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ON CENTRAL ATOMS OF ARCHIMEDEAN ATOMIC

LATTICE EFFECT ALGEBRAS

Martin Kalina

If element z of a lattice effect algebra (E,⊕,0,1) is central, then the interval [0, z]
is a lattice effect algebra with the new top element z and with inherited partial binary
operation ⊕. It is a known fact that if the set C(E) of central elements of E is an atomic
Boolean algebra and the supremum of all atoms of C(E) in E equals to the top element
of E, then E is isomorphic to a direct product of irreducible effect algebras ([16]). In [10]
Paseka and Riečanová published as open problem whether C(E) is a bifull sublattice of
an Archimedean atomic lattice effect algebra E. We show that there exists a lattice effect
algebra (E,⊕,0,1) with atomic C(E) which is not a bifull sublattice of E. Moreover, we
show that also B(E), the center of compatibility, may not be a bifull sublattice of E.
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1. INTRODUCTION, BASIC DEFINITIONS AND KNOWN FACTS

Effect algebras, introduced by D. J. Foulis and M. K. Bennett [2], have their impor-
tance in the investigation of uncertainty. Lattice ordered effect algebras generalize
orthomodular lattices and MV-algebras. Thus they may include non-compatible
pairs of elements as well as unsharp elements.

Definition 1.1. (Foulis and Bennett [2]) An effect algebra is a system (E;⊕,0,1)
consisting of a set E with two different elements 0 and 1, called zero and unit,
respectively and ⊕ is a partially defined operation satisfying the following conditions
for all p, q, r ∈ E:

(E1) If p ⊕ q is defined, then q ⊕ p is defined and p ⊕ q = q ⊕ p.

(E2) If q ⊕ r is defined and p ⊕ (q ⊕ r) is defined, then p ⊕ q and (p ⊕ q) ⊕ r are
defined and p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r.

(E3) For every p ∈ E there exists a unique q ∈ E such that p ⊕ q is defined and
p ⊕ q = 1.

(E4) If p ⊕ 1 is defined then p = 0.
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The element q in (E3) will be called the supplement of p, and will be denoted as p′.

Definition 1.2. A generalized effect algebra (GEA for brevity) is a system (E,⊕,0)
satisfying conditions (E1) and (E2) from Definition 1.1, and the following conditions
for a, b ∈ E.

(E3’) If a ⊕ b = a ⊕ c, then b = c

(E4’) If a ⊕ b = 0, then a = b = 0.

(E5) a ⊕ 0 = a.

Definition 1.3. Let (E,⊕,0) be a GEA and a, b ∈ E be arbitrary elements. A
partial order ≤ is given by

b ≤ a, if there exists c ∈ E such that c ⊕ b = a.

In the whole paper, for a GEA (E,⊕,0), writing of a ⊕ b for arbitrary a, b ∈ E will
mean that a⊕ b exists. Definition 1.3 enables us to introduce another partial binary
operation ⊖ by

a ⊖ b = c ⇔ b ⊕ c = a.

Further, in this article we often briefly write ‘an effect algebra (generalized effect
algebra) E’ skipping the operations.

Every effect algebra E is a generalized effect algebra. Conversely, a generalized
effect algebra E is an effect algebra if and only if E has a greatest element 1 (see
[1], p.17).

If every pair x, y of elements of a lattice effect algebra E is compatible, meaning
that x ∨ y = x ⊕ (y ⊖ (x ∧ y)) then E is called an MV-effect algebra [7].

S. P. Gudder ([4, 5]) introduced the notion of sharp elements and sharply domi-
nating lattice effect algebras. Recall that an element x of the lattice effect algebra
E is called sharp if x ∧ x′ = 0. Jenča and Riečanová in [6] proved that in every
lattice effect algebra E the set S(E) = {x ∈ E; x ∧ x′ = 0} of sharp elements is
an orthomodular lattice which is a sub-effect algebra of E, meaning that if among
x, y, z ∈ E with x ⊕ y = z at least two elements are in S(E) then x, y, z ∈ S(E).
Moreover S(E) is a full sublattice of E, hence supremum of any set of sharp elements,
which exists in E, is again a sharp element. Further, each maximal subset M of
pairwise compatible elements of E, called block of E, is a sub-effect algebra and a
full sublattice of E and E =

