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OPTIMUM BEAM DESIGN

VIA STOCHASTIC PROGRAMMING

Eva Žampachová, Pavel Popela and Michal Mrázek

The purpose of the paper is to discuss the applicability of stochastic programming
models and methods to civil engineering design problems. In cooperation with experts in
civil engineering, the problem concerning an optimal design of beam dimensions has been
chosen. The corresponding mathematical model involves an ODE-type constraint, uncer-
tain parameter related to the material characteristics and multiple criteria. As a result,
a multi-criteria stochastic nonlinear optimization model is obtained. It has been shown that
two-stage stochastic programming offers a promising approach to solving similar problems.
A computational scheme for this type of problems is proposed, including discretization
methods for random elements and ODE constraint. An approximation is derived to imple-
ment the mathematical model and solve it in GAMS. The solution quality is determined by
an interval estimate of the optimality gap computed by a Monte Carlo bounding technique.
The parametric analysis of a multi-criteria model results in efficient frontier computation.
Furthermore, a progressive hedging algorithm is implemented and tested for the selected
problem in view of the future possibilities of parallel computing of large engineering prob-
lems. Finally, two discretization methods are compared by using GAMS and ANSYS.
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1. INTRODUCTION

Many optimum design problems in civil and mechanical engineering lead to op-
timization models constrained by differential equations. Specifically, shape-based
optimization is recently under focus, e. g. [15]. There are advanced techniques how
to deal with it, see [4]. In the case of real-world design problems, uncertain pa-
rameters that can be modelled by random elements are also involved, see e. g. [10]
for civil engineering cases and [8] for mechanical engineering problems. In general,
the problems can be modelled by stochastic optimal control formulations. However,
there are several bottlenecks: (1) there are not enough input data to obtain realistic
instances of models, (2) solution techniques often significantly vary even for small
model changes, (3) theoretical features are often studied for a generalization rather
than real-world problems. In addition, the decision process in the optimum design
problems discussed is more stage-based than the continuously dynamic one. So, we
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have previously shown for artificial textbook cases ([17, 18]) that two-stage stochastic
programming is also a promising approach for such problems as is for shape opti-
mization, see [3] for the first original models. We learn from engineers that they are
often satisfied enough with a significant improvement of the existing design, i. e., with
suboptimal solutions. They also prefer widely applicable robust algorithmic schemes
to efficient algorithms for specialised cases. Therefore, the model-based approxima-
tion with its quality verified by comparing the existing and suboptimal solutions
is further chosen and the development of the computational scheme is illustrated
by a fundamental “building-stone-like” engineering example. Before we proceed, we
should emphasize that further steps improving the proposed scheme must follow.
They can focus, e. g., on dealing with reliability terms [11] either directly or by new
approximating penalty based methods, see [2].

2. PROBLEM STATEMENT AND THE UNDERLYING PROGRAM

An optimization problem in civil engineering describing the deflection of a beam has
been recommended by specialists dealing with similar problems, see e. g. [10]. The
optimization aims to obtain an optimal design of beam cross section dimensions
while minimizing weight (1), maximizing rigidity (2) and minimizing deflection (3),
as shown by the below model:
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where ρ is the beam density, l is the beam length, x is the related space coordinate, ξ

is a random outcome, Ξ is a sample space, E(ξ) is random Young’s modulus (because
of the varying uncertain material characteristics [11]), h(x) is a load, a, b are decision
variables (dimensions of the cross section) and v(ξ, x) is a deflection. The ODE (4)
describes the transverse deflection of the beam, the boundary conditions for clamped
end points given by (5) and (6) mean that there are zero transverse deflections and

their slopes. Furthermore, maximum stress σmax given as σmax(x) = ±E d2v
dx2 (x) b

2
must be bounded for safety reasons. The limiting value σlimit relates to the pro-
portional limit which marks the end of the area of elastic behaviour described by
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Hooke’s law where the stress is proportional to the relative deformation [6], see con-
straint (7). Finally, the dimensions of the beam cross section must be bounded, see
(8) and (9). The underlying program (1) – (9) is syntactically correct but its seman-
tics is not discussed, as is usual in stochastic programming (see [13]). Therefore,
the beam problem is not solved from the stochastic-optimal-control point of view.
A deterministic reformulation is further defined in Section 3 so that the mean value
of objective functions (1) – (3) is taken and constraints (4) – (7) are almost surely
satisfied. This model-based approximation satisfies the requirements of the model
robustness and solution suboptimality, see Section 1.

