P = {p1, . . . , pn}, where pi is over the subset Ai of X(1 ≤ i ≤ n). First of all, the
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existence of an extension p of P dominated by q (the consistency of P w.r.t. q, for
short) is tested by solving the following linear-programming problem:

maximize
∑

x∈‖q‖ p(x)

subject to the linear constraint system
{

p[Ai] = pi (1 ≤ i ≤ n)
p(x) ≥ 0 (x ∈ Ω)

(1)

where the term ‖q‖ in the objective function denotes the “support” of q, that is,
‖q‖= {x ∈ Ω : q(x) > 0}, and p[Ai] denotes the marginal of p on Ai (1 ≤ i ≤ n). Of
course, there exists an extension of P (P is consistent, for short) if and only if the
linear constraint system (1) is consistent; in other words, the extensions of P are
exactly the feasible solutions of the linear-programming problem above. Moreover,
for every extension p of P one has

∑

x∈‖q‖ p(x) ≤ 1 where the equality holds if

and only if p is dominated by q (that is, ‖p‖⊆ ‖q‖). Therefore, P is consistent
w.r.t. q if and only if the linear-programming problem above is feasible and its
optimum is one. Suppose that this is the case. Then, the MCE extension of P with
respect to q (the q-MCE extension, for short) is computed by applying the Iterative
Proportional Fitting Procedure (the IPFP, for short) to P with prior distribution
q (cf. [7]). The convergence of the IPFP is well-established [11, 15, 52]. The
above MCE criterion has been also used to estimate the unknown distribution p
of a nonnegative summary statistic (e. g., total income) with given marginals (P ),
which is called the target variable, under the hypothesis of proportionality to the
given distribution (q) of another nonnegative summary statistic (e. g., population),
which is called the auxiliary variable [2, 30, 31, 45, 50, 51, 55]. In a more general
framework [46], the distribution q of the auxiliary variable is not known explicitly,
but a set Q of its marginals is given. Then, one can obtain an estimate of the
unknown distribution of the target variable by solving the following MCE problem:

Given a finite set X of discrete variables, a set P of distributions over X
and a set Q of distributions over X , if Q is consistent and P is consistent
w.r.t. the ME extension q of Q, then compute the q-MCE extension of P .

It should be noted that the MCE problem above requires solving three problems,
two of decisional type and the other of numeric computation, which read:

(Consistency) — Are the distribution sets P and Q consistent?

(Relative consistency) — Is the distribution set P consistent w.r.t. the ME exten-
sion of Q?

(MCE extension) — Compute the q-MCE extension of the distribution set P , where
q denotes the ME extension of the distribution set Q.

The computational complexity of each of these problems is proportional to the
size of the state space Ω of X . In the spirit of a divide-and-conquer approach, for
each of the three problems above we want to find a “decomposition”, that is, a
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family F of subsets of X such that the global solution can be “easily” obtained by
combining the solutions to the corresponding subproblems induced by sets Y in F
defined as follows:

• the subproblem of the consistency of P induced by Y is specified by the pro-
jection P (Y ) of P onto Y , that is, P (Y ) = {p1[A1 ∩ Y ], . . . , pn[An ∩ Y ]};

• the subproblem of the relative-consistency problem induced by Y is specified
by P (Y ) and by the support ‖q[Y ]‖ of the marginal on Y of the ME extension
q of Q;

• the subproblem of the MCE extension problem induced by Y is specified by
P (Y ) and by the marginal q[Y ] on Y of the ME extension q of Q.

Since the computational complexity of such a subproblem is proportional to the size
of the state space of Y , the divide-and-conquer approach allows to find a global
solution in time proportional to the number of sets in F and to the maximal size of
state spaces of sets in F. In this paper, for each of the three problems above, we will
construct a “decomposition tree”, that is, a tree whose nodes represent the sets of
a decomposition of the problem. Such decomposition trees are found by viewing set
families as hypergraphs [6] and exploiting the hypergraph-theoretic characterizations
[40] of the probability-theoretic notions of decomposability [17] and collapsibility [1].

Related Work. The first results on the consistency problem go back to Kellerer
[23] who suggested to verify a huge set of inequalities. Fienberg and Meyer [16] pro-
posed to check the convergence of the IPFP, which is not practical since each iterative
step requires the execution of O(|Ω|) arithmetic operations. A linear-programming
approach can be found in [37]. Finally, Matúš [48] addressed the problem of the con-
sistency for the special class of graphical distribution sets (i.e., its schemes are con-
formal hypergraphs), and succeeded in decomposing it using the so-called “canonical
triangularization”.

Our results on the MCE extension problem generalize previous results on the ME
extension problem, which can be viewed as a special instance of the MCE extension
problem in the case that each distribution in Q is uniform since, in this case, P is
consistent w.r.t. the ME extension of Q if and only if P is consistent and, if P is
consistent, then the MCE extension of P w.r.t. the ME extension of Q coincides
with the ME extension of P . The ME extension problem has been widely studied
in probability theory [10, 22, 23, 37, 47, 49, 58, 59], and in statistics [7, 17, 28];
moreover, tree-computation methods [7, 17, 20, 27, 28, 36, 38] and local-computation
methods [3, 38] have been provided to compute the ME extension of a consistent set
of distributions.

The paper is organized as follows. In Section 2 we recall some more-or-less stan-
dard definitions of hypergraph theory as well as the notions of an acyclic hypergraph,
of an acyclic cover of a hypergraph and of a closed vertex set. Section 3 contains
basic results on ME and MCE extensions as well as some relational algebra to pro-
cess supports of distributions. In Section 4 we give a procedure to construct a
“tree-representation” of the ME extension of a consistent set of distributions. In
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Sections 5, 6 and 7 we apply the divide-and-conquer strategy to solve the consis-
tency problem, the relative-consistency problem and the MCE extension problem,
respectively. Section 8 contains some closing notes.

2. HYPERGRAPHS

In this section we recall some more-or-less standard notions and results on hyper-
graphs [6] which will be used in the sequel.

A hypergraph is a finite (possibly empty) set of nonempty sets, which are called
the (hyper)edges of the hypergraph. The union of edges of a hypergraph is called
its vertex set. If a hypergraph A has vertex set X , we say that A is a hypergraph
on X . A hypergraph is empty if it has no edges, is trivial if it has exactly one edge
and is a graph if its edges have all size less than 3.

Let A be a hypergraph on X . Two distinct vertices of A are adjacent (or neigh-
bours) if they appear together in some edge of A. A partial edge of A is a nonempty
set of vertices that is contained (properly or improperly) in some edge of A. A vertex
is a leaf if it belongs to exactly one edge, and an edge is redundant if it is contained
in another edge. A hypergraph is simple if no edge is redundant. The simple re-
duction of a hypergraph A is the simple hypergraph whose edges are exactly the
maximal (with respect to set inclusion) edges of A.

A subhypergraph of A is either an empty hypergraph or a hypergraph whose edges
are all partial edges of A. If B is a hypergraph with the same vertex set as A and
A is a subhypergraph of B, we say that A is finer than B, written A ≤ B. A
hypergraph B is a cover of A if B is a simple hypergraph and A is finer than B.
Two hypergraphs A and B are equivalent if A is finer than B and B is finer than A.

A path in hypergraph A is a sequence of distinct edges of A where every two
consecutive edges have a nonempty intersection. Two edges A and B of A are
connected if there is a path (A1, . . . , Al) joining them, that is, with A1 = A and
Al = B; analogously, two vertices a and b of A are connected if there is a path
(A1, . . . , Al) such that a belongs to A1 and b belongs to Al. Finally, A is connected
if every two edges (or vertices) are connected. Let A be a hypergraph on X and let Y
be a proper nonempty subset of X . The subhypergraph of A induced by Y , denoted
by A(Y ), is the hypergraph {A ∩ Y : A ∈ A} \ {∅}. The connected components of
A are the subhypergraphs of A induced by its maximal sets of pairwise connected
vertices. Let Y be a proper nonempty subset of X . The hypergraph A − Y is the
subhypergraph of A induced by X \ Y ; the boundary of a connected component A′

of A − Y is the set of vertices in Y that are adjacent to at least one vertex of A′.
Two connected vertices of A are separated by Y if they belong to distinct connected
components of A − Y . A minimal vertex separator (a separator, for short) of A is
a partial edge Y of A such that there exist two connected vertices of A that are
separated by Y and are not separated by any proper subset of Y . An articulation
pair of A is a pair {A, B} of distinct edges of A such that A∩B is a separator of A.
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2.1. Acyclic hypergraphs

A hypergraph A is acyclic [5] (or “decomposable” [27]) if either A consists of a
single edge or there exists a running-intersection ordering (an RIO, for short) of A,
that is, an ordering (A1, . . . , An) of the edges of A such that, for each i (2 ≤ i ≤ n),
one has

(A1 ∩ · · · ∩ Ai−1) ∩ Ai ⊆ Aj

for some j < i. It is well-known [5] that, if A is an acyclic, simple hypergraph,
then each edge of A is the leading term of some RIO of A. A hypergraph is cyclic
if it is not acyclic. Let A be an acyclic, simple and nontrivial hypergraph and let
(A1, . . . , An) be an RIO of A. Let

Si = (A1 ∩ · · · ∩ Ai−1) ∩ Ai (2 ≤ i ≤ n).

