ON CENTRAL ATOMS OF ARCHIMEDEAN ATOMIC LATTICE EFFECT ALGEBRAS

Martin Kalina

If element z of a lattice effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ is central, then the interval $[\mathbf{0}, z]$ is a lattice effect algebra with the new top element z and with inherited partial binary operation \oplus. It is a known fact that if the set $C(E)$ of central elements of E is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in E equals to the top element of E, then E is isomorphic to a direct product of irreducible effect algebras (16]). In 10 Paseka and Riečanová published as open problem whether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra E. We show that there exists a lattice effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ with atomic $C(E)$ which is not a bifull sublattice of E. Moreover, we show that also $B(E)$, the center of compatibility, may not be a bifull sublattice of E.

Keywords: lattice effect algebra, center, atom, bifullness
Classification: 03G12, 03G27, 06B99

1. INTRODUCTION, BASIC DEFINITIONS AND KNOWN FACTS

Effect algebras, introduced by D. J. Foulis and M. K. Bennett [2, have their importance in the investigation of uncertainty. Lattice ordered effect algebras generalize orthomodular lattices and MV-algebras. Thus they may include non-compatible pairs of elements as well as unsharp elements.

Definition 1.1. (Foulis and Bennett [2]) An effect algebra is a system ($E ; \oplus, \mathbf{0}, \mathbf{1}$) consisting of a set E with two different elements $\mathbf{0}$ and 1, called zero and unit, respectively and \oplus is a partially defined operation satisfying the following conditions for all $p, q, r \in E$:
(E1) If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q=q \oplus p$.
(E2) If $q \oplus r$ is defined and $p \oplus(q \oplus r)$ is defined, then $p \oplus q$ and $(p \oplus q) \oplus r$ are defined and $p \oplus(q \oplus r)=(p \oplus q) \oplus r$.
(E3) For every $p \in E$ there exists a unique $q \in E$ such that $p \oplus q$ is defined and $p \oplus q=1$.
(E4) If $p \oplus 1$ is defined then $p=\mathbf{0}$.

The element q in (E3) will be called the supplement of p, and will be denoted as p^{\prime}.
Definition 1.2. A generalized effect algebra (GEA for brevity) is a system ($E, \oplus, \mathbf{0}$) satisfying conditions (E1) and (E2) from Definition 1.1 and the following conditions for $a, b \in E$.
(E3') If $a \oplus b=a \oplus c$, then $b=c$
(E4') If $a \oplus b=\mathbf{0}$, then $a=b=\mathbf{0}$.
(E5) $a \oplus \mathbf{0}=a$.
Definition 1.3. Let $(E, \oplus, 0)$ be a GEA and $a, b \in E$ be arbitrary elements. A partial order \leq is given by

$$
b \leq a, \quad \text { if there exists } c \in E \text { such that } c \oplus b=a .
$$

In the whole paper, for a GEA $(E, \oplus, \mathbf{0})$, writing of $a \oplus b$ for arbitrary $a, b \in E$ will mean that $a \oplus b$ exists. Definition 1.3 enables us to introduce another partial binary operation \ominus by

$$
a \ominus b=c \quad \Leftrightarrow \quad b \oplus c=a
$$

Further, in this article we often briefly write 'an effect algebra (generalized effect algebra) E ' skipping the operations.

Every effect algebra E is a generalized effect algebra. Conversely, a generalized effect algebra E is an effect algebra if and only if E has a greatest element $\mathbf{1}$ (see [1], p.17).

If every pair x, y of elements of a lattice effect algebra E is compatible, meaning that $x \vee y=x \oplus(y \ominus(x \wedge y))$ then E is called an $M V$-effect algebra [7].
S. P. Gudder (4, 5]) introduced the notion of sharp elements and sharply dominating lattice effect algebras. Recall that an element x of the lattice effect algebra E is called sharp if $x \wedge x^{\prime}=\mathbf{0}$. Jenča and Riečanová in [6] proved that in every lattice effect algebra E the set $S(E)=\left\{x \in E ; x \wedge x^{\prime}=\mathbf{0}\right\}$ of sharp elements is an orthomodular lattice which is a sub-effect algebra of E, meaning that if among $x, y, z \in E$ with $x \oplus y=z$ at least two elements are in $S(E)$ then $x, y, z \in S(E)$. Moreover $S(E)$ is a full sublattice of E, hence supremum of any set of sharp elements, which exists in E, is again a sharp element. Further, each maximal subset M of pairwise compatible elements of E, called block of E, is a sub-effect algebra and a full sublattice of E and $E=\bigcup\{M \subseteq E ; M$ is a block of $E\}$ (see [13, 14]). Central elements and centers of effect algebras were defined in [3]. In [11, 12] it was proved that in every lattice effect algebra E the center

$$
\begin{equation*}
C(E)=\left\{x \in E ;(\forall y \in E) y=(y \wedge x) \vee\left(y \wedge x^{\prime}\right)\right\}=S(E) \cap B(E), \tag{1}
\end{equation*}
$$

where $B(E)=\bigcap\{M \subseteq E ; M$ is a block of $E\}$. Since $S(E)$ is an orthomodular lattice and $B(E)$ is an MV-effect algebra, we obtain that $C(E)$ is a Boolean algebra. Note that E is an orthomodular lattice if and only if $E=S(E)$ and E is an MVeffect algebra if and only if $E=B(E)$. Thus E is a Boolean algebra if and only if $E=S(E)=B(E)=C(E)$.