3. TWO–STAGE STOCHASTIC PROGRAM

The model-based approximation of model (1) – (9) is carried out in two steps. First,
a scenario-based approach for a random variable approximation is used, see [13]. We
assume that random variables E(ξ) and v(ξ, x) have discrete probability distributions
with a finite number R of equiprobable scenarios E(ξs) and v(ξs, x) with probabilities
ps = P ({ξs})= 1

R
, respectively. The second step consists in discretizing of the space

coordinate x in objective functions and constraints. Following the recommendation
of [1], we use a simple finite difference method [7] with a uniform grid spacing for
N +1 points: xi = id, i = 0, . . . , N, d = l

N
. Derivatives are replaced by central

difference formulas and, after some simplification, difference equations are obtained.

For multiple objectives, we employ a weighted-sum approach typically used in
multi-objective optimization [14].

Hence, the underlying program (1) – (9) is approximated by a large deterministic
nonlinear program:
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(

−α

R
∑

s=1

ps

Esab3

12crigid
+ β

ρabl

cweight
+ γ

R
∑

s=1

N
∑

i=0

ps

Vs,i

cdefl

)

(10)

s. t. ab3
KEsVs = f , s = 1, . . . , R (11)
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α, β, γ > 0 are the weighting coefficients, α + β + γ = 1 and crigid, cweight, cdefl

are the typical values of rigidity, weight and deflection of the beam (i. e. normalizing
constants). These values are obtained as the optimal values of the objective functions

of three single-objective optimization problems. Vs = (Vs,1, . . . , Vs,N−1)
T is the

approximation of v(ξ, x) and Es = E(ξs), s = 1, . . . , R.

4. RESULTS AND SOLUTION QUALITY

The results are presented for input data and the related formulas carefully discussed
with specialists. For better scaling, we do not compute with SI units but use units
common in engineering computations instead, i. e. length is given in mm (milimeters),
weight is given in t (tons) and stress is given in MPa (megapascals). The load is

quadratic: h(x) = −80x2

l2
+80x

l
, the length of steel beam is l = 1000 mm with density

ρ = 7.85·10−9 tmm−3. The stress limit is σlimit = 100 MPa. Number of grid points is
N = 50, we assume R = 100 scenarios and the bounding values of beam dimensions
are amin = bmin = 10 mm, amax = bmax = 100 mm. The weighting coefficients are
chosen as: α = 0.3; β = 0.45; γ = 0.25. We assume a random Young’s modulus:
Es = 2 · 105 MPa + Erandom,s where Erandom,s ∼ U(−1 · 104, 5 · 104)MPa. The
randomness of Young’s modulus E can be caused by different types of heat–treating
processing of steel such as normalization, soft annealing, annealing etc. Program
(10) – (15) is implemented in GAMS with the CONOPT solver and ran on a laptop
with Intel Core 2Duo 2GHz and 2GB RAM. The optimal objective function value
is z = 2.13. The optimal dimensions are a = 22.4 mm, b = 100 mm and we use it as
a candidate solution â = (a, b)T for a Monte Carlo bounding technique.

It is important to assess the quality of the solution â. We use a Monte-Carlo-
bounding-technique concept to determine the solution quality proposed by Morton
et al. [9]. Therefore, we estimate the optimality gap as a measure of the solution
quality:

G(â) = min
v(ξ)

E{F (ξ, â,v(ξ))} − min
a, v(ξ)

E{F (ξ,a,v(ξ))} (16)

where E{F (ξ,a, v(ξ))} denotes the objective function value of (10) – (15) and v(ξ)
denotes a random vector with realizations Vs, s = 1, . . . , R and probabilities ps,

s = 1, . . . , R as discussed in the previous section. The gap is estimated by averaging,
i. e., ng samples from E(ξ) each having size n (E(ξij), i = 1, . . . , n, j = 1, . . . , ng)
are generated. Then the point estimate Ḡn,ng

(â) of G(â) is:
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with the (1−α)-level confidence interval for the optimality gap being given as follows:

G(â) ∈
[

0, Ḡn,ng
(â) +

t1−α(ng − 1)sng
(â)

√
ng

]

, (18)

where t1−α(ng − 1) is the (1 − α)-quantile of t-distribution with ng − 1 degrees of
freedom and sng

(â) is the sample standard deviation.
The number of batches is ng = 30 and we repeatedly increase the sample size

(n = 5, 10, . . . , 100) to see the behaviour of the optimality gap. The CPU time was
about 66 min for PC with AMD Sempron 1.5 GHz and 496 MB RAM.

An engineer using the technique in question can see how the width of the confi-
dence interval of the optimality gap roughly decreases with an increasing sample size
and our candidate solution approaches the solution of the true optimization problem
(see Figure 1 a)). Furthermore, it can be seen in Figure 1 b) how the variation of the
objective function values for a fixed sample size also decreases with an increasing
sample size.

a) b)

Fig. 1. a) Upper bound of confidence interval of optimality gap,

b) Dispersion of objective function values versus sample size.