It is well-known [44] that S is a separator of A if and only if, for some i, S = Si and
Si 6= ∅. The multiplicity of a separator S of A is the number of the terms Si of the
list (S2, . . . , Sn) such that S = Si. (Note that the multiplicity of a separator of A is
the same for every RIO of A).

Acyclic hypergraphs can be represented by forests of trees. We shall make use
of two tree-representations whose definitions are now recalled. Let A be an acyclic
hypergraph with separator set S. Without loss of generality, we assume that A is a
connected, simple hypergraph. A junction tree [26] (also called a “join tree” [5, 34])
for A is a tree T with node set A (that is, each node of T is an edge of A), where for
every two nodes Y and Z, the set Y ∩Z is a subset of each node along the (unique)
path joining Y and Z. An efficient procedure for constructing a junction tree can
be found in [34]. A connection tree (also called an “edge-divider tree” [3]) for A is
a tree T with node set A ∪ S (that is, each node of T is either an edge of A or a
separator of A), where: (1) each arc has one endpoint in A and the other in S, and
(2) for every two nodes Y and Z, the set Y ∩ Z is a subset of each node along the
(unique) path joining Y and Z. An efficient procedure for constructing a connection
tree can be found in [3]. Let T be a connection tree for A. Henceforth, a node in
A (or in S) is called an edge-node (a separator-node, respectively) of T . Let S be
a separator-node of T ; the number of neighbours of S in T minus one comes out to
be equal to the multiplicity of S in A [3].

Example 2.1. The connected and simple hypergraph A = {abc, abd, abe, bf} is
acyclic. The separators of A are ab and b with multiplicities 2 and 1, respectively.
Figure 1 shows a junction tree (left) and a connection tree (right) for A.

 edge-nodes 

separator-nodes 

abd abc 

abe 

 bf 

abd abc  bf abe 

ab                 b         

 
 

Fig. 1.
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The following fact can be easily learned from a connection tree.

Fact 2.2. Let A be an acyclic, connected hypergraph on X . A subset Y of X is
a separator of A if and only if, for some edge A of A, Y equals the boundary of a
connected component of A− A.

Several characterizations of acyclic hypergraphs exist [5], one of which states that
a hypergraph A is acyclic if and only if the following procedure reduces A to an
empty hypergraph.

Algorithm 1. Graham reduction of a hypergraph

Input. A hypergraph A.
Output : A subhypergraph of A.

Repeatedly apply the following two operations until neither can be longer applied:

(vertex removal) Delete a vertex if it is a leaf.
(edge removal) Delete a set if it is empty or is a redundant edge. A.

A linear implementation was given in [56]. Note that, if A is an acyclic and
connected, simple hypergraph, then the separators of A are exactly the sets that are
deleted by the edge-removal operation during the Graham reduction of A.

2.2. The compact hypergraph

The compact hypergraph of hypergraph A [42] (also called the “compaction” of A in
[43, 44]) is the simple hypergraph whose edges are the maximal sets of vertices that
are separated by no partial edge of A. As noted in [44], the compact hypergraph of
A is exactly the “prime hypergraph” [29] of the clique hypergraph of A.

Example 2.3. The compact hypergraph of the hypergraph A = {ac, bc, abd, abe, ef}
has edges abc, abd, abe, ef .

We now recall some nice properties of the compact hypergraph of a hypergraph A
[43, 44].

(K1) The separators of A and of the compact hypergraph of A are the same.

(K2) The compact hypergraph of A is an acyclic cover of A and is equivalent to A
if and only if A is acyclic.

(K3) If A is a simple hypergraph with v vertices and e edges, the compact hyper-
graph of A has O(e) edges and can be constructed in O(ev3) time.

As to (K2), it should be noted that in literature there exist efficient procedures for
finding an acyclic cover of A that is equivalent to A if and only if A is acyclic. The
most popular algorithms are zero fill-in algorithms [56] which are linear in the size
of A; we call the resultant acyclic covers of A fill-in covers of A. (Note that, in
general, finding a minimum fill-in cover is an NP-complete problem [60].) Using the
compact hypergraph of A and a zero fill-in algorithm, one can find acyclic covers
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of A that are finer than the compact hypergraph of A and are equivalent to A if
and only if A is acyclic. Let K be the compact hypergraph of A. For each K ∈ K,
let C(K) be a fill-in cover of the subhypergraph A(K). We call the hypergraph
C = ∪K∈KC(K) a canonical cover of A. Note that, given a connection tree T for
K and a connection tree T (K) for C(K)(K ∈ K), a connection tree for C can be
obtained by replacing each edge-node K of T by T (K).

2.3. Closed sets

Let A be a hypergraph on X . A subset Y of X is closed in A [40] if the boundary
of every connected component of A−Y is either empty or a partial edge of A. Note
that every edge of A is closed in A. It can be proven [40] that the intersection of
every two closed sets is still a closed set so that, given any subset Y of X , there is
exactly one minimal (with respect to set inclusion) closed superset of Y , which is
called the (closed hull) of Y (in A), denoted by Ȳ . Thus, the family of closed sets
defines a convexity space on A [42]. If A is an acyclic hypergraph, then the simple
reduction of the subhypergraph of A induced by the hull of Y can be constructed
using the following procedure [35], of which a linear implementation was given in
[56].

Algorithm 2. Graham reduction of a hypergraph with a sacred set

Input. A hypergraph A on X , and a set Y of (sacred) vertices.
Output : An induced subhypergraph of A.

Repeatedly apply the following two operations until neither can be longer applied:

(vertex removal) Delete a vertex if it is a leaf that does not belong to Y .
(edge removal) Delete a set if it is empty or is a redundant edge.

More in general, if A is a simple hypergraph then, given the compact hypergraph
of A, the hull of Y is the output of the following algorithm which runs in O(ev)
time, where e is the number of edges of A and v is the number of its vertices [40].

Algorithm 3.

Input : A simple hypergraph A, the compact hypergraph K of A and a vertex set Y .

Output : A superset Ȳ of Y .

(1) Perform the Graham reduction of K with sacred set Y . Let G be the resultant
hypergraph and let Ȳ be the vertex set of G.

(2) For each edge G of G, if G is neither a partial edge of A nor an edge of K,
then set Ȳ = Ȳ ∪ K, where K is the edge of K that contains G.

The following two facts easily follow from Algorithm 3.

Fact 2.4. Let A be a hypergraph. Every edge of the compact hypergraph of A is
closed in A.
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The following is a stronger result than Fact 2.4.

Lemma 2.5. (Malvestuto and Moscarini [44]) The compact hypergraph of a hy-
pergraph A is the minimal (with respect to refinement) acyclic cover of A whose
edges are all closed in A.

3. DISTRIBUTIONS

In this section we recall some more-or-less standard notions and results on probability
distributions and their supports which will be used in the sequel.

Let X be a finite set of discrete variables, each of which has a finite value set. A
state of X is a value assignment to the variables in X such that the value assigned
to a variable is an element of its value set. By Ω we denote the state space of X .

A distribution over X is a nonnegative real-valued function p defined on Ω such
that

∑

x∈Ω p(x) = 1. Let p be a distribution over X ; the support of p, denoted by
‖p‖, is the set of states x of X with p(x) > 0, and the entropy of p is the nonnegative
quantity

H(p) = −
∑

x∈‖p‖

p(x) log p(x).

Let p and q be two distributions over X ; p is dominated by q (or, equivalently,
p is “absolutely continuous” with respect to q) if ‖p‖⊆ ‖q‖. The cross-entropy of p
with respect to q is the nonnegative functional

D(p : q) =







∑

x∈‖p‖ p(x) log
p(x)

q(x)
if p is dominated by q

+∞ else.

Accordingly, if p is dominated by q, then one has

D(p : q) = −H(p) −
∑

x∈‖p‖

p(x) log q(x).

Note that, if q is the uniform distribution, then ‖q‖= Ω so that p is definitely
dominated by q and D(p : q) = log |Ω| − H(p). The functional D(p : q) has a va-
riety of other names (e.g., “I-divergence”, “directed divergence”, “Kullback-Leibler
distance”, “relative entropy”, “discrimination information”).

Let Y be a nonempty proper subset of X . The state space of Y is denoted by
Ω[Y ]. The restriction to Y of a state x of X , written xY , is the state of Y for which
the variables in Y are assigned the same values as in x. The marginal on Y of a
distribution p over X , written p[Y ], is the distribution over Y defined as follows:

p[Y ](y) =
∑

x∈Ω:xY =y

p(x) (y ∈ Ω[Y ]).

Note that p(x) > 0 implies p[Y ](xY ) > 0 for every subset Y of X so that one has

‖p[Y ]‖= {y ∈ Ω[Y ] : ∃x ∈ ‖p‖ with xY = y}.
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We also admit the case Y = ∅; then, by convention p[Y ] is the unity.