Recall that an element p of a (generalized) effect algebra E is called an atom if and only if p is a minimal non-zero element of E and E is atomic if for each $x \in E$, $x \neq \mathbf{0}$, there exists an atom $p \leq x$.

Definition 1.4. Let $(E, \oplus, 0)$ be a GEA. To each $a \in E$ we define its isotropic index, notation $\operatorname{ord}(a)$, as the maximal positive integer n such that

$$
n a:=\underbrace{a \oplus \cdots \oplus a}_{n \text {-times }}
$$

exists. We set $\operatorname{ord}(a)=\infty$ if $n a$ exists for each positive integer n. We say that E is Archimedean, if for each $a \in E, a \neq \mathbf{0}, \operatorname{ord}(a)$ is finite.

An element $u \in E$ is called finite, if there exists a finite system of atoms a_{1}, \ldots, a_{n} (which are not necessarily distinct) such that $u=a_{1} \oplus \cdots \oplus a_{n}$. An element $v \in E$ is called cofinite, if there exists a finite element $u \in E$ such that $v=u^{\prime}$.

We say that for a finite system $F=\left(x_{j}\right)_{j=1}^{k}$ of not necessarily different elements of an effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ is \oplus-orthogonal if $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}=\left(x_{1} \oplus x_{2} \oplus\right.$ $\left.\cdots \oplus x_{n-1}\right) \oplus x_{n}$ exists in E (briefly we will write $\bigoplus_{j=1}^{n} x_{j}$). We define also $\oplus \emptyset=\mathbf{0}$.

Let $(P, \oplus, \mathbf{0})$ be a GEA. Denote by P^{*} a set disjoint from P and of the same cardinality. Consider a bijection $p \rightarrow p^{*}$ from P onto P^{*} and put $E=P \dot{\cup} P^{*}$. We define a partial commutative operation \oplus^{*} on E by the following rules valid for $a, b \in P$.

1. $a \oplus^{*} b$ is defined if and only if $a \oplus b$ is defined, and $a \oplus^{*} b=a \oplus b$.
2. $b^{*} \oplus^{*} a$ is defined if and only if there exists a $c \in P$ such that $a \oplus c=b$ and then $c^{*}=b^{*} \oplus^{*} a$.

Theorem 1.5. (Dvurečenskij and Pulmannová [1) For every GEA $(P, \oplus, \mathbf{0})$ and the above defined set $E=P \dot{\cup} P^{*}$ the structure $\left(E, \oplus^{*}, \mathbf{0}, \mathbf{0}^{*}\right)$ is an effect algebra. Moreover, the partial order induced by \oplus^{*} and restricted to P, coincides with the partial order of P induced by \oplus. For every $a \in P, a \oplus^{*} a^{*}=\mathbf{0}^{*}$.

The structure $\left(E, \oplus^{*}, \mathbf{0}, \mathbf{0}^{*}\right)$ introduced in Theorem 1.5 where $E=P \dot{\cup} P^{*}$, will be called the effect algebraic extension of the GEA $(P, \oplus, \mathbf{0})$. Instead of \oplus^{*} we will use the notation \oplus since these two operations coincide on P.

Theorem 1.6. (Mosná [8]) Let $(P, \oplus, \mathbf{0})$ be a GEA and $\left(E, \oplus, \mathbf{0}, \mathbf{0}^{*}\right)$, where $E=$ $P \dot{\cup} P^{*}$, be its effect algebraic extension. Then $p \in E$ is an atom of E if and only if one of the following conditions is satisfied:
(i) $p \in P$ and p is an atom of P,
(ii) $p=a^{*} \in P^{*}$, where $a \in P$ is a maximal element of P.

Theorem 1.7. (Riečanová and Marinová (18) Let $(P, \oplus, 0)$ be a GEA and $\left(E, \oplus, \mathbf{0}, \mathbf{0}^{*}\right)$ be its effect algebraic extension. Then E is a lattice effect algebra preserving joins and meets existing in P if and only if the following conditions hold for $a, b \in P$.

1. $a \wedge_{P} b$ exists.
2. If there is $d \in P$ such that $a, b \leq d$ then $a \vee_{P} b$ exists.
3. For all $c \in P$ the existence of $a \vee_{P} b, a \oplus c$, and $b \oplus c$, implies the existence of $\left(a \vee_{P} b\right) \oplus c$.
4. Either $a \vee_{P} b$ exists or $\bigvee\{c \in P ; a \oplus c$ and $b \oplus c$ are defined $\}$ exists in P.
5. $\bigvee\{c \in P ; c \leq b$ and $a \oplus c$ is defined $\}$ exists in P.