⋃
{M ⊆ E; M is a block of E} (see [13, 14]). Central

elements and centers of effect algebras were defined in [3]. In [11, 12] it was proved
that in every lattice effect algebra E the center

C(E) = {x ∈ E; (∀y ∈ E)y = (y ∧ x) ∨ (y ∧ x′)} = S(E) ∩ B(E), (1)

where B(E) =
⋂
{M ⊆ E; M is a block of E}. Since S(E) is an orthomodular

lattice and B(E) is an MV-effect algebra, we obtain that C(E) is a Boolean algebra.
Note that E is an orthomodular lattice if and only if E = S(E) and E is an MV-
effect algebra if and only if E = B(E). Thus E is a Boolean algebra if and only if
E = S(E) = B(E) = C(E).
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Recall that an element p of a (generalized) effect algebra E is called an atom if
and only if p is a minimal non-zero element of E and E is atomic if for each x ∈ E,
x 6= 0, there exists an atom p ≤ x.

Definition 1.4. Let (E,⊕, 0) be a GEA. To each a ∈ E we define its isotropic

index, notation ord(a), as the maximal positive integer n such that

na := a ⊕ · · · ⊕ a
︸ ︷︷ ︸

n-times

exists. We set ord(a) = ∞ if na exists for each positive integer n. We say that E is
Archimedean, if for each a ∈ E, a 6= 0, ord(a) is finite.

An element u ∈ E is called finite, if there exists a finite system of atoms a1, . . . , an

(which are not necessarily distinct) such that u = a1 ⊕ · · · ⊕ an. An element v ∈ E
is called cofinite, if there exists a finite element u ∈ E such that v = u′.

We say that for a finite system F = (xj)
k
j=1 of not necessarily different elements

of an effect algebra (E,⊕,0,1) is ⊕-orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕ x2 ⊕
· · · ⊕ xn−1)⊕xn exists in E (briefly we will write

⊕n

j=1 xj). We define also ⊕∅ = 0.
Let (P,⊕,0) be a GEA. Denote by P ∗ a set disjoint from P and of the same

cardinality. Consider a bijection p → p∗ from P onto P ∗ and put E = P ∪̇P ∗.
We define a partial commutative operation ⊕∗ on E by the following rules valid for
a, b ∈ P .

1. a ⊕∗ b is defined if and only if a ⊕ b is defined, and a ⊕∗ b = a ⊕ b.

2. b∗ ⊕∗ a is defined if and only if there exists a c ∈ P such that a ⊕ c = b and
then c∗ = b∗ ⊕∗ a.

Theorem 1.5. (Dvurečenskij and Pulmannová [1]) For every GEA (P,⊕,0) and
the above defined set E = P ∪̇P ∗ the structure (E,⊕∗,0,0∗) is an effect algebra.
Moreover, the partial order induced by ⊕∗ and restricted to P , coincides with the
partial order of P induced by ⊕. For every a ∈ P , a ⊕∗ a∗ = 0∗.

The structure (E,⊕∗,0,0∗) introduced in Theorem 1.5, where E = P ∪̇P ∗, will be
called the effect algebraic extension of the GEA (P,⊕,0). Instead of ⊕∗ we will use
the notation ⊕ since these two operations coincide on P .

Theorem 1.6. (Mosná [8]) Let (P,⊕,0) be a GEA and (E,⊕,0,0∗), where E =
P ∪̇P ∗, be its effect algebraic extension. Then p ∈ E is an atom of E if and only if
one of the following conditions is satisfied:

(i) p ∈ P and p is an atom of P ,

(ii) p = a∗ ∈ P ∗, where a ∈ P is a maximal element of P .

Theorem 1.7. (Riečanová and Marinová [18]) Let (P,⊕, 0) be a GEA and (E,⊕,0,0∗)
be its effect algebraic extension. Then E is a lattice effect algebra preserving joins
and meets existing in P if and only if the following conditions hold for a, b ∈ P .
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1. a ∧P b exists.