Let X be a finite set of discrete variables and let A be a hypergraph on X . A
probabilistic database (a pdb, for short) over X with scheme A is a set of distributions
P = {pA : A ∈ A}, where pA is a distribution over A. The pdb P is simple if the
scheme A of P is a simple hypergraph. Let Y be a subset of X ; the subdatabase of
P induced by Y , denoted by P (Y ), is the set of distributions pA[A ∩ Y ] for all A
with A ∩ Y 6= ∅. Note that scheme of P (Y ) is the induced subhypergraph A(Y ).

3.1. Consistency

Let P = {pA : A ∈ A} be a pdb over X . An extension of P is a distribution p
over X such that p[A] = pA for all A ∈ A. The pdb P is consistent if there exists
an extension of P . Let A′ be the simple reduction of A. The simple reduction of
P is the simple pdb P ′ with scheme A′ that consists of distributions in P one for
each edge of A′. Of course, the consistency of P ′ is a necessary but not sufficient
condition for the consistency of P .

3.2. Maximum-entropy extension

It is well-known [8] that, if P is a consistent pdb, then there exists exactly one
extension p of P such that H(p) ≥ H(p′) for every extension p′ of P . This extension
p of P will be referred to as the maximum entropy extension of P (the ME extension
of P , for short). As noted in [8], the ME extension of P dominates every extension
of P .

Given a hypergraph A on X , let IA be the operator that maps every distribution
p over X to the ME extension of the (consistent) pdb {p[A] : A ∈ A}. A distribution
p over X is a fixed point of IA if IA(p) = p. Of course, if p is the ME extension of a
pdb with scheme A, then p is a fixed point of IA.

Fact 3.1. For every hypergraph A on X , the uniform distribution over X is a fixed
point of IA.

Let Y be a subset of X ; a fixed point p of IA is collapsible onto Y if p[Y ] is a
fixed point of IA(Y ) [1].

We now recall three relevant hypergraph-theoretic properties of the operator IA.

Theorem 3.2. (Malvestuto [39]) Let A and B be two hypergraphs with the same
vertex set. Every fixed point of IA is also a fixed point of IB if and only if A is finer
than B.

The next two properties involves collapsibility and decomposability and were proven
in [32, 33, 40] and in [17, 37, 48], respectively.

Theorem 3.3. Let A be a hypergraph on X and let Y be a subset of X . Every
fixed point of IA is collapsible onto Y if and only if Y is closed in A.
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Theorem 3.4. Let A be an acyclic, simple hypergraph on X , let S be the separator
set of A and, for each separator S of A, let mS be the multiplicity of S in A. A
distribution p is a fixed point of IA if and only if the factorization

p(x) =

∏

A∈A
p[A](xA)

∏

S∈S
(p[S](xS))mS

holds for every x in the support of p.

In other words, Theorem 3.4 states that, if p is a fixed point of IA, then and only
then p has the closed-form expression:

∏

A∈A
p[A]

∏

S∈S
(p[S])mS

.

Note that every connection tree for A provides a graphical representation of the
closed-form expression generated by A. Let T be a connection tree for an acyclic,
simple hypergraph A and let p be a fixed point of IA. Let l be the node labelling
of T defined as follows: for each edge-node A, the label of A is lA = p[A] and, for
each separator-node S, the label of S is lS = p[S]. We call the labelled tree (T, l) a
tree-representation of p generated by A.

3.3. Minimum cross-entropy extension

Let P be a (consistent) pdb over X , and let q be a distribution over X . The pdb P is
consistent with respect to q (q-consistent, for short) [24] if there exists an extension of
P that is dominated by q. Given a q-consistent pdb P , it is well-known [8] that there
exists exactly one extension p of P dominated by q such that D(p : q) ≤ D(p′ : q) for
every extension p′ of P dominated by q. This extension p of P will be referred to as
the minimum cross-entropy extension of P with respect to q (the q-MCE extension
of P , for short). The next theorem is a well-known result [8].

Theorem 3.5. Let P = {pA : A ∈ A} be a q-consistent pdb over X . An extension
p of P dominated by q is the q-MCE extension of P if and only if, for each A ∈ A,
there exists a real-valued function fA defined on the state space of A such that the
factorization

p(x) = q(x)
∏

A∈A

fA(xA)

holds for every x in the support of p

Fact 3.6. If q is strictly positive distribution over X , then every consistent pdb P
over X is q-consistent; moreover, if q is the uniform distribution over X , then the
q-MCE extension of P coincides with the ME extension of P

Corollary 3.7. Let P = {pA : A ∈ A} be a consistent pdb over X . An extension
p of P is the ME extension of P if and only if, for each A ∈ A, there exists a
real-valued function fA defined on the state space of A such that the factorization

p(x) =
∏

A∈A

fA(xA)

holds for every x in the support of p.
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3.4. Supports as relations

Supports of distributions play a key role in the relative-consistency problem (see
the Introduction). In this section, we state some algebraic properties of the support
of the ME extension of a consistent pdb. It is natural to view the support of a
distribution over a variable set X as a relation over X , which is meant to be any
subset of the state space Ω of X . We now recall two basic operations of relational
algebra [5]: the “projection” of a relation and the “join” of two or more relations.

Let r be a relation over X , and let Y be a nonempty proper subset of X . The
projection of r onto Y , denoted by r[Y ], is the relation over Y defined as follows:

r[Y ] = {y ∈ Ω[Y ] : ∃x ∈ r with xY = y}.

Note that, if Y ⊆ Z ⊆ X , then (r[Z])[Y ] = r[Y ].
Let r and s be two relations over Y and Z, respectively, let X = Y ∪ Z and let

Ω be the state space of X . The (natural) join of r and s, denoted by r ⊲⊳ s, is the
relation over X defined as follows:

{x ∈ Ω : xY ∈ r and xZ ∈ s}.

Note that the join operator is associative and commutative so that the join of three
or more relations is well-defined.

Let A be a hypergraph on X . A relational database (an rdb, for short) over X
with scheme A is a set of relations R = {rA : A ∈ A}, where rA is a relation over
A. We denote the join of the relations in R by ⊲⊳ R, that is,

⊲⊳ R =⊲⊳A∈A rA.

An extension of R is a relation r over X such that r[A] = rA for all A ∈ A. An rdb
is consistent if it admits an extension.

Fact 3.8. If an rdb R is consistent, then the relation ⊲⊳ R is the maximal (with
respect to set-inclusion) extension of R.

Using the projection and join operators one can define an operator which is the
relational counterpart of the operator IA (introduced in Subsection 3.2) and, as
shown below, enjoys the same hypergraph-theoretic properties as IA.

Given a hypergraph A on X , let JA be the operator that maps every relation r
over X to the join of the projections of r onto edges of A; that is, JA(r) =⊲⊳A∈A r[A].
A relation r over X is a fixed point of JA if JA(r) = r. Of course, if R is a consistent
rdb with scheme A, then the relation ⊲⊳ R is a fixed point of JA.

Let Y be a subset of X ; a fixed point r of JA is collapsible onto Y if r[Y ] is a fixed
point of JA(Y ). The next two results are the relational counterparts of Theorems
3.2 and 3.3 and were stated in [4].

Theorem 3.9. Let A and B be two hypergraphs with the same vertex set. Every
fixed point of JA is also a fixed point of JB if and only if B is finer than A.

Theorem 3.10. Let A be a hypergraph on X and Y a subset of X . Every fixed
point of IA is collapsible onto Y if and only if Y is closed in A.
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Consider now relations that are supports of distributions.

Fact 3.11. Let p be a distribution over X , and let Y be a nonempty subset of X .
The support of the marginal p[Y ] of p coincides with the projection onto Y of the
support of p, that is, ‖p[Y ]‖= ‖p‖[Y ].

Let P = {pA : A ∈ A} be consistent pdb. By Fact 3.11, the support of every
extension of P is an extension of the rdb {‖pA‖: A ∈ A} which, hence, is consistent;
moreover, by Fact 3.8, the support of every extension of P (and, hence, of the
ME extension of P ) is contained in the relation ⊲⊳A∈A ‖pA‖. However, as stated
below [41], if the scheme of P is an acyclic hypergraph, then the support of the ME
extension of P equals the join of the supports of the distributions in P .

Theorem 3.12. Let A be an acyclic hypergraph. The support of every fixed point
of IA is a fixed point of JA.

4. TREE–REPRESENTATION OF A MAXIMUM–ENTROPY EXTENSION

In this section we recall some results on tree-computation of ME extensions. The
ME extension of a consistent pdb P over a variable set X can be computed using the
Iterative Proportional Fitting Procedure (IPFP) with input the uniform distribution
over X . However, if the scheme of P is an acyclic, simple hypergraph, the ME
extension of P can be directly computed using its closed-form expression generated
by the scheme of P . More in general, by Theorems 3.2 and 3.4 any acyclic cover of the
scheme of P generates a closed-form expression (and, hence, a tree-representation)
of the ME extension of P . In this section, we make use of the tree-implementation
of the IPFP given in [3] to construct tree-representations of the ME extension of
P generated by an acyclic cover and by a canonical cover of the scheme of P . We
begin by recalling the definition of the fitting operator used in the IPFP. Let f be
a distribution over X and let g be a distribution over Y ⊆ X that is dominated by
f [Y ]; the result of fitting f to g is the distribution h over X defined as follows

h(x) =







g(xY )

f [Y ](xY )
f(x) if x ∈ ‖f‖

0 else.