5. EFFICIENT FRONTIER AND PARAMETRIC ANALYSIS

As the next step, we discuss model (10) – (15) from the multi-objective viewpoint
with an optimal solution being replaced by the concepts of efficient points and ef-
ficient frontier [14]. A feasible solution to a multi-objective optimization model is
an efficient point if no other feasible solution scores at least as well in all objective
functions and strictly better in one. The entire set of efficient points for the model is
the efficient frontier. The set of points on the efficient frontier can be computed by
repeated optimization of (10) – (15) for various values of α, β, γ. New constraints
enforcing the achievement levels for all but one criterion (see (2), (3)) are added
and the remaining criterion related to (1) is treated as a single-objective function.

In our case, we add the following two constraints: E

(

E(ξ)ab3

12

)

≥ ϑ, E (v(ξ)) ≤ ω

where the parameters ϑ and ω are varied within the range of the relevant rigidity
and deflection values (ϑ ∈ (1.3 · 1011; 1.8 · 1012)Nmm2, ω ∈ (0.7; 9.4)mm).
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a) b)

c) d)

Fig. 2. a) Efficient frontier, b) – d) Beam weight, rigidity

and deflection versus weighting coefficients α, β.

The efficient frontier for our three-objective problem degenerates into a curve (see
Figure 2 a)) because of the impact on the feasible region of the physical character-
istics involved. This means that different efficient points produce the same point in
the objective function value space.

Since we employ the weighted-sums approach in our problem (10) – (15), we are
interested in a parametric analysis with respect to the weighting coefficients typically
required by engineers. The weighting coefficient α is varied from 0 to 1 by increments
of 0.05. The weighting coefficient β is varied from 0 to 1 − α and γ is computed
as γ = 1 − α − β. For every value of α excluding the last one (α = 1), we have 20
values of β and γ.

Figure 2 b) – d) shows the effect of the weighting coefficients α and β on the
optimal values of rigidity, weight and deflection. Figure 3 shows the same for optimal
values of dimensions a and b. The effect of the weighting coefficients is qualitatively
the same for rigidity, weight and dimension a.

We have obtained two extreme solutions and many intermediate solutions by
varying the weighting coefficients:

• a = 10 mm, b = 89.4 mm for β = 1 − α, α ∈ 〈0; 0.75〉 (see Figure 4 a))
This solution corresponds to minimum weight, maximum deflection and mini-
mum rigidity.
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Fig. 3. Beam dimensions a and b versus weighting coefficients α, β.

a) b)

Fig. 4. Relationship between α and β for dimensions

a) a = 10 mm, b = 89.4 mm, b) a = 100 mm, b = 100 mm.

• a = 10 mm, b = 100 mm for β = 1 − α, α ∈ 〈0.8; 0.9〉 or β = −0.95α + 0.95,

α ∈ 〈0; 0.85〉 or β = −0.91α + 0.9, α ∈ 〈0; 0.35〉 (see Figure 5 a))
This is an intermediate solution. The second and third equations for β have
been obtained by regression.

• a ∈ (10; 100)mm, b = 100 mm otherwise
These are also intermediate solutions (see Figure 3).

• a = 100 mm, b = 100 mm for β = 0, α ∈ 〈0; 1〉 or β ∈ (0; 0.08〉, α varying (see
Figure 4 b))
This solution corresponds to maximum weight, minimum deflection and maxi-
mum rigidity.

6. PROGRESSIVE HEDGING ALGORITHM

As complex engineering problems lead to large optimization models, we have tested
using parallel computational techniques for the test beam problem. The Progressive
Hedging Algorithm (PHA) proposed by Rockafellar and Wets [12, 16] has been
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a) b)

Fig. 5. a) Relationship between α and β for dimensions a = 10 mm, b = 100 mm,

b) Convergence of the termination criterion value.

chosen. It is a decomposition method and includes nonanticipativity constraints in
the objective function as a penalty term. The advantage of this algorithm is that we
obtain a separable program whose independent scenario subprograms can be solved
in parallel. Let us denote a = (a, b)T = (a1, a2)

T . The structure of the PHA for our
selected example is the following:

Step 0: Set w
(0)
s = 0, choose â(0), penalty parameter ρ > 0, tolerance ε, set k = 1.

Step 1: For all s = 1, . . . , R solve the approximation program:

min
a,Vs

Fs(ξs,a,Vs) + (w(k−1)
s )T a +

ρ

2
‖a − â(k−1)‖2

where Fs(ξs,a,Vs) is the objective function value of sth scenario subprogram of

(10) – (15). We denote the optimal solution as a
(k)
s .