2. If there is d ∈ P such that a, b ≤ d then a ∨P b exists.

3. For all c ∈ P the existence of a ∨P b, a⊕ c, and b ⊕ c, implies the existence of
(a ∨P b) ⊕ c.

4. Either a ∨P b exists or
∨
{c ∈ P ; a ⊕ c and b ⊕ c are defined} exists in P .

5.
∨
{c ∈ P ; c ≤ b and a ⊕ c is defined} exists in P .

A GEA P satisfying the properties 1 – 5 of Theorem 1.7 is called a prelattice effect

algebra.

Definition 1.8. For a lattice (L,∧,∨) and a subset D ⊆ L we say that D is a bifull

sublattice of L, if and only if for any X ⊆ D,
∨

L X exists if and only if
∨

D X
exists and

∧

L X exists if and only if
∧

D X exists, in which case
∨

L X =
∨

D X and
∧

L X =
∧

D X .

Recall that an element a ∈ L, where (L,∧,∨) is a lattice, is called a compact element

if for arbitrary D ⊂ L with
∨

D ∈ L, if a ≤
∨

D then a ≤
∨

F for some finite set
F ⊆ D. The lattice L is called compactly generated if every element of L is a join of
compact elements.

Lemma 1.9. Let (E,⊕,∨,∧,0,1) be an atomic Archimedean lattice effect algebra.
Then

(i) (see [8]) a block M of E is atomic if there exists a maximal pairwise compatible
set A of atoms of E such that A ⊆ M and if M1 is a block of E with A ⊆ M1,
then M1 = M . Moreover for all x ∈ E and all a ∈ A the following holds

x ∈ M ⇔ x ↔ a,

(ii) (see [15]) to every nonzero element x ∈ E there exist mutually distinct atoms
aα ∈ E and positive integers kα for α ∈ I such that

x =
⊕

α∈I

(kαaα) =
∨

α∈I

(kαaα).

It is known that if E is a distributive effect algebra (i. e., the effect algebra E is
a distributive lattice – e. g., if E is an MV-effect algebra) then C(E) = S(E). If
moreover E is Archimedean and atomic then the set of atoms of C(E) = S(E) is
the set {naa; a ∈ E is an atom of E}, where na = ord(a) (see [17]). Since S(E) is a
bifull sublattice of E if E is an Archimedean atomic lattice effect algebra (see [10]),
we obtain that

1 =
∨

C(E)

{p ∈ C(E); p is an atom of C(E)} =
∨

E

{p ∈ C(E); p is an atom of C(E)}

for every Archimedean atomic distributive lattice effect algebra E. We are going to
show that there are Archimedean atomic lattice effect algebras with atomic center
where this property fails to be true.
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2. EXAMPLE OF A LATTICE EFFECT ALGEBRA WITH NON-BIFULL SUB-
LATTICE OF CENTRAL ELEMENTS

Theorem 2.1. There exists an atomic Archimedean lattice effect algebra E such
that C(E) is not a bifull sublattice of E. More precisely,

∨

C(E) AC = 1 and
∨

E AC

does not exist, where AC are atoms of C(E).

Example 2.2. Let us give a detailed construction of an atomic Archimedean lattice
effect algebra E whose center C(E) is not a bifull sublattice of E.

Let us assume that there exist the following sequences of mutually different ele-
ments (that will play the role of atoms in the constructed effect algebra E):

(ai)
∞
i=0, (bi)

∞
i=0, (cj)

∞
j=1, (dj)

∞
j=1, (pj)

∞
j=1 (2)

fulfilling the following binary relation 6↔ (that will play the role of the non-compatibility
relation of atoms in the constructed effect algebra E)

cj 6↔ ai, cj 6↔ bi for all j = 1, 2, . . . and i = 0, . . . , j − 1,
dj 6↔ ai, dj 6↔ bi for all j = 1, 2, . . . and i = 0, . . . , j − 1,
cj 6↔ di for all i, j = 1, 2, . . . such that i 6= j,
cj 6↔ ci, dj 6↔ di for all i, j = 1, 2, . . . such that i 6= j.

(3)

All other pairs of elements from the above sequences fulfil the complementary bi-
nary relation ↔ (that will play the role of compatibility relation of atoms in the
constructed effect algebra E) and we will call such pairs of atoms compatible.