As proven in [19], h is dominated by f and h[Y ] = g. In what follows, as in [19], we
denote the result of fitting f to g by f ⊲ g.

Let P be a consistent pdb over X with scheme A. Let (A1, . . . , An) be any
ordering of edges of A and let pi be the distribution in P over Ai(1 ≤ i ≤ n).
Without loss of generality, we assume that P is a simple pdb (otherwise, we take
the simple reduction of P ). As recalled in the Introduction, the ME extension p
of P can be computed by applying the IPFP to P with prior uniform distribution;
that is, p is the limit of the sequence of distributions p(0), p(1), p(2), . . . , where p(0)

is the uniform distribution over X and, for t = rn + i with r ≥ 0 and 1 ≤ i ≤ n,
p(t) = p(t−1) ⊲ pi.

The following result [20] in some sense generalizes the if-part of Theorem 3.2.
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Lemma 4.1. Let P be a consistent pdb with scheme A. If A is finer than B, then
every distribution p(t) is a fixed point of IB.

The following is an immediate consequence of Lemma 4.1.

Theorem 4.2. Let P be a consistent pdb with scheme A. If A is finer than B,
then the ME extension of P is a fixed point of IB.

Let C be an acyclic cover of A (e.g., the compact hypergraph of A), let S be the
set of separators of C and, for each S ∈ S, let mS be the multiplicity of S in C. By
Lemma 4.1 and Theorem 3.4, every distribution p(t) has the following closed-form
expression:

∏

C∈C
p(t)[C]

∏

S∈S

(

p(t)[S]
)mS

.

Therefore, at each step of the IPFP we do not need to compute p(t) but only its
marginals p(t)[C] for all C ∈ C and its marginals p(t)[S] for all S ∈ S; moreover,
when the convergence is attained, the marginals of the ME extension of P on C ∈ C
and on S ∈ S are available and the ME extension of P can be explicitly computed.
(Of course, no computational gain is obtained if C is a trivial hypergraph.) We now
show how to compute the distributions p(t)[C] and p(t)[S] for every t. Of course, each
p(0)[C] is the uniform distribution over C and each p(0)[S] is the uniform distribution
over S. Consider the case t > 0, say t = rn + i, r ≥ 0 and 1 ≤ i ≤ n. Recall that
p(t) = p(t−1)⊲pi. Suppose we are given a tree-representation (T, l) of p(t−1) generated
by C. The following algorithm [3] performs a traversal of T and, during the traversal,
updates the node labels so that the output is a tree-representation of p(t) generated
by C. More efficient propagation procedures can be found in [3, 14].

Markovian propagation algorithm.

1. Find a minimal (w.r.t. set inclusion) node N of T that contains Ai, and set
lN = lN ⊲ pi.

2. Start a traversal of T at the node N . During the traversal of T ,

when a separator-node S is visited using arc (C, S), set lS = lC [S];

when an edge-node C is visited is visited using arc (S, C), set lC = lC ⊲lS .

To sum up, we have the following procedure for constructing a tree-representation
of the ME extension of P generated by an acyclic cover of the scheme of P .

Algorithm 4.

Input : A simple hypergraph A, a consistent pdb P = {pA : A ∈ A} over X , an
acyclic cover C of A and a tree-representation (T, l) of the uniform distribution over
X generated by C.
Output : A tree-representation of the ME extension of P generated by C.

Procedure

Until the convergence is attained, repeat:
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For each A ∈ A, apply the Markovian propagation algorithm with input the
labelled tree (T, l) and the distribution pA.

From a computational viewpoint, the cost of Algorithm 4 depends on the acyclic
cover C of A in use through the number of sets in C and the maximum size of
the state spaces of sets in C. If C is taken to be a canonical cover of A, we can
save storage and time as follows. Recall that C = ∪K∈KC(K) where K is the
compact hypergraph of A and C(K) is a fill-in cover of A(K); moreover, if T is a
connection tree for K and (T (K), l(K)) is a tree-representation of the ME extension
of the subdatabase P (K), then a tree-representation of the ME extension of P
generated by C can be obtained by

labelling each separator-node S of T by pA[S] where A is an edge of A
with minimum-size state space, and replacing each edge-node K of T by
(T (K), l(K)).

The resultant labelled tree is actually a tree-representation of the ME extension of P
since K is an acyclic cover of A whose separators are all partial edges of A and, for
every edge K of K, by Fact 2.4 and Theorem 3.3 the ME extension of P is collapsible
onto each K (that is, the ME extension of P (K) equals the marginal on K of the
ME extension of P ). To sum up, we have the following procedure for constructing a
tree-representation of the ME extension of P generated by a canonical cover of the
scheme of P .

Algorithm 5.

Input : A simple hypergraph A, a consistent pdb P = {pA : A ∈ A}, the compact
hypergraph K of A, a connection tree T for K and, for each edge K of K, a fill-in
cover C(K) of A(K) and a tree-representation (T (K), l(K)) of the uniform distribu-
tion over K generated by C(K).

Output : A tree-representation of the ME extension of P generated by C = ∪K∈KC(K).

Procedure

(1) For each separator-node S of T , find a minimum-size distribution pA in P such
that A contains S and label the node S by pA[S].

(2) For each edge-node K of T , apply Algorithm 4 with input the simple reduction
of P (K) and (T (K), l(K)) and replace the node K of T by the labelled tree
(T (K), l(K)).

5. THE CONSISTENCY PROBLEM

In this section we show that, using the compact hypergraph K of the scheme A of a
pdb P , the consistency problem can be decomposed into subproblems, one for each
edge of K. Moreover, in the case that A is acyclic, we provide an efficient algorithm
to make P consistent.
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First of all, observe that a necessary condition for P = {pA : A ∈ A} to be
consistent is that, for every two edges A and A′ of A with A ⊆ A′, one has pA′ [A] =
pA. If this is the case, we say that P is projective. Of course, P is consistent if and
only if P is projective and the simple reduction of P is consistent. The projectivity
requirement can be tested by pairwise comparisons and the consistency requirement
for the simple reduction of P can be tested using a linear constraint system such
as system (1) in the Introduction. In what follows, we always assume that P is
projective so that we shall limit our considerations to the case that P is a simple
pdb. We first discuss the case that A is acyclic and, then, the general case.

5.1. The acyclic case

A pdb P = {pA : A ∈ A} is pairwise consistent if, for every two distributions pA

and pA′ in P , the distribution pair {pA, pA′} is consistent, that is, for every two
distributions pA and pA′ in P , either A ∩ A′ = ∅ or pA[A ∩ A′] = pA′ [A ∩ A′]. The
following is a well-known result [22, 37, 58, 59].

Theorem 5.1. Every pairwise-consistent pdb with an acyclic scheme is consistent.

Corollary 5.2. Let A be an acyclic, simple hypergraph. A pdb P = {pA : A ∈ A}
is consistent if and only if, for each articulation pair {A, A′} of A, the distribution
pair {pA, pA′} is consistent

P r o o f . (only if ). Trivial. (if ) By Theorem 5.1, it is sufficient to prove that, for
each edge pair {A, A′} with A∩A′ 6= ∅, the distribution pair {pA, pA′} is consistent.
Let T be a connection tree for A. The set A∩A′ is contained in each node of T along
the unique (even) path joining A and A′, say (A1 = A, S1, A2, S2, . . . , Ak, Sk, Ak+1 =
A′), and by hypothesis each distribution pair {pAh

,
pAh+1

} is consistent; that is, pAh
[Sh] = pAh+1

[Sh](1 ≤ h ≤ k). Therefore, since
the set A ∩ A′ is a subset of each Sh for all (1 ≤ h ≤ k), one has

pAh
[A ∩ A′] = (pAh

[Sh])[A ∩ A′] = (pAh+1
[Sh])[A ∩ A′] = pAh+1

[A ∩ A′]

and, hence,
pA1

[A ∩ A′] = pA2
[A ∩ A′] = · · · = pAk+1

[A ∩ A′]

which proves that the distribution pair {pA1
, pAk+1

} = {pA, pA′} is consistent. �

By Corollary 5.2, the consistency of P can be tested using the following algorithm,
which terminates with the value True of the output variable test if and only if P is
consistent.

Algorithm 6.

Input : An acyclic, connected hypergraph A, a pdb P = {pA : A ∈ A}, a connection
tree T for A, and a node labelling l of T with lA = pA for each edge-node A of T
and lS undefined for each edge-node S.

Output : A truth value of the logical variable test.