A GEA P satisfying the properties 1-5 of Theorem 1.7 is called a prelattice effect algebra.
Definition 1.8. For a lattice (L, \wedge, \vee) and a subset $D \subseteq L$ we say that D is a bifull sublattice of L, if and only if for any $X \subseteq D, \bigvee_{L} X$ exists if and only if $\bigvee_{D} X$ exists and $\bigwedge_{L} X$ exists if and only if $\bigwedge_{D} X$ exists, in which case $\bigvee_{L} X=\bigvee_{D} X$ and $\bigwedge_{L} X=\bigwedge_{D} X$.
Recall that an element $a \in L$, where (L, \wedge, \vee) is a lattice, is called a compact element if for arbitrary $D \subset L$ with $\bigvee D \in L$, if $a \leq \bigvee D$ then $a \leq \bigvee F$ for some finite set $F \subseteq D$. The lattice L is called compactly generated if every element of L is a join of compact elements.

Lemma 1.9. Let $(E, \oplus, \vee, \wedge, \mathbf{0}, \mathbf{1})$ be an atomic Archimedean lattice effect algebra. Then
(i) (see [8]) a block M of E is atomic if there exists a maximal pairwise compatible set A of atoms of E such that $A \subseteq M$ and if M_{1} is a block of E with $A \subseteq M_{1}$, then $M_{1}=M$. Moreover for all $x \in E$ and all $a \in A$ the following holds

$$
x \in M \quad \Leftrightarrow \quad x \leftrightarrow a,
$$

(ii) (see [15]) to every nonzero element $x \in E$ there exist mutually distinct atoms $a_{\alpha} \in E$ and positive integers k_{α} for $\alpha \in \mathcal{I}$ such that

$$
x=\bigoplus_{\alpha \in \mathcal{I}}\left(k_{\alpha} a_{\alpha}\right)=\bigvee_{\alpha \in \mathcal{I}}\left(k_{\alpha} a_{\alpha}\right) .
$$

It is known that if E is a distributive effect algebra (i.e., the effect algebra E is a distributive lattice - e. g., if E is an MV-effect algebra) then $C(E)=S(E)$. If moreover E is Archimedean and atomic then the set of atoms of $C(E)=S(E)$ is the set $\left\{n_{a} a ; a \in E\right.$ is an atom of $\left.E\right\}$, where $n_{a}=\operatorname{ord}(a)$ (see [17). Since $S(E)$ is a bifull sublattice of E if E is an Archimedean atomic lattice effect algebra (see [10]), we obtain that

$$
1=\bigvee_{C(E)}\{p \in C(E) ; p \text { is an atom of } C(E)\}=\bigvee_{E}\{p \in C(E) ; p \text { is an atom of } C(E)\}
$$

for every Archimedean atomic distributive lattice effect algebra E. We are going to show that there are Archimedean atomic lattice effect algebras with atomic center where this property fails to be true.

2. EXAMPLE OF A LATTICE EFFECT ALGEBRA WITH NON-BIFULL SUBLATTICE OF CENTRAL ELEMENTS

Theorem 2.1. There exists an atomic Archimedean lattice effect algebra E such that $C(E)$ is not a bifull sublattice of E. More precisely, $\bigvee_{C(E)} A_{C}=\mathbf{1}$ and $\bigvee_{E} A_{C}$ does not exist, where A_{C} are atoms of $C(E)$.

Example 2.2. Let us give a detailed construction of an atomic Archimedean lattice effect algebra E whose center $C(E)$ is not a bifull sublattice of E.

Let us assume that there exist the following sequences of mutually different elements (that will play the role of atoms in the constructed effect algebra E):

$$
\begin{equation*}
\left(a_{i}\right)_{i=0}^{\infty}, \quad\left(b_{i}\right)_{i=0}^{\infty}, \quad\left(c_{j}\right)_{j=1}^{\infty}, \quad\left(d_{j}\right)_{j=1}^{\infty}, \quad\left(p_{j}\right)_{j=1}^{\infty} \tag{2}
\end{equation*}
$$

fulfilling the following binary relation \nrightarrow (that will play the role of the non-compatibility relation of atoms in the constructed effect algebra E)

$$
\begin{align*}
& c_{j} \nleftarrow a_{i}, \quad c_{j} \nleftarrow b_{i} \quad \text { for all } j=1,2, \ldots \quad \text { and } \quad i=0, \ldots, j-1, \\
& d_{j} \not \leftrightarrow a_{i}, \quad d_{j} \nleftarrow b_{i} \quad \text { for all } j=1,2, \ldots \text { and } i=0, \ldots, j-1 \text {, } \tag{3}\\
& c_{j} \nleftarrow d_{i} \quad \text { for all } i, j=1,2, \ldots \text { such that } i \neq j \text {, } \\
& c_{j} \nleftarrow c_{i}, \quad d_{j} \nleftarrow d_{i} \quad \text { for all } \quad i, j=1,2, \ldots \text { such that } i \neq j .
\end{align*}
$$

All other pairs of elements from the above sequences fulfil the complementary binary relation \leftrightarrow (that will play the role of compatibility relation of atoms in the constructed effect algebra E) and we will call such pairs of atoms compatible.