Denote
A0 = (ai)

∞
i=0 ∪ (bi)

∞
i=0 ∪ (pj)

∞
j=1, (4)

and for j = 1, 2, . . . let

Aj = (ai)
∞
i=j ∪ (bi)

∞
i=j ∪ (pj)

∞
j=1 ∪ {cj, dj}. (5)

Property (3) is equivalent with the fact that A0 and Aj (j = 1, 2, . . . ) are unique
maximal sets of pairwise compatible atoms.

Let us represent elements of (2) by the following subsets of R
2 and elements of

the set N = {1, 2, . . .}:

a0 = {(x, y) ∈ R
2; 0 ≤ x ≤ 1, y ∈ R},

al = {(x, y) ∈ R
2; l < x ≤ l + 1, y ∈ R}, for l = 1, 2, . . . ,

b0 = {(x, y) ∈ R
2;−1 ≤ x < 0, y ∈ R},

bl = {(x, y) ∈ R
2;−l − 1 ≤ x < −l, y ∈ R}, for l = 1, 2, . . . , (6)

cj = {(x, y) ∈ R
2;−j ≤ x ≤ j, y ≤ j · x}, for j = 1, 2, . . . ,

dj = {(x, y) ∈ R
2;−j ≤ x ≤ j, y > j · x}, for j = 1, 2, . . . ,

pj = {j}, for j = 1, 2, . . . .

For such a choice of elements, the elements q1 6= q2 are compatible if and only if
q1 ∩ q2 = ∅. From this we get that they fulfil the condition (3).
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Fig. 1. Illustration of sequences of elements (al)l, (bl)l, (pj)j , (cj)j , (dj)j .

Recall that, for any non-empty set X and any partition {Yα; α ∈ Λ} of X , the
complete Boolean sub-algebra B of the set of all subsets of X generated by {Yα; α ∈
Λ} is atomic and its atoms are sets Yα, α ∈ Λ. Moreover, the complement of an
element Z ∈ B is the usual set-theoretic complement X \Z. Note also that the sets
A0, Aj (j = 1, 2, . . . ) are partitions of the set R

2 ∪ N.
Denote B0, Bj (for j = 1, 2, . . . ) complete atomic Boolean algebras with the

corresponding sets of atoms A0, Aj (j = 1, 2, . . . ). For elements u1, u2 ∈ Bl, l =
0, 1, 2, . . . , such that u1 ∩ u2 = ∅ we introduce the partial operation ⊕ by

u1 ⊕ u2 = u1 ∪ u2.

Note that in the complete Boolean algebras B0, Bj (for j = 1, 2, . . . ) the orthogonal
sum of an orthogonal system corresponds to the disjoint union of such system.

The Boolean algebras B0, Bj , j = 1, 2, . . . , have the following top elements:

R
2 ∪ N = 1 = 10 = a0 ⊕ b0 ⊕

∞⊕

i=1

(ai ⊕ bi ⊕ pi) (7)

R
2 ∪ N = 1 = 11 = (c1 ⊕ d1) ⊕

∞⊕

i=1

(ai ⊕ bi ⊕ pi) (8)

R
2 ∪ N = 1 = 1j = (cj ⊕ dj) ⊕

∞⊕

i=j

(ai ⊕ bi ⊕ pi) ⊕

j−1
⊕

i=1

pi, for all j = 2, 3, . . .(9)

An element u ∈ Bl is a finite element of Boolean algebra Bl if and only if u =
q1⊕ q2⊕· · ·⊕ qn for an n ∈ N and q1, q2, . . . , qn ∈ Al. Put Ql = {u ∈ Bl; u is finite},
l = 0, 1, 2, . . . . Then Ql is a generalized Boolean algebra, since Ml = Ql ∪̇Q∗

l is a
Boolean algebra, where Q∗

l = {u∗; u∗ = 1l ⊖ u and u ∈ Ql} (see [18], or [1, pp. 18–
19]). Note that any element of Ml is an orthogonal sum (disjoint union) of atoms
from Bl and hence from Ml. This means that Ml is a Boolean subalgebra of finite
and cofinite elements of Bl (l = 0, 1, 2, . . . ).
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Let us put E =
⋃∞

l=0 Ml and let the partial operation ⊕ be defined for disjoint
elements of Ml (l = 0, 1, 2, . . . ) as a disjoint union. Also, let us put 1 = R

2 ∪ N and
0 = ∅. Let us show that (E,⊕,∨,∧,0,1) is a lattice effect algebra with the family
(Ml)

∞
l=0 of atomic blocks of E. We have the following equality

cj ⊕ dj =

j−1
⊕

i=0

(ai ⊕ bi) = {(x, y) ∈ R
2;−j ≤ x ≤ j}, for all j = 1, 2, . . . . (10)

Fig. 2. Illustration of the element a3 ⊕ b3 ⊕ c3 ⊕ d3.