Procedure
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(1) Set test = True.

(2) Perform a traversal of T with start-point an arbitrary edge-node:

when a separator-node S is visited using arc (A, S), set lS = pA[S];

when an edge-node A is visited using the arc (S, A), if lA[S] 6= lS then
set test = False and Exit.

5.2. The general case

In the general case, pairwise consistency is not sufficient for consistency so that, in
order to test consistency, one need to check the consistency of the linear constraint
system (1) in the Introduction. The following result suggests a method for reducing
the size of system (1).

Theorem 5.3. Let P be a pdb with scheme A, and let C be an acyclic cover of A
whose separators are all partial edges of A. There exists an extension of P if and
only if, for every edge C of C, there exists an extension of the subdatabase P (C).

P r o o f . (only if ) Let p be an extension of P . For every edge C of C, p[C] is
definitely an extension of P (C), which hence is consistent. ((if ) Let P = {pA :
A ∈ A}. By hypothesis, each subdatabase P (C) is consistent. Consider the pdb
P ′ = {p′C : C ∈ C} where p′C is any extension of P (C). We shall show that

(i) P ′ is consistent, and

(ii) every extension of P ′ is also an extension of P ,

which will prove that P is consistent.

Proof of (i) Consider any articulation pair {C, C′} of C and let S = C∩C′. Since
P (S) is a subdatabase of both P (C) and P (C′), P (S) is consistent and both p′C [S]
and p′C′ [S] are extensions of P (S). On the other hand, by hypothesis, the separator
S of C is a partial edge of A so that there exists at least one edge A of A that
contains S and pA[S] belongs to P (S). It follows that pA[S] is the only extension of
P (S). Since p′C [S] and p′C′ [S] are extensions of P (S), one has that p′C [S] = pA[S]
and p′C′ [S] = pA[S] which proves that the distribution pair {p′C , p′C′} is consistent.
Therefore, since C is an acyclic hypergraph, P ′ is consistent by Corollary 5.2.

Proof of (ii). Consider any distribution pA in P . Since C is a cover of A, A is
contained in some edge of C, say C. It follows that pA belongs to P (C) and, as p′C
is an extension of P (C), one has p′C [A] = pA. Let p′ be any extension of P ′. Since
p′[C] = p′C and A ⊆ C, one has p′[A] = (p′[C])[A] = p′C [A] = pA, which proves that
p′ is an extension of P . �

Theorem 5.3 provides an effective method to test the consistency of P provided
the acyclic cover C of A is not a trivial hypergraph. But, what is a choice for C that
reduces the computation to a minimum? By Theorem 5.3, we argue that a “good”
choice for C is an acyclic cover of A whose separators are partial edges of A and
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that an “optimal” choice is the finest of such acyclic covers of A (so that the sizes
of the subdatabases P (C) for edges C of C are minimized). The next lemma proves
that the compact hypergraph of A is the optimal choice.

Lemma 5.4. The compact hypergraph of a hypergraph A is the minimal (with
respect to refinement) acyclic cover of A whose separators are all partial edges of A.

P r o o f . Let K be the compact hypergraph of A. Recall that K is an acyclic cover
of A; moreover, by property (K1), every separator of K is a partial edge of A. Let
C be another acyclic cover of A whose separators are all partial edges of A. In
order to prove that K ≤ C, it is sufficient to show that every edge of C is closed in
A for, then, the statement follows from Lemma 2.5. Let C be any edge of C. Let
A′ be any connected component of A − C and let Y be the boundary of A′. Since
A ≤ C, A′ is a subhypergraph of one connected component of C−C. Let C′ be the
connected component of C − C that contains A′ and let Z be the boundary of C′.
Since A′ ≤ C′, Y is a subset of Z. On the other hand, by Fact 2.2, Z is a separator
of C and, since every separator of C is a partial edge of A, Z is a partial edge of A
and, since Y ⊆ Z, Y is a partial edge of A too. The closedness of C in A follows
from the arbitrariness of A′ and C. So, C is an acyclic cover of A and every edge
of C is closed in A. �

Given the compact hypergraph K of A, by Lemma 5.4 and Theorem 5.3 it is
sufficient to check the consistency of the subdatabase of P induced by each edge
of K, which can be done as follows. We distinguish edges of K between “simple
edges” and “compound edges”; an edge of K is simple if it is also an edge of A, and
compound otherwise. For each compound edge K of K, we first check the projectivity
of P (K) and, then, the consistency of the simple reduction of P (K) using a linear
constraint system such as (1); if P (K) is not consistent for some compound edge
K of K, then we soon conclude that P is not consistent. Assume that, for each
compound edge K of K, P (K) is consistent. Let K be any compound edge of K
and let pK be an extension of P (K). By the proof of the if-part of Theorem 5.3, one
has that, for every simple edge A of K such that {A, K} is an articulation pair of K,
the distribution pair {pA, pK} is consistent. It also follows that, for every two simple
edges A and A′ of K such that {A, A′} is an articulation pair of K with A∩A′ ⊆ K,
the distribution pair {pA, pA′} is consistent. Therefore, what remains to do is to
check the consistency of the distribution pair {pA, pA′}, for each articulation pair
{A, A′} of K where A and A′ are simple edges of K whose intersection is contained in
no compound edge of K. To achieve this, we make use of a connection tree T for K.
After deleting the edge-nodes of T corresponding to compound edges of K and their
adjacent separator-nodes, we apply Algorithm 5.1 to each connected component of
the resultant forest that is not a one-point tree.

Example 5.5. Consider the pdb P = {pA : A ∈ A} where A = {ac, bc, abd, abe, ef}.
The compact hypergraph of A is K = {abc, abd, abe, ef} (see Example 2.3) and
the connection tree for K is shown in Figure 2. Since abc is the only compound
edge of K, we test the consistency of P (abc) = {pac, pbc, pabd[ab], pabe[ab]} as fol-
lows. First of all, we check the projectivity of P (abc), that is, whether or not
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abd abc abe  ef 

ab                                    e          

Fig. 2.

pabd[ab] = pabe[ab]. If P (abc) is not projective, then we soon conclude that P (abc) is
not consistent; otherwise, we check the consistency of a simple reduction of P (abc),
e.g. {pac, pbc, pabd[ab]}, by finding a solution p(abc) to the following linear constraint
system:







p(abc)[ac] = pac

p(abc)[bc] = pbc

p(abc)[ab] = pabd[ab]

If this constraint system has no solutions, then we conclude that P (abc) is not
consistent. Otherwise, P (abc) is consistent and we delete the edge-node abc and the
separator-node ab from T . The resultant forest is shown in Figure 3. Finally, we

 abd abe  ef 

e 

Fig. 3.

apply Algorithm 6 to the labelled tree of Figure 4 and conclude that P is consistent

abe  ef 

e 

pabe     pef 

Fig. 4.

if and only if Algorithm 6 terminates with the value True of the output variable test.

5.3. Inconsistency

Assume that we are given a simple pdb P = {pA : A ∈ A} but we do not know
whether or not P is consistent. We now discuss the problem of finding a consistent
pdb Π = {πA : A ∈ A} which is an “approximation” to P in that

• D(πA : pA) < ∞ for all A ∈ A, and

• Π = P if P is consistent.
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A different approach to dealing with inconsistency was described in [57]. We only
consider the case that the hypergraph A is acyclic and show that, under suitable
conditions (see Theorem 5.6), an easy solution can be found using the following
variant of Algorithm 6, where we make use of a connection tree T for A, which is
rooted at an edge-node, say N ; moreover, as in Algorithm 6, each edge-node A of T
is labelled by pA. It should be noted that the resultant consistent pdb Π is “tuned”
to pN , and that the choice of another edge of A as root of T may produce another
approximation to P .

Algorithm 7.

Input : A connection tree T for A, where each edge-node A of T is labelled by pA,
and an edge-node N .

Output : A consistent pdb Π = {πA : A ∈ A}.

Procedure

(1) Set πN = pN .

(2) Perform a traversal of T with start-point N :

when a separator-node S is visited using arc (A, S), set πS = πA[S];

when an edge-node A is visited using arc (S, A), set πA = pA ⊲ πS .

Theorem 5.6. Let P = {pA : A ∈ A} be a pdb whose scheme A is an acyclic
hypergraph and let T be a connection tree for A. If N is an edge of A such that,
for every path (N, . . . , A′, S, A) in T , the distribution pA′ [S] is dominated by the
distribution pA[S], then Algorithm 7 correctly finds an approximation consistent
pdb Π = {πA : A ∈ A} such that

(i) Π is consistent and D(πA : pA) < +∞ for all A ∈ A, and

(ii) Π = P if P is consistent.