Denote

$$
\begin{equation*}
A_{0}=\left(a_{i}\right)_{i=0}^{\infty} \cup\left(b_{i}\right)_{i=0}^{\infty} \cup\left(p_{j}\right)_{j=1}^{\infty}, \tag{4}
\end{equation*}
$$

and for $j=1,2, \ldots$ let

$$
\begin{equation*}
A_{j}=\left(a_{i}\right)_{i=j}^{\infty} \cup\left(b_{i}\right)_{i=j}^{\infty} \cup\left(p_{j}\right)_{j=1}^{\infty} \cup\left\{c_{j}, d_{j}\right\} \tag{5}
\end{equation*}
$$

Property (3) is equivalent with the fact that A_{0} and $A_{j}(j=1,2, \ldots)$ are unique maximal sets of pairwise compatible atoms.

Let us represent elements of (2) by the following subsets of \mathbb{R}^{2} and elements of the set $\mathbb{N}=\{1,2, \ldots\}$:

$$
\begin{align*}
a_{0} & =\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leq x \leq 1, y \in \mathbb{R}\right\}, \\
a_{l} & =\left\{(x, y) \in \mathbb{R}^{2} ; l<x \leq l+1, y \in \mathbb{R}\right\}, \quad \text { for } l=1,2, \ldots, \\
b_{0} & =\left\{(x, y) \in \mathbb{R}^{2} ;-1 \leq x<0, y \in \mathbb{R}\right\}, \\
b_{l} & =\left\{(x, y) \in \mathbb{R}^{2} ;-l-1 \leq x<-l, y \in \mathbb{R}\right\}, \quad \text { for } l=1,2, \ldots, \tag{6}\\
c_{j} & =\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j, y \leq j \cdot x\right\}, \quad \text { for } j=1,2, \ldots, \\
d_{j} & =\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j, y>j \cdot x\right\}, \quad \text { for } j=1,2, \ldots, \\
p_{j} & =\{j\}, \quad \text { for } j=1,2, \ldots
\end{align*}
$$

For such a choice of elements, the elements $q_{1} \neq q_{2}$ are compatible if and only if $q_{1} \cap q_{2}=\emptyset$. From this we get that they fulfil the condition (3).

Fig. 1. Illustration of sequences of elements $\left(a_{l}\right)_{l},\left(b_{l}\right)_{l},\left(p_{j}\right)_{j},\left(c_{j}\right)_{j},\left(d_{j}\right)_{j}$.

Recall that, for any non-empty set X and any partition $\left\{Y_{\alpha} ; \alpha \in \Lambda\right\}$ of X, the complete Boolean sub-algebra B of the set of all subsets of X generated by $\left\{Y_{\alpha} ; \alpha \in\right.$ $\Lambda\}$ is atomic and its atoms are sets $Y_{\alpha}, \alpha \in \Lambda$. Moreover, the complement of an element $Z \in B$ is the usual set-theoretic complement $X \backslash Z$. Note also that the sets $A_{0}, A_{j}(j=1,2, \ldots)$ are partitions of the set $\mathbb{R}^{2} \cup \mathbb{N}$.

Denote B_{0}, B_{j} (for $j=1,2, \ldots$) complete atomic Boolean algebras with the corresponding sets of atoms $A_{0}, A_{j}(j=1,2, \ldots)$. For elements $u_{1}, u_{2} \in B_{l}, l=$ $0,1,2, \ldots$, such that $u_{1} \cap u_{2}=\emptyset$ we introduce the partial operation \oplus by

$$
u_{1} \oplus u_{2}=u_{1} \cup u_{2} .
$$

Note that in the complete Boolean algebras $B_{0}, B_{j}($ for $j=1,2, \ldots)$ the orthogonal sum of an orthogonal system corresponds to the disjoint union of such system.

The Boolean algebras $B_{0}, B_{j}, j=1,2, \ldots$, have the following top elements:

$$
\begin{align*}
& \mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{0}=a_{0} \oplus b_{0} \oplus \bigoplus_{i=1}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \tag{7}\\
& \mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{1}=\left(c_{1} \oplus d_{1}\right) \oplus \bigoplus_{i=1}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \tag{8}\\
& \mathbb{R}^{2} \cup \mathbb{N}=\mathbf{1}=1_{j}=\left(c_{j} \oplus d_{j}\right) \oplus \bigoplus_{i=j}^{\infty}\left(a_{i} \oplus b_{i} \oplus p_{i}\right) \oplus \bigoplus_{i=1}^{j-1} p_{i}, \text { for all } j=2,3, \ldots(9) \tag{9}
\end{align*}
$$

An element $u \in B_{l}$ is a finite element of Boolean algebra B_{l} if and only if $u=$ $q_{1} \oplus q_{2} \oplus \cdots \oplus q_{n}$ for an $n \in \mathbb{N}$ and $q_{1}, q_{2}, \ldots, q_{n} \in A_{l}$. Put $Q_{l}=\left\{u \in B_{l} ; u\right.$ is finite $\}$, $l=0,1,2, \ldots$ Then Q_{l} is a generalized Boolean algebra, since $M_{l}=Q_{l} \dot{\cup} Q_{l}^{*}$ is a Boolean algebra, where $Q_{l}^{*}=\left\{u^{*} ; u^{*}=1_{l} \ominus u\right.$ and $\left.u \in Q_{l}\right\}$ (see [18], or [1] pp. 1819]). Note that any element of M_{l} is an orthogonal sum (disjoint union) of atoms from B_{l} and hence from M_{l}. This means that M_{l} is a Boolean subalgebra of finite and cofinite elements of $B_{l}(l=0,1,2, \ldots)$.