To each x ∈ E there is a unique x∗ since x∗ = (R2 ∪ N) \ x in each Boolean
algebra Ml (l = 0, 1, 2, . . . ). Due to equalities (7 – 9) we get the coincidence of top
elements (bottom elements of blocks are of course identical to ∅). It is easy to
check that E is an effect algebra, since the commutativity and associativity of the
partial operation ⊕ is due to the commutativity and associativity of disjoint union.
Moreover, E, where E = P ∪̇P ∗, is an effect algebraic extension of GEA (P,⊕,0),
where P =

⋃∞

l=0 Ql and P ∗ =
⋃∞

l=0 Q∗
l (see [1] pp. 18–19). To prove that E is a

lattice effect algebra it is enough to show that P is a prelattice GEA (Theorem 1.7,
or [18]).

First we show the following proposition.

Proposition 2.3. The GEA (P,⊕,∧,∨,0) from Example 2.2 is a lattice with the
bottom element 0 = ∅.

P r o o f . Let h1, h2 ∈ P be arbitrary elements. This means that there surely exists
an n ∈ N such that for all m = 1, 2, . . . , all l = 0, 1, 2, . . . and all s = 1, 2, . . . we
have that (pm ≤ h1 or pm ≤ h2) or (al ≤ h1 or al ≤ h2) or (bl ≤ h1 or bl ≤ h2) or
cs ≤ h1 or cs ≤ h2) or (ds ≤ h1 or ds ≤ h2) implies that m ≤ n, l ≤ n and s ≤ n
(since both h1 and h2 are finite elements).



616 M. KALINA

First assume that there is an i ∈ {0, 1, 2, . . .} such that h1, h2 ∈ Qi. Then h1, h2

are expressible in the form

h1 =







n⊕

l=0

(αlal ⊕ βlbl) ⊕
n⊕

l=1

πlpl, if i = 0,

γici ⊕ δidi ⊕
n⊕

l=i

(αlal ⊕ βlbl) ⊕
n⊕

l=1

πlpl, if i 6= 0,
(11)

h2 =







n⊕

l=0

(α′
lal ⊕ β′

lbl) ⊕
n⊕

l=1

π′
lpl, if i = 0,

γ′
ici ⊕ δ′idi ⊕

n⊕

l=i

(α′
lal ⊕ β′

lbl) ⊕
n⊕

l=1

π′
lpl, if i 6= 0,

(12)

where αl, α
′
l, βl, β

′
l, πj , π

′
j ∈ {0, 1} for l = 0, 1, 2, . . . , n and j = 1, 2, . . . , n, and

γi, γ
′
i, δi, δ

′
i ∈ {0, 1}, i = 1, 2, . . . . Denote α̃l = min{αl, α

′
l}, β̃l = min{βl, β

′
l},

γ̃i = min{γi, γ
′
i}, δ̃i = min{δi, δ

′
i} and π̃j = min{πj , π

′
j}, and put

v =







n⊕

l=0

(

α̃lal ⊕ β̃lbl

)

⊕
n⊕

m=1
π̃mpm, if i = 0,

γ̃ici ⊕ δ̃idi ⊕
n⊕

l=i

(

α̃lal ⊕ β̃lbl

)

⊕
n⊕

m=1
π̃mpm, if i 6= 0.

(13)

Putting α̂l = max{αl, α
′
l}, β̂l = max{βl, β

′
l}, γ̂i = max{γi, γ

′
i}, δ̂i = max{δi, δ

′
i} and

π̂j = max{πj , π
′
j}, we get

u =







n⊕

l=0

(

α̂lal ⊕ β̂lbl

)

⊕
n⊕

m=1
π̂mpm, if i = 0,

γ̂ici ⊕ δ̂idi ⊕
n⊕

l=i

(

α̂lal ⊕ β̂lbl

)

⊕
n⊕

m=1
π̂mpm, if i 6= 0.