P r o o f . (i) By Corollary 5.2, Π is a consistent pdb if and only if, for each artic-
ulation pair {A′, A} of A, both πA′ and πA are distributions and the distribution
pair {πA′ , πA} is consistent. Since πN is a distribution (see Step 1), it is sufficient to
prove that, for every (even) path (N, . . . , A′, S, A), πA is a distribution, {πA′ , πA} is
consistent and D(πA : pA) < +∞. The proof is by induction.

basis. Consider an edge-node A at distance 2 from N and let (N, S, A) be the
path from N to A. By hypothesis, pN [S] is dominated by pA[S]. When A is visited
using arc (S, A), one has that πN = pN and πS = πN [S]. Since pN [S] is dominated
by pA[S], πS is dominated by pA[S] so that the operation pA ⊲πS is applied correctly
and its result πA is a distribution; moreover, by Lemma 4.1, the marginal of πA on
S equals πS (= πN [S]) so that the distribution pair {πN , πA} is consistent. Finally,
by Lemma 4.1, the distribution πA is dominated by pA so that D(πA : pA) < +∞.

induction. Consider an edge-node A at distance greater than 2 from N and let
(N, . . . , A′, S, A) be the path from N to A. By hypothesis, pA′ [S] is dominated by
pA[S]. When A is visited using arc (S, A), one has that πS = πA′ [S] and, by the
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inductive hypothesis, πA′ is dominated by pA′ . Therefore, πS is dominated by pA[S]
so that the operation pA ⊲ πS is applied correctly and its result πA is a distribution;
moreover, by Lemma 4.1, the marginal of πA on S equals πS(= πA′ [S]) so that the
distribution pair {πA′ , πA} is consistent. Finally, by Lemma 4.1, the distribution πA

is dominated by pA so that D(πA : pA) < +∞.

(ii) Let A be an edge of A and let (N, . . . , A′, S, A) be the path from N to A.
It is easily seen that πA = pA if and only if pA[S] = πS , that is, if and only if the
distribution pair {πA′ , pA} is consistent. Therefore, πA = pA for all A if and only if,
for each articulation pair {A′, A} of A, the distribution pair {pA′ , pA} is consistent
which, by Corollary 5.2, holds if and only if P is consistent. �

6. THE RELATIVE-CONSISTENCY PROBLEM

Let Q be a consistent pdb over X with scheme B, let q denote the ME extension of
Q and let P be a consistent pdb over X with scheme A. In this section, we show
that, using a suitable acyclic cover of A ∪ B, the problem of the q-consistency of
P can be decomposed into subproblems that can be solved locally. We begin by
stating a result which, in some sense, generalizes Theorem 5.3.

Theorem 6.1. Let P and Q be two consistent pdb’s over the same variable set and
with schemes A and B, respectively. Let C be an acyclic cover of A ∪ B whose
separators (if any) are all partial edges of A. There exists an extension of P that
is dominated by the ME extension of Q if and only if, for every edge C of C, there
exists an extension of the subdatabase P (C) that is dominated by the marginal on
C of the ME extension of Q.

P r o o f . Let q be the ME extension of Q.
(only if ) Let p be an extension of P that is dominated by q; thus, ‖p‖⊆ ‖q‖. For

each C ∈ C, p[C] is definitely an extension of P (C); moreover, since ‖p‖⊆ ‖q‖, one
has ‖p‖[C] ⊆ ‖q‖[C]. By Fact 3.11, ‖p‖[C] = ‖p[C]‖ and ‖q‖[C] = ‖q[C]‖ so that
‖p[C]‖⊆ ‖q[C]‖ which proves that p[C] is dominated by q[C].

(if ) By hypothesis, for each C ∈ C there exists an extension p′C of P (C) domi-
nated by q[C]. In order to prove that P is q-consistent, we show that

(i) the pdb P ′ = {p′C : C ∈ C} is consistent,

(ii) every extension of P ′ is also an extension of P , and

(iii) the ME extension of P ′ is dominated by q.

After doing that, we will have that the ME extension of P ′ is an extension of P that
is dominated by q, which proves the statement.

The proofs of (i) and (ii) are the same as in Theorem 5.3.

Proof of (iii). Since q is a fixed point of IB and B ≤ A∪B ≤ C, q is a fixed point
of IC by Theorem 3.2. Moreover, since C is an acyclic hypergraph, by Theorem 3.9
the support of q is a fixed point of JC so that, by Fact 3.11, one has

‖q‖=⊲⊳C∈C ‖q‖[C].
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Since p′C is dominated by q[C] and since, by Fact 3.11, the support of q[C] is equal
to ‖q‖[C], one has

‖p′C‖⊆ ‖q‖[Cj]

Let p′ be the ME extension of P ′. Since p′ is a fixed point of IC and C is an acyclic
hypergraph, by Theorem 3.9 the support of p′ is a fixed point of JC so that, by Fact
3.11, one has

‖p′‖=⊲⊳C∈C ‖p′C‖.

Therefore, one has

‖p′‖=⊲⊳C∈C ‖p′C‖⊆⊲⊳C∈C ‖q‖[C] = ‖q‖

which proves that p′ is dominated by q. �

In order to apply Theorem 6.1 we need: (1) a procedure to construct an acyclic
cover C of A ∪ B whose separators (if any) are all partial edges of A, and (2) a
procedure to compute the support of the marginal of the ME extension of Q on every
edge of C. In the next two subsections, we deal with tasks (1) and (2), respectively.

6.1. Task (1)

We now give a simple procedure to construct an acyclic cover of A ∪ B whose
separators (if any) are all partial edges of A. We start with the compact hypergraph
of A ∪ B, say H. By property (K1) of H (see Section 2.2), the separators of H
are all partial edges of A ∪ B, that is, they are partial edges of A or B. Let T
be a connection tree for H where the separator-nodes that are partial edges of A
are marked (see Figure 5). Let T1, . . . , Tn be the connected components of the

 

edge-nodes      

separator-nodes       

Fig. 5.

forest obtained from T by deleting all marked separator-nodes and their incident
arcs (see Figure 6). Let us denote the union of nodes of Ti by Ki(1 ≤ i ≤ n), and

 

T1 T2 T3 

Fig. 6.
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let K = {K1, . . . , Kn}. Of course, K is an acyclic hypergraph and a connection tree
for K can be obtained from T by replacing each subtree Ti by a single edge-node
Ki. Moreover, as A ∪B ≤ H ≤ K, one has that K is a cover of A ∪ B. Finally, by
construction, each separator of K is a partial edge of A.

Remark 6.2. The procedure above still works if H is any acyclic cover of A ∪ B
whose edges are all partial edges of A∪B. However, by Lemma 5.4 taking H to be
the compact hypergraph of A ∪B proves to be a good choice.

Of course, if the resultant hypergraph K is a trivial hypergraph, no computational
gain is obtained.

Example 6.3. Consider the two cyclic (hyper)graphs A = {ab, ad, bc, be, cf, de, ef}
and B = {ab, ad, ae, ce, cf, de, ef} (see Figure 7). The compact hypergraph of A∪B

a           b           c 

d           e                        f 

a           b           c 

d           e                        f 

A                                              B 

Fig. 7.

is H = {abe, ade, bcef}; its separators are ae and be, which are edges of B and A,
respectively. Figure 8 shows the connection tree for H where the separator-node be
is marked. The hypergraph K = {abde, bcef} is an acyclic cover of A ∪ B and its

ae            be              

bcef abeade

Fig. 8.

separator (be) is a (partial) edge of A. Note that (by chance) K equals the compact
hypergraph of A.

6.2. Task (2)

After accomplishing task (1) with output the acyclic cover K of A∪B, what remains
to do is the computation of the support of q[K] for every edge K of K, where q
denotes the ME extension of Q. A simple way consists in first constructing a tree-
representation (T, l) of q generated by K using Algorithm 4 and, then, taking the
supports of the labels of edge-nodes of T . As said above, the costs of Algorithm
4 depends on the maximum size of the state spaces of sets in K. A more efficient
method makes use of a canonical cover of B, say C. Explicitly, if J is the compact
hypergraph of B and, for each edge J of J, C(J) is a fill-in cover of B(J), then
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C = ∪J∈JC
(J). Suppose we have already constructed a tree-representation (T, l) of

q generated by C using Algorithm 5 with input B, Q, J and C(J) for each edge J
of J. Consider the rdb R = {rC : C ∈ C}, where rC is the support of the label of
edge-node C of T . Since C is an acyclic cover of B, the support of q is the join of
the relations rC in R. By Fact 3.11, for each K ∈ K, one has

‖q[K]‖= (⊲⊳ R)[K]. (2)

It is not convenient to compute ‖q[K]‖ using (2) because the right-hand side of (2)
can be reduced as follows. Let K̄ be the hull of K in C. Since K̄ is closed in C, by
Theorem 3.10 the relation (⊲⊳ R) is collapsible onto K̄, that is, (⊲⊳ R)[K̄] =⊲⊳ R(K̄)
where R(K̄) is the subdatabase of R induced by K̄. Therefore, one has

‖q[K]‖= (⊲⊳ R)[K] = ((⊲⊳ R)[K̄])[K] = (⊲⊳ R(K̄))[K]. (3)

Consider now the relation ⊲⊳ R(K̄). Note that, owing to the decomposability of C,
K̄ equals the vertex set of the hypergraph G resulting from the Graham reduction
of C with sacred set K. Recall that G is the simple reduction of the subhypergraph
of C induced by K̄. Therefore, every edge of G is contained in some edge of C, and,
hence, each relation in R(K̄) can be obtained by projection of some relation rC in
R. Explicitly, for every edge G of G , let rC(G) be a minimum-size relation among
the relations rC in R for which C contains G. Then, one has

⊲⊳ R(K̄) =⊲⊳G∈G rC(G)[G].