Let us put $E=\bigcup_{l=0}^{\infty} M_{l}$ and let the partial operation \oplus be defined for disjoint elements of $M_{l}(l=0,1,2, \ldots)$ as a disjoint union. Also, let us put $\mathbf{1}=\mathbb{R}^{2} \cup \mathbb{N}$ and $\mathbf{0}=\emptyset$. Let us show that $(E, \oplus, \vee, \wedge, \mathbf{0}, \mathbf{1})$ is a lattice effect algebra with the family $\left(M_{l}\right)_{l=0}^{\infty}$ of atomic blocks of E. We have the following equality

$$
\begin{equation*}
c_{j} \oplus d_{j}=\bigoplus_{i=0}^{j-1}\left(a_{i} \oplus b_{i}\right)=\left\{(x, y) \in \mathbb{R}^{2} ;-j \leq x \leq j\right\}, \quad \text { for all } j=1,2, \ldots \tag{10}
\end{equation*}
$$

Fig. 2. Illustration of the element $a_{3} \oplus b_{3} \oplus c_{3} \oplus d_{3}$.
To each $x \in E$ there is a unique x^{*} since $x^{*}=\left(\mathbb{R}^{2} \cup \mathbb{N}\right) \backslash x$ in each Boolean algebra $M_{l}(l=0,1,2, \ldots)$. Due to equalities (7) (9) we get the coincidence of top elements (bottom elements of blocks are of course identical to \emptyset). It is easy to check that E is an effect algebra, since the commutativity and associativity of the partial operation \oplus is due to the commutativity and associativity of disjoint union. Moreover, E, where $E=P \cup P^{*}$, is an effect algebraic extension of GEA $(P, \oplus, \mathbf{0})$, where $P=\bigcup_{l=0}^{\infty} Q_{l}$ and $P^{*}=\bigcup_{l=0}^{\infty} Q_{l}^{*}$ (see [1] pp. 18-19). To prove that E is a lattice effect algebra it is enough to show that P is a prelattice GEA (Theorem 1.7 or (18).

First we show the following proposition.
Proposition 2.3. The GEA $(P, \oplus, \wedge, \vee, \mathbf{0})$ from Example 2.2 is a lattice with the bottom element $\mathbf{0}=\emptyset$.

Proof. Let $h_{1}, h_{2} \in P$ be arbitrary elements. This means that there surely exists an $n \in \mathbb{N}$ such that for all $m=1,2, \ldots$, all $l=0,1,2, \ldots$ and all $s=1,2, \ldots$ we have that ($p_{m} \leq h_{1}$ or $p_{m} \leq h_{2}$) or ($a_{l} \leq h_{1}$ or $a_{l} \leq h_{2}$) or ($b_{l} \leq h_{1}$ or $b_{l} \leq h_{2}$) or $c_{s} \leq h_{1}$ or $c_{s} \leq h_{2}$) or ($d_{s} \leq h_{1}$ or $d_{s} \leq h_{2}$) implies that $m \leq n, l \leq n$ and $s \leq n$ (since both h_{1} and h_{2} are finite elements).

First assume that there is an $i \in\{0,1,2, \ldots\}$ such that $h_{1}, h_{2} \in Q_{i}$. Then h_{1}, h_{2} are expressible in the form

$$
\begin{align*}
& h_{1}= \begin{cases}\bigoplus_{l=0}^{n}\left(\alpha_{l} a_{l} \oplus \beta_{l} b_{l}\right) \oplus \bigoplus_{l=1}^{n} \pi_{l} p_{l}, & \text { if } i=0, \\
\gamma_{i} c_{i} \oplus \delta_{i} d_{i} \oplus \bigoplus_{l=i}^{n}\left(\alpha_{l} a_{l} \oplus \beta_{l} b_{l}\right) \oplus \bigoplus_{l=1}^{n} \pi_{l} p_{l}, & \text { if } i \neq 0,\end{cases} \tag{11}\\
& h_{2}= \begin{cases}\bigoplus_{l=0}^{n}\left(\alpha_{l}^{\prime} a_{l} \oplus \beta_{l}^{\prime} b_{l}\right) \oplus \bigoplus_{l=1}^{n} \pi_{l}^{\prime} p_{l}, & \text { if } i=0, \\
\gamma_{i}^{\prime} c_{i} \oplus \delta_{i}^{\prime} d_{i} \oplus \bigoplus_{l=i}^{n}\left(\alpha_{l}^{\prime} a_{l} \oplus \beta_{l}^{\prime} b_{l}\right) \oplus \bigoplus_{l=1}^{n} \pi_{l}^{\prime} p_{l}, & \text { if } i \neq 0,\end{cases} \tag{12}
\end{align*}
$$