Step 2: Compute the estimate:

â(k) =

R
∑

s=1

psa
(k)
s

and update the weight vector:

w(k)
s = w(k−1)

s + ρ(a(k)
s − â(k)).

Step 3: If the termination inequality ‖â(k) − â(k−1)‖2 +
R
∑

s=1
ps‖a(k)

s − â(k)‖2 ≤ ε

defined by [5] is satisfied then the solution â(k) is optimal with the given tolerance
ε, otherwise set k = k + 1 and return to step 1.

The values of the parameters are the same as in Section 4 excepting the number
of scenarios. We have tested PHA with R = 10 scenarios instead of 100 scenarios
to avoid excessive computational complexity for the testing non-parallel implemen-
tation. The initial estimate for the dimensions is â(0) = (100; 100)mm, which cor-
responds to maximum rigidity. The tolerance is set to ε = 10−6 because it roughly
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conforms to the accuracy of one decimal place in length, which is fully sufficient in
engineering practice.

The optimal dimensions are a = 22.5 mm, b = 100 mm. It can be seen from
the Figures 5 b), 6 and Table that the penalty parameter ρ plays the key role for
the computational process convergence properties of the algorithm. Unfortunately,
there is no exact rule to determine the best value of this parameter ρ. We have
estimated that, for our example, the best value lies in the interval (0.001; 0.01). For
larger values of ρ the convergence process will take much more time.

Table. Convergence properties of PHA.

Parameter ρ No. of iterations CPU time [min]

0.0005 59 1
0.001 32 0.7
0.005 28 0.5
0.01 50 1
0.05 215 4
0.1 410 9
0.15 599 15
0.2 784 22
0.25 966 38

Fig. 6. Convergence of the beam dimensions a and b.

7. COMPARISON OF FDM AND FEM – CASE STUDY

We have been asked by the potential users of the proposed computational scheme
whether our approach with a simple discretization method and the algebraic mod-
elling system GAMS provides results comparable with the results from black-box-like
systems widely used by engineers. We have compared the GAMS implementation in-
volving a finite difference method (FDM) and the ANSYS 11.0 (Ansys Inc., Canons-
burg, PA, USA) model based on a finite element method (FEM). This comparison
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is made for a deterministic version of our civil engineering optimization problem
(1) – (9) with α = β = 0.5 and E = 2.1 · 105 MPa.

The optimal solution obtained by GAMS with FDM is: a = 10 mm, b = 89.4 mm,
z = 0.47, the optimal solution from ANSYS with FEM is: a=11.2 mm, b=84.5 mm,
z = 0.49. The GAMS results are slightly better but there is only a small difference
between them and the results computed by ANSYS.

The deflection in optimized cases is quantitatively and qualitatively the same for
both computing systems and discretization methods (see Figure 7). The maximum
deflection of 0.37 mm occurs in the middle of the beam while it decreases towards
the beam ends. Also the maximum stress in optimized cases is quantitatively and
qualitatively nearly the same for both computing systems and discretization methods
(see Figure 8). The difference is only in signs – the absolute value of stress is plotted
in ANSYS while both positive and negative values are plotted in GAMS. A maximum
tensile stress of about 100 MPa occurs at the ends of the beam while a maximum
compression stress of about −54 MPa occurs in the middle of the beam.

a) b)

Fig. 7. Deflection computed by a) ANSYS and b) GAMS.

a) b)

Fig. 8. Maximum stress computed by a) ANSYS and b) GAMS.
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8. CONCLUSIONS

The applicability of a two-stage stochastic programming approach to civil-engineer-
ing-optimum-design problems with random parameters involved has been discussed.
A recommended beam design problem has been used as a test case. Thanks to
a modelling-based approximation approach focusing on suboptimal solution search
we can avoid difficulties with the huge amounts of input data required and prob-
lems with the implementation of various algorithms that often appear in real-world
applications of stochastic optimal control-related models. The choice of the model
is suitable for the prototype case implementations in such modelling languages as
GAMS and for further parallel computations by using scenario decomposition as the
PHA. The solution quality can be tested by the Monte-Carlo technique presented.
An FDM gives acceptable results for the test example by presented results, however,
it can be replaced by an FEM or FVM (finite volume method) in future discretiza-
tion schemes for advanced cases. In general, the computational scheme proposed
(scenario-based two-stage stochastic program, modelling language implementation,
parallelization, solution quality evaluation, verification of results by the FEM solver)
seems sufficiently robust for future applications to similar and advanced optimum
design problems. There is also a future challenge to motivate engineers to use this
approach because they may still prefer the black-box-like computing system with
an appropriate preprogrammed mathematical model chosen (i. e., with no equations
describing the physical behaviour necessary).
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