Finally, by substituting this expression into the right-hand side of (3) one has the
following relational expression:

(

⊲⊳G∈G rC(G)[G]
)

[K] (4)

which is simpler than the right-hand side of (2). Finally, we can evaluate (4) using
the following algorithm [61], which consists in pruning a junction tree T for G rooted
at an arbitrary edge-node. Initially, each edge-node G of T is labelled by the relation
rG = rC(G)[G].

Algorithm 8. Pruning algorithm

1. Until T is a one-point tree, repeat:

Find a leaf L of T .

Let G be the parent of L.
Replace the label of G by the relation (rG ⊲⊳ rL)[G ∪ (L ∩ K)] (see
Figure 9).
Delete the leaf L.

2. Output the relation labelling the unique node of T .
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leaf 

G 

L 

 (rG   >< rL)[G∪(L∩K)] rG G 

rL 

Fig. 9.

G L 

K 

Fig. 10.

Remark 6.4. In each pruning step, one can reduce the cost of label updating by
taking

rG ⊲⊳ rL[L ∩ (K ∪ G)]

which is the same as the relation (rG ⊲⊳ rL)[G ∪ (L ∩ K)] (see Figure 10).

Example 6.5. Let P = {pA : A ∈ A} and Q = {qB : B ∈ B} be two consistent
pdb’s, where A and B are the hypergraphs of Example 6.3. Let q denote the ME
extension of Q. In order to test the q-consistency of P we make use of the acyclic
cover K = {abde, bcef} of A ∪ B from task (1) (see Example 6.3). In order to
apply Theorem 6.1, we need to compute the supports of the marginals of q on
the two edges of K. To achieve this, suppose we make use of the canonical cover
C = {abf, ade, aef, bcf} of B and that, after applying Algorithm 5, we have the
relations rabf = ‖q[abf ]‖, rade = ‖q[ade]‖, raef = ‖q[aef ]‖ and rbcf = ‖q[bcf ]‖. The
supports of the marginals of q on the edges abde and bcef of K are computed as
follows.

When we perform the Graham reduction of C with sacred set abde, we obtain
G = {abf, ade, aef}. The junction tree for G rooted at the node ade is shown in
Figure 12 (a). Using the pruning algorithm and Remark 6.4, we find that the support

(a)

 ade 

aef 

abf 
(b)

 bcf 

abf 

aef 

Fig. 12.
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of q[abde] is given by
rade ⊲⊳ ((raef ⊲⊳ rabf )[abe]).

When we perform the Graham reduction of C with sacred set bcef , we obtain
G = {abf, aef, bcf}. The junction tree for G rooted at the node bcf is shown in
Figure 12 (b). Using the pruning algorithm and Remark 6.4, we find that the support
of q[bcef ] is given by

rbcf ⊲⊳ ((rabf ⊲⊳ raef )[bef ]).

7. THE MINIMUM CROSS-ENTROPY EXTENSION PROBLEM

Let Q be a consistent pdb with scheme B, let q denote the ME extension of Q, let
P be a pdb with scheme A that is q-consistent, let (A1, . . . , An) be any ordering
of edges of A and let pi be the distribution in P over Ai(1 ≤ i ≤ n). As recalled
in the Introduction, the q-MCE extension p of P can be computed by applying the
IPFP to P with prior q; that is, p is the limit of the sequence of distributions p(0),
p(1), p(2), . . . , where p(0) = q and, for t = rn + i (r ≥ 0 and 1 ≤ i ≤ n), p(t) =
p(t−1) ⊲ pi. In Subsection 7.1 we prove that p has a tree-representation generated
by any acyclic cover C of the hypergraph A∪B, and show how to construct such a
tree-representation of p. In Subsection 7.2, we show that, under suitable conditions,
the tree-representation generated by C can be constructed by local computation.

7.1. Tree-representation of an MCE extension

The following generalizes Lemma 4.1.

Lemma 7.1. Let P be a q-consistent pdb with scheme A. If q is a fixed point of
IB and A ∪ B is finer than C, then every distribution p(t) is a fixed point of IC.

P r o o f . Let P = {pA : A ∈ A}. We prove the statement by induction on t.

basis (t = 0). Since p(0) = q and q is a fixed point of IB and B ≤ A ∪ B ≤ C, by
Theorem 3.2 p(0) is a fixed point of IC.

inductive step Assume that p(t−1) is a fixed point of IC for t > 0. By Corollary
3.7, for every C ∈ C there exists a function fC such that the factorization

p(t−1)(x) =
∏

C∈C

fC(xC)

holds for every x ∈ ‖p(t−1)‖. Since p(t) = p(t−1) ⊲ pA, the following factorization

p(t)(x) =
pA(xA)

p(t−1)[A](xA)

∏

C∈C

fC(xC)

holds for every x ∈ ‖p(t−1)‖ and, since ‖p(t)‖⊆ ‖p(t−1)‖, it holds for every x ∈ ‖p(t)‖.
Moreover, since A ≤ A ∪ B ≤ C, A is a partial edge of C. Let C be an edge of C
that contains A, and let

f ′
C(xC) =

pA(xA)

p(t−1)[A](xA)
fC(xC)
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Then, the above factorization of p(t) can be re-written as

p(t)(x) = f ′
C(xC)

∏

C′∈C\{C}

fC′(xC′)

so that, by Corollary 3.7, p(t) is a fixed point of IC. �

The following is an immediate consequence of Lemma 7.1.

Theorem 7.2. Let P be a q-consistent pdb with scheme A. If q is a fixed point of
IB and A ∪ B is finer than C, then the q-MCE of P is a fixed point of IC.

By Theorem 7.2, if C is an acyclic cover of A∪B, then C can be used to construct a
tree-representation the q-MCE of P as follows. Since B ≤ A ∪B ≤ C, C generates
a tree-representation of the ME extension q of Q which can be constructed using
Algorithm 4 with input Q and a tree-representation (T, l) of the uniform distribution
generated by C. By Theorem 7.2, a tree-representation of the q-MCE of P generated
by C can be obtained using Algorithm 4 with input P and the output (T, l) of the
previous application of Algorithm 4.

Algorithm 9.

Input : A consistent pdb Q = {qB : B ∈ B} over X , a q-consistent pdb P = {pA :
A ∈ A} over X where q denotes the ME extension of Q, an acyclic cover C of A∪B
and a tree-representation (T, l) of the uniform distribution over X generated by C.

Output : A tree-representation tree of the q-MCE extension of P generated by C.

Procedure

(1) Apply Algorithm 4 to Q.

(2) Apply Algorithm 4 to P .

Example 7.3. Let P = {pA : A ∈ A} and Q = {qB : B ∈ B} be two consistent
pdb’s, where A = {ab, ad, bc, be, cf, de, ef} and B = {ab, ae, bc, de, ef} (see Fig-
ure 13). Let q denote the ME extension of Q and let p denote the the q-MCE of P .

a           b           c 

d           e                        f 

a           b           c 

d           e                        f 
A                                              B 

Fig. 13.

An acyclic cover of A∪B is C = {abe, ade, bce, cef}. Using Algorithm 4 with input
Q and a tree-representation (T, l) of the uniform distribution generated by C we can
construct a tree-representation of q generated by C. At this point, using Algorithm
4 with input P and (T, l) we can construct a tree-representation of p generated by C.
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7.2. Local computation

In this subsection, we show that the problem of finding a tree-representation of the
MCE extension can be decomposed into subproblems that can be solved locally.

Lemma 7.4. Let P and Q be two consistent pdb’s over the same variable set and
with schemes A and B, respectively. Assume that P is q-consistent, where q denotes
the ME extension of Q, and let p denote the q-MCE extension of P . Let K be an
acyclic cover of A ∪ B whose separators are all partial edges of A. For every edge
K of K, p[K] is the q[K]-MCE extension of P (K).

P r o o f . First of all, observe that, since every separator of K is a partial edge of
A, every separator of K is also a partial edge of A ∪ B. So, K is an acyclic cover
of A ∪ B and every separator of K is a partial edge of A ∪ B. Without loss of
generality, we can assume that K is a connected hypergraph. Let K be any edge
of K. Of course, p[K] is an extension of P (K). In order to prove that p[K] is the
q[K]-MCE extension of P (K), by Theorem 3.5 it is sufficient to show that, for each
A′ ∈ A(K) there exists a real-valued function gA′ defined on the state space of A′

such that
p[K] = q[K]

∏

A′∈A(K)

gA′ .