where $\alpha_{l}, \alpha_{l}^{\prime}, \beta_{l}, \beta_{l}^{\prime}, \pi_{j}, \pi_{j}^{\prime} \in\{0,1\}$ for $l=0,1,2, \ldots, n$ and $j=1,2, \ldots, n$, and $\gamma_{i}, \gamma_{i}^{\prime}, \delta_{i}, \delta_{i}^{\prime} \in\{0,1\}, i=1,2, \ldots$. Denote $\tilde{\alpha}_{l}=\min \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \tilde{\beta}_{l}=\min \left\{\beta_{l}, \beta_{l}^{\prime}\right\}$, $\tilde{\gamma}_{i}=\min \left\{\gamma_{i}, \gamma_{i}^{\prime}\right\}, \tilde{\delta}_{i}=\min \left\{\delta_{i}, \delta_{i}^{\prime}\right\}$ and $\tilde{\pi}_{j}=\min \left\{\pi_{j}, \pi_{j}^{\prime}\right\}$, and put

$$
v= \begin{cases}\bigoplus_{l=0}^{n}\left(\tilde{\alpha}_{l} a_{l} \oplus \tilde{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \tilde{\pi}_{m} p_{m}, & \text { if } i=0 \tag{13}\\ \tilde{\gamma}_{i} c_{i} \oplus \tilde{\delta}_{i} d_{i} \oplus \bigoplus_{l=i}^{n}\left(\tilde{\alpha}_{l} a_{l} \oplus \tilde{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \tilde{\pi}_{m} p_{m}, & \text { if } i \neq 0\end{cases}
$$

Putting $\hat{\alpha}_{l}=\max \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \hat{\beta}_{l}=\max \left\{\beta_{l}, \beta_{l}^{\prime}\right\}, \hat{\gamma}_{i}=\max \left\{\gamma_{i}, \gamma_{i}^{\prime}\right\}, \hat{\delta}_{i}=\max \left\{\delta_{i}, \delta_{i}^{\prime}\right\}$ and $\hat{\pi}_{j}=\max \left\{\pi_{j}, \pi_{j}^{\prime}\right\}$, we get

$$
u= \begin{cases}\bigoplus_{l=0}^{n}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \hat{\pi}_{m} p_{m}, & \text { if } i=0, \tag{14}\\ \hat{\gamma}_{i} c_{i} \oplus \hat{\delta}_{i} d_{i} \oplus \bigoplus_{l=i}^{n}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \hat{\pi}_{m} p_{m}, & \text { if } i \neq 0 .\end{cases}
$$

Elements h_{1} and h_{2} are sets. Since they are from the same block Q_{i}, we have that $v=h_{1} \cap h_{2}$ and $u=h_{1} \cup h_{2}$. This shows that $v=h_{1} \wedge h_{2}$ and $u=h_{1} \vee h_{2}$.

Assume that are some $0 \leq i<s$ such that $h_{1} \in Q_{i}$ and $h_{2} \in Q_{s}$, and that there is no t such that $h_{1} \in Q_{t}$ and $h_{2} \in Q_{t}$. The element h_{1} can be written via formula (11), and for h_{2} we get

$$
\begin{equation*}
h_{2}=\gamma_{s}^{\prime} c_{s} \oplus \delta_{s}^{\prime} d_{s} \oplus \bigoplus_{l=s}^{n}\left(\alpha_{l}^{\prime} a_{l} \oplus \beta_{l}^{\prime} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \pi_{m}^{\prime} p_{m} \tag{15}
\end{equation*}
$$

Because of formula (10), if we denote by Γ_{i} all atoms of A_{i} which are non-compatible with c_{s} (or equivalently, which are non-compatible with d_{s}), for h_{1} we get that there exists a $q \in \Gamma_{i}$ such that $q \leq h_{1}$ and at the same time

$$
c_{s} \oplus d_{s}=\bigoplus_{l=0}^{s-1}\left(a_{l} \oplus b_{l}\right) \not \leq h_{1} .
$$

For h_{2} we get that either $c_{s} \leq h_{2}$ or $d_{s} \leq h_{2}$, and $c_{s} \oplus d_{s} \not \leq h_{2}$.
In all other cases we would get that there is a t such that $h_{1} \in Q_{t}$ and $h_{2} \in Q_{t}$. We
put

$$
\begin{align*}
\tilde{v} & =\bigoplus_{l=s}^{n}\left(\tilde{\alpha}_{l} a_{l} \oplus \tilde{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \tilde{\pi}_{m} p_{m}, \tag{16}\\
\hat{u} & =c_{s} \oplus d_{s} \oplus \bigoplus_{l=s}^{n}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \hat{\pi}_{m} p_{m} \\
& =\bigoplus_{l=0}^{s-1}\left(a_{l} \oplus b_{l}\right) \oplus \bigoplus_{l=s}^{n}\left(\hat{\alpha}_{l} a_{l} \oplus \hat{\beta}_{l} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \hat{\pi}_{m} p_{m}, \tag{17}
\end{align*}
$$

where $\tilde{\alpha}_{l}=\min \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \quad \tilde{\beta}_{l}=\min \left\{\beta_{l}, \beta_{l}^{\prime}\right\}, \hat{\alpha}_{l}=\max \left\{\alpha_{l}, \alpha_{l}^{\prime}\right\}, \hat{\beta}_{l}=\max \left\{\beta_{l}, \beta_{l}^{\prime}\right\}$ for $l \in\{s, 2 s+1, \ldots, n\}$, and $\tilde{\pi}_{m}=\min \left\{\pi_{m}, \pi_{m}^{\prime}\right\}, \hat{\pi}_{m}=\max \left\{\pi_{m}, \pi_{m}^{\prime}\right\}$ for $m \in$ $\{1,2, \ldots, n\}$. We show that $\tilde{v}=h_{1} \wedge h_{2}$. We can put $h_{2}=x \oplus y$, where

$$
\begin{aligned}
x & =\gamma_{s}^{\prime} c_{s} \oplus \delta_{s}^{\prime} d_{s} \\
y & =\bigoplus_{l=s}^{n}\left(\alpha_{l}^{\prime} a_{l} \oplus \beta_{l}^{\prime} b_{l}\right) \oplus \bigoplus_{m=1}^{n} \pi_{m}^{\prime} p_{m}
\end{aligned}
$$