(14)

Elements h1 and h2 are sets. Since they are from the same block Qi, we have that
v = h1 ∩ h2 and u = h1 ∪ h2. This shows that v = h1 ∧ h2 and u = h1 ∨ h2.

Assume that are some 0 ≤ i < s such that h1 ∈ Qi and h2 ∈ Qs, and that there
is no t such that h1 ∈ Qt and h2 ∈ Qt. The element h1 can be written via formula
(11), and for h2 we get

h2 = γ′
scs ⊕ δ′sds ⊕

n⊕

l=s

(α′
lal ⊕ β′

lbl) ⊕
n⊕

m=1

π′
mpm. (15)

Because of formula (10), if we denote by Γi all atoms of Ai which are non-compatible
with cs (or equivalently, which are non-compatible with ds), for h1 we get that there
exists a q ∈ Γi such that q ≤ h1 and at the same time

cs ⊕ ds =

s−1⊕

l=0

(al ⊕ bl) 6≤ h1.

For h2 we get that either cs ≤ h2 or ds ≤ h2, and cs ⊕ ds 6≤ h2.
In all other cases we would get that there is a t such that h1 ∈ Qt and h2 ∈ Qt. We
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put

ṽ =

n⊕

l=s

(

α̃lal ⊕ β̃lbl

)

⊕
n⊕

m=1

π̃mpm, (16)

û = cs ⊕ ds ⊕
n⊕

l=s

(

α̂lal ⊕ β̂lbl

)

⊕
n⊕

m=1

π̂mpm

=

s−1⊕

l=0

(al ⊕ bl) ⊕
n⊕

l=s

(

α̂lal ⊕ β̂lbl

)

⊕
n⊕

m=1

π̂mpm, (17)

where α̃l = min{αl, α
′
l}, β̃l = min{βl, β

′
l}, α̂l = max{αl, α

′
l}, β̂l = max{βl, β

′
l}

for l ∈ {s, 2s + 1, . . . , n}, and π̃m = min{πm, π′
m}, π̂m = max{πm, π′

m} for m ∈
{1, 2, . . . , n}. We show that ṽ = h1 ∧ h2. We can put h2 = x ⊕ y, where

x = γ′
scs ⊕ δ′sds,

y =

n⊕

l=s

(α′
lal ⊕ β′

lbl) ⊕
n⊕

m=1

π′
mpm.

We have that y ∈ Qs∩Qi and by formula (13) we get y∧h1 =
⊕n

l=s

(

α̃lal ⊕ β̃lbl

)

⊕
⊕n

m=1 π̃mpm. Since x = cs or x = ds, and h1 /∈ Qi, we have that x ∧ h1 = 0. If we
take any element x̃ such that x̃ ≤ h1 and x̃ ≤ h2, then surely cs 6≤ x̃ and we may
conclude that ṽ = h1 ∧ h2. By a dual analysis we get that u = h1 ∨ h2.

The fact that 0 = ∅ is the bottom element, is trivial. �

Proposition 2.4. The GEA P from Example 2.2 is a prelattice generalized effect
algebra.

P r o o f . Since P is a lattice, the only property from Theorem 1.7 that is left to
prove, is the property 3. We have elements h1, h2, h3 ∈ P such that h1 ∨ h2 exists,
and h1 ⊕ h3 and h2 ⊕ h3 exist. From these, since the isotropic index of each atom is
1, for all atoms q we get the following

q ≤ h3 ⇒ q 6≤ h1 & q 6≤ h2. (18)