To achieve this, we introduce a suitable acyclic cover H of K such that K is an edge
of H and each separator of H is a separator of K. The hypergraph H is constructed
as follows. Let T be a connection tree for K. Assume that the edge-node K has
n neighbours, say the separator-nodes S1, . . . , Sn. Let T1, . . . , Tn be the connected
components of the forest obtained from T by deleting the edge-node K and the arcs
(K, S1), . . . , (K, Sn) (see Figure 14). Let Hi be the union of the labels of nodes of

K 

S1 

T1 Tn 

Sn … 

Fig. 14.

Ti (1 ≤ i ≤ n), and let H = {K, H1, . . . , Hn}. Of course, H is an acyclic hypergraph,
the separators of H are S1, . . . , Sn and the multiplicity of each Si in H is one. A
connection tree for H is shown in Figure 15. Since B ≤ A ∪ B ≤ K ≤ H and H is

K  

S1 

H1 Hn 

Sn … 

Fig. 15.
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an acyclic, simple hypergraph, by Theorem 3.4 one has

q = q[K]
∏

1≤i≤n

q[Hi]

q[Si]
.

On the other hand, by Theorem 3.5 one has that, for each A ∈ A, there exists a
real-valued function fA defined on the state space of A such that

p = q
∏

A∈A

fA

so that

p = q[K]
∏

1≤i≤n

q[Hi]

q[Si]

(

∏

A∈A

fA

)

.

Since A ≤ A ∪ B ≤ K ≤ H, there is a many-to-one mapping α from A to H such
that A ⊆ α(A). Using the mapping α, the above expression of p can be re-written
as:

p = q[K]





∏

1≤i≤n

q[Hi]
∏

A:α(A)=Hi
fA

q[Si]









∏

A⊆K

fA



 .

At this point, we marginalize p on K by summing out the variables a /∈ K. We now
prove that a /∈ K if and only if there exists exactly one Hi that contains a so that
a ∈ Hi \ Si. Of course, if a ∈ Hi \ Si then a /∈ K. On the other hand, let A be an
edge of A containing a and let i be such that α(A) = Hi. Since a /∈ K and each
Si is contained in K, one has that a /∈ Si for all i and, hence, Hi is the only edge
of H containing a so that a ∈ Hi \ Si. It follows that the marginal p on K has the
following expression:

p = q[K]





∏

1≤i≤n

∑

a∈Hi\Si

(

q[Hi]
∏

A:α(A)=Hi
fA

)

q[Si]









∏

A⊆K

fA





which can be re-written as

p = q[K]





∏

1≤i≤n

gi









∏

A⊆K

fA





where

gi =

∑

a∈Hi\Si

(

q[Hi]
∏

A:α(A)=Hi
fA

)

q[Si]

is a function defined on the state space of Si. Let A′ = {A ∈ A : A ⊆ K} ∪
{S1, . . . , Sn}. At this point, it is sufficient to show that the hypergraph A′ is equiv-
alent to A(K). We first show A′ ≤ A(K) and, then, A(K) ≤ A′.

Proof of A′ ≤ A(K). Of course, each edge A of A such that A ⊆ K is also an
edge of A(K). Consider now any Si(1 ≤ i ≤ n). Since, by construction, Si is also a
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separator of K and, by hypothesis, each separator of K is a partial edge of A, one
has that Si is a partial edge of A. Let A be an edge of A that contains Si. Since
Si ⊆ A and Si ⊆ K, one also has Si ⊆ A∩K; but, the set A∩K is an edge of A(K)
so that Si is a partial edge of A(K). Therefore, one has A′ ≤ A(K).

Proof of A(K) ≤ A′. Consider any edge A′ of A(K). Then, there exists and
edge A of A such that A′ = A ∩ K. Now, if A ⊆ K, then A′ = A and, hence,
A′ is also an edge of A′. Otherwise, let i be such that α(A) = Hi. Then, one has
A′ = A ∩ K ⊆ Hi ∩ K = Si and, hence, A′ is a partial edge of A′. Therefore, one
has A(K) ≤ A′.

To sum up, the hypergraphs A(K) and A′ are equivalent, which completes the
proof. �

Theorem 7.5. Let P and Q be two consistent pdb’s over the same variable set and
with schemes A and B, respectively. Assume that P is q-consistent, where q denotes
the ME extension of Q, and let p denote the q-MCE extension of P . Let K be an
acyclic cover of A ∪ B whose separators are all partial edges of A and whose edges
are closed in B. For every edge K of K, p[K] is the MCE extension of P (K) with
respect to the ME extension of Q(K).

P r o o f . Since each edge of K is closed in B, by Theorem 3.3 the marginal q[K]
coincides with the ME extension of Q(K) and the statement follows from Lemma 7.4.
�

A simple procedure to construct an acyclic cover K of A ∪ B whose separators
are all partial edges of A and whose edges are all closed in B is a variant of the
procedure given in Subsection 6.1 with the only difference that in the connection
tree for the compact hypergraph of A∪B a separator-node is marked if it is a partial
edge of both A and B. The resultant hypergraph is then an acyclic cover K of A∪B
whose separators are all partial edges of both A and B and, by the proof of Lemma
5.4, each edge of K is closed in B.

Example 7.6. Consider the hypergraphs A and B of Example 7.3. The hypergraph
A ∪B is shown in Figure 16. The compact hypergraph of A ∪B is the hypergraph

a           b           c 

d           e                        f 

A∪B 

Fig. 16.

{abe, ade, bcef} and its separators are ae and be. Only be is a (partial) edge of both
A and B. The hypergraph K = {abde, bcef} is an acyclic cover of A ∪ B whose
separator is a (partial) edge of A and whose edges are both closed in B.
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Let K be an acyclic cover of A ∪ B constructed as above, and let C = ∪K∈KC(K)

where C(K) is a canonical cover of A(K)∪B(K). Let T be a connection tree for K
and let T (K) be a connection tree for C(K)(K ∈ K). Note that a connection tree for
C can be obtained from replacing each edge-node K of T by T (K). The following
algorithm, which echoes Algorithm 5, constructs a tree-representation of the q-MCE
extension p of P generated by C by first labelling each separator-node of T and,
then, by replacing each edge-node K of T by a tree-representation (T (K), l(K)) of
p[K] which, by Theorem 7.5, is constructed using Algorithm 9.

Algorithm 10.

Input : A consistent pdb Q = {qB : B ∈ B} over X , a q-consistent pdb P = {pA :
A ∈ A} over X where q denotes the ME extension of Q, an acyclic cover K of
A ∪B whose separators are all partial edges of A and whose edges are closed in B,
a connection tree T for K and, for each edge K of K, a fill-in cover C(K) of A(K)
and a tree-representation (T (K), l(K)) of the uniform distribution over K generated
by C(K).

Output : A tree-representation of the q-MCE extension of P generated by C =
∪K∈KC(K).

Procedure

(1) For each separator-node S of T do:

Find a minimum-size distribution pA in P such that A contains S and
label the node S by pA[S].

(2) For each edge-node K of T do:

Apply Algorithm 9 with input Q(K), P (K) and (T (K), l(K));

replace the node K of T by the labelled tree (T (K), l(K)).

Example 7.7. Consider the hypergraphs A and B of Example 7.3, and the hyper-
graph K of Example 7.6. The connection tree T for K = {abde, bcef} is shown
in Figure 17. A canonical cover of A(abde) ∪ B(abde) is C(abde) = {abe, ade} and

abde 

be 

bcef 

Fig. 17.

a canonical cover of A(bcef) ∪ B(bcef) is C(bcef) = {bce, cef}. The connection
trees T (abde) and T (bcef) for C(abde) and C(bcef) are shown in Figure 18. At Step 1
of Algorithm 10 we label the separator-node of T by pbe. At Step 2 of Algorithm
10, the two edges of K are processed as follows. (abde) We first construct a tree-
representation (T (abde), l(abde)) of p[abde] using Algorithm 9 with input Q(abde),
P (abde) and a tree-representation of the uniform distribution generated by C(abde)
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 ade 

ae 

 abe  bce 

ce 

 cef 

Fig. 18.

and, then, replace the edge-node abde of T by (T (abde), l(abde)). (bcef) We first
construct a tree-representation (T (bcef), l(bcef)) of p[bcef ] using Algorithm 9 with
input Q(bcef), P (bcef) and a tree-representation of the uniform distribution gener-
ated by C(bcef) and, then, replace the edge-node bcef of T by (T (bcef), l(bcef)).

8. CONCLUSIONS

We have examined three problems (consistency, relative consistency and numeric
computation) related to cross-entropy minimization under marginality constraints
and, in order to reduce the computational effort, for each of them we have pro-
vided a decomposition into subproblems that can be solved locally and whose solu-
tions can be merged together to get the global solution. To achieve this, we have
exploited graphical properties of the schemes of the involved pdb’s, which make
themselves conspicuous when such schemes are viewed as hypergraphs as proven by
existing work on entropy maximization and graphical models. We intend to try our
techniques on realistic examples borrowed from probabilistic databases or expert
systems. An open problem is how to extend them to more general cross-entropy
minimization problems where constraints do not consist of marginality only.

(Received August 19, 2009)
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