We have that $y \in Q_{s} \cap Q_{i}$ and by formula (13) we get $y \wedge h_{1}=\bigoplus_{l=s}^{n}\left(\tilde{\alpha}_{l} a_{l} \oplus \tilde{\beta}_{l} b_{l}\right) \oplus$ $\bigoplus_{m=1}^{n} \tilde{\pi}_{m} p_{m}$. Since $x=c_{s}$ or $x=d_{s}$, and $h_{1} \notin Q_{i}$, we have that $x \wedge h_{1}=\mathbf{0}$. If we take any element \tilde{x} such that $\tilde{x} \leq h_{1}$ and $\tilde{x} \leq h_{2}$, then surely $c_{s} \not \leq \tilde{x}$ and we may conclude that $\tilde{v}=h_{1} \wedge h_{2}$. By a dual analysis we get that $u=h_{1} \vee h_{2}$.

The fact that $\mathbf{0}=\emptyset$ is the bottom element, is trivial.
Proposition 2.4. The GEA P from Example 2.2 is a prelattice generalized effect algebra.

Proof. Since P is a lattice, the only property from Theorem 1.7 that is left to prove, is the property 3 . We have elements $h_{1}, h_{2}, h_{3} \in P$ such that $h_{1} \vee h_{2}$ exists, and $h_{1} \oplus h_{3}$ and $h_{2} \oplus h_{3}$ exist. From these, since the isotropic index of each atom is 1 , for all atoms q we get the following

$$
\begin{equation*}
q \leq h_{3} \quad \Rightarrow \quad q \not \leq h_{1} \& q \not \leq h_{2} . \tag{18}
\end{equation*}
$$

This means that $q \not \leq\left(h_{1} \vee h_{2}\right)$. We have to distinguish two cases: there is an $l \in\{0,1,2, \ldots\}$ such that $h_{1} \in Q_{l}$ and $h_{2} \in Q_{l}$, or there is no $l \in\{0,1,2, \ldots\}$ such that $h_{1} \in Q_{l}$ and $h_{2} \in Q_{l}$. In the first case (18) implies the existence of $\left(h_{1} \vee h_{2}\right) \oplus h_{3}$.
Assume that there is no $l \in\{0,1,2, \ldots\}$ such that $h_{1} \in Q_{l}$ and $h_{2} \in Q_{l}$. Then $h_{1} \in Q_{i}$ and $h_{2} \in Q_{j}$ for some $i<j$. For $h_{1} \vee h_{2}$ we can use formula (17), and further we can do the same considerations for h_{1} and h_{2} as we did just before formulas (16) and (17). Since h_{1} is orthogonal to h_{3} and also h_{2} is orthogonal to h_{3}, we get $a_{l} \not \leq h_{3}, b_{l} \not \leq h_{3}, c_{t} \not \leq h_{3}$, and $d_{t} \not \leq h_{3}$, for $l \in\{0,1, \ldots, j-1\}$ and $t \in\{1,2, \ldots\}$. This means that $h_{1} \vee h_{2} \in Q_{0}$ and also $h_{3} \in Q_{0}$. Hence formula (18)
implies the existence of $\left(h_{1} \vee h_{2}\right) \oplus h_{3}$, and the proof of the statement that P is a prelattice generalized effect algebra is finished.

Observe that the GEA P has no maximal elements. Hence, Theorems 1.61 .7 and Proposition 2.4 imply the following.

Proposition 2.5. Let $E=P \dot{\cup} P^{*}$ be an effect algebraic extension of the GEA P from Example 2.2 Then E is a lattice effect algebra whose system of atoms coincides with the system (6).

We prove now the main result of the paper.
Proposition 2.6. The center $C(E)$ of the lattice effect algebra E from Proposition 2.5 is not a bifull sublattice of E. More precisely, $\bigvee_{C(E)} A_{C}=\mathbf{1}$ and $\bigvee_{E} A_{C}$ does not exist, where A_{C} are atoms of $C(E)$. Moreover, neither the center of compatibility, $B(E)$, is a bifull sublattice of E.

Proof. Assume that $\bigvee_{E} A_{C}=z$. Then $z \in C(E)$ since $C(E)$ is a full sublattice of E (see [14]). This implies $z=\mathbf{1}$ and hence $z^{\prime}=\mathbf{0}$. But atoms $a_{l}, b_{l}, c_{j}, d_{j}$ for $l=0,1,2, \ldots$ and $j=1,2, \ldots$ are orthogonal to z. This is a contradiction which proves that $C(E)$ is not a bifull sublattice of E.
Since $S(E)=E, E$ is in fact an orthomodular lattice. This gives $B(E)=C(E)$ and it follows that neither $B(E)$ is a bifull sublattice of E.