This means that q 6≤ (h1 ∨ h2). We have to distinguish two cases: there is an
l ∈ {0, 1, 2, . . .} such that h1 ∈ Ql and h2 ∈ Ql, or there is no l ∈ {0, 1, 2, . . .}
such that h1 ∈ Ql and h2 ∈ Ql. In the first case (18) implies the existence of
(h1 ∨ h2) ⊕ h3.
Assume that there is no l ∈ {0, 1, 2, . . .} such that h1 ∈ Ql and h2 ∈ Ql. Then
h1 ∈ Qi and h2 ∈ Qj for some i < j. For h1 ∨ h2 we can use formula (17), and
further we can do the same considerations for h1 and h2 as we did just before
formulas (16) and (17). Since h1 is orthogonal to h3 and also h2 is orthogonal to
h3, we get al 6≤ h3, bl 6≤ h3, ct 6≤ h3, and dt 6≤ h3, for l ∈ {0, 1, . . . , j − 1} and
t ∈ {1, 2, . . .}. This means that h1 ∨ h2 ∈ Q0 and also h3 ∈ Q0. Hence formula (18)
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implies the existence of (h1 ∨ h2) ⊕ h3, and the proof of the statement that P is a
prelattice generalized effect algebra is finished. �

Observe that the GEA P has no maximal elements. Hence, Theorems 1.6, 1.7
and Proposition 2.4 imply the following.

Proposition 2.5. Let E = P ∪̇P ∗ be an effect algebraic extension of the GEA P
from Example 2.2. Then E is a lattice effect algebra whose system of atoms coincides
with the system (6).

We prove now the main result of the paper.

Proposition 2.6. The center C(E) of the lattice effect algebra E from Proposition
2.5 is not a bifull sublattice of E. More precisely,

∨

C(E) AC = 1 and
∨

E AC does not

exist, where AC are atoms of C(E). Moreover, neither the center of compatibility,
B(E), is a bifull sublattice of E.

P r o o f . Assume that
∨

E AC = z. Then z ∈ C(E) since C(E) is a full sublattice
of E (see [14]). This implies z = 1 and hence z′ = 0. But atoms al, bl, cj , dj for
l = 0, 1, 2, . . . and j = 1, 2, . . . are orthogonal to z. This is a contradiction which
proves that C(E) is not a bifull sublattice of E.
Since S(E) = E, E is in fact an orthomodular lattice. This gives B(E) = C(E) and
it follows that neither B(E) is a bifull sublattice of E. �

Finally observe that there exists a faithful σ-additive state on E whose restriction

onto C(E) is not σ-additive. An example of such a state is the following:
Let us put

µ(pj) = 1
32−(j+1), for j = 1, 2, . . . ,

µ(ai) = µ(bi) = 1
32−(i+2), for i = 0, 1, 2, . . . ,

µ(cj) = µ(dj) = 1
2

j−1∑

i=0

(µ(ai) + µ(bi)), for j = 1, 2, . . . .

Then obviously it is possible to extend the function µ to a σ-additive state µ : E →
[0, 1].
However, the restriction of µ to C(E) gives an additive state, which is not σ-additive,
since C(E) consists of atoms pj, j = 1, 2, . . . , only and we have the equation

∨

C(E)

AC = 1, but

∞∑

j=1

µ(pj) =
1

3
,

where AC is the system of all central atoms.

Example 2.7. (Example of a lattice effect algebra containing unsharp elements
whose center is not a bifull sublattice.) Note that the effect algebraic extension
E = P ∪̇P ∗ is in fact an orthomodular lattice. Let E1 be a direct product of the
effect algebra E from Example 2.2 and of the chain {0, p0, 2p0}. Then E1 is a lattice
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effect algebra which is neither an orthomodular lattice nor an MV-effect algebra,
since E1 includes unsharp elements as well as non-compatible pair of elements. The
center C(E1) (the center of compatibility B(E1)) is the direct product of centers (of
centers of compatibility) of the factors of E1. This implies that C(E1) (B(E1)) is
not a bifull sublattice of E1.

3. CONCLUSIONS

In [10] Paseka and Riečanová published as open problem wether C(E) is a bifull
sublattice of an Archimedean atomic lattice effect algebra E. This paper shows that
we have no guarantee that C(E) (B(E)) is a bifull sublattice of E even if C(E) is
atomic. Moreover, we have presented the Archimedean atomic lattice effect algebra
E which has a faithful σ-additive state µ on E, whose restriction to C(E) is not
σ-additive.
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[8] K. Mosná: About atoms in generalized efect algebras and their effect algebraic exten-
sions. J. Electr. Engrg. 57 (2006), 7/s, 110–113.
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[15] Z. Riečanová: Smearing of states defined on sharp elements onto effect algebras. In-
terernat. J. Theor. Phys. 41 (2002), 1511–1524.
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