Finally observe that there exists a faithful σ-additive state on E whose restriction onto $C(E)$ is not σ-additive. An example of such a state is the following:

Let us put

$$
\begin{array}{ll}
\mu\left(p_{j}\right)=\frac{1}{3} 2^{-(j+1)}, & \text { for } j=1,2, \ldots \\
\mu\left(a_{i}\right)=\mu\left(b_{i}\right)=\frac{1}{3} 2^{-(i+2)}, & \text { for } i=0,1,2, \ldots \\
\mu\left(c_{j}\right)=\mu\left(d_{j}\right)=\frac{1}{2} \sum_{i=0}^{j-1}\left(\mu\left(a_{i}\right)+\mu\left(b_{i}\right)\right), & \text { for } j=1,2, \ldots
\end{array}
$$

Then obviously it is possible to extend the function μ to a σ-additive state $\bar{\mu}: E \rightarrow$ [0, 1].
However, the restriction of $\bar{\mu}$ to $C(E)$ gives an additive state, which is not σ-additive, since $C(E)$ consists of atoms $p_{j}, j=1,2, \ldots$, only and we have the equation

$$
\bigvee_{C(E)} A_{C}=1, \quad \text { but } \quad \sum_{j=1}^{\infty} \mu\left(p_{j}\right)=\frac{1}{3}
$$

where A_{C} is the system of all central atoms.
Example 2.7. (Example of a lattice effect algebra containing unsharp elements whose center is not a bifull sublattice.) Note that the effect algebraic extension $E=P \dot{\cup} P^{*}$ is in fact an orthomodular lattice. Let E_{1} be a direct product of the effect algebra E from Example 2.2 and of the chain $\left\{0, p_{0}, 2 p_{0}\right\}$. Then E_{1} is a lattice
effect algebra which is neither an orthomodular lattice nor an MV-effect algebra, since E_{1} includes unsharp elements as well as non-compatible pair of elements. The center $C\left(E_{1}\right)$ (the center of compatibility $B\left(E_{1}\right)$) is the direct product of centers (of centers of compatibility) of the factors of E_{1}. This implies that $C\left(E_{1}\right)\left(B\left(E_{1}\right)\right)$ is not a bifull sublattice of E_{1}.

3. CONCLUSIONS

In 10] Paseka and Riečanová published as open problem wether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra E. This paper shows that we have no guarantee that $C(E)(B(E))$ is a bifull sublattice of E even if $C(E)$ is atomic. Moreover, we have presented the Archimedean atomic lattice effect algebra E which has a faithful σ-additive state $\bar{\mu}$ on E, whose restriction to $C(E)$ is not σ-additive.

ACKNOWLEDGEMENT

The support of Science and Technology Assistance Agency under the contract No. APVV-$0375-06$, and of the VEGA grant agency, grant number $1 / 0373 / 08$, is kindly acknowledged. The author is grateful to the anonymous referees for their valuable comments helping to improve the paper.
(Received November 7, 2009)

REFERENCES

[1] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000.
[2] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346.
[3] R. J. Greechie, D. J. Foulis, and S. Pulmannová: The center of an effect algebra. Order 12 (1995), 91-106.
[4] S.P. Gudder: Sharply dominating effect algebras, Tatra Mountains Math. Publ. 15 (1998), 23-30.
[5] S. P. Gudder: S-dominating effect algebras. Internat. J. Theor. Phys. 37 (1998), 915923.
[6] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
[7] F. Kôpka: Compatibility in D-posets. Interernat. J. Theor. Phys. 34 (1995), 15251531.
[8] K. Mosná: About atoms in generalized efect algebras and their effect algebraic extensions. J. Electr. Engrg. 57 (2006), 7/s, 110-113.
[9] K. Mosná, J. Paseka, and Z. Riečanová: Order convergence and order and interval topologies on posets and lattice effect algebras. In: UNCERTAINTY2008, Proc. Internat. Seminar, Publishing House of STU 2008, pp. 45-62.
[10] J. Paseka and Z. Riečanová: The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states. Soft Computing, to appear.
[11] Z. Riečanová: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151-158.
[12] Z. Riečanová: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys. 38 (1999), 3209-3220.
[13] Z. Riečanová: Generalization of blocks for D-lattices and lattice ordered effect algebras Internat. J. Theor. Phys. 39 (2000), 231-237.
[14] Z. Riečanová: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525532.
[15] Z. Riečanová: Smearing of states defined on sharp elements onto effect algebras. Interernat. J. Theor. Phys. 41 (2002), 1511-1524.
[16] Z. Riečanová: Subdirect decompositions of lattice effect algebras. Interernat. J. Theor. Phys. 42 (2003), 1425-1433.
[17] Z. Riečanová: Distributive atomic effect akgebras. Demonstratio Math. 36 (2003), 247-259.
[18] Z. Riečanová and I. Marinová: Generalized homogenous, prelattice and MV-effect algebras. Kybernetika 41 (2005), 129-142.

Martin Kalina, Dept. of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava. Slovak Republic.
e-mail: kalina@math.sk

