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CONTROL OF A CLASS OF CHAOTIC SYSTEMS

BY A STOCHASTIC DELAY METHOD

Lan Zhang, Chengjian Zhang and Dongming Zhao

A delay stochastic method is introduced to control a certain class of chaotic systems.
With the Lyapunov method, a suitable kind of controllers with multiplicative noise is
designed to stabilize the chaotic state to the equilibrium point. The method is simple and
can be put into practice. Numerical simulations are provided to illustrate the effectiveness
of the proposed controllable conditions.
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1. INTRODUCTION

It is well known that output of a chaotic system is unpredictable, yet a controlled
system being desirable if it meets predefined requirement. Hence, chaos control
becomes an important scientific topic and many techniques have studied [1, 2, 3, 4, 5],
where the dominantly majority of the studies is focused on deterministic cases. In
reality, physical systems are often perturbed by noise, and it becomes important
to assess how the dynamics of deterministic chaotic system is affected by noise. In
physical systems, a deterministic system and its equilibrium state are the transitional
result from initial chaotic state to controlled system equilibrium and state system
operational modes.

A system perturbed by noise can be illustrated by a random dynamical system
which consists of two basic ingredients: a noise model and a model that is disturbed
by noise [6]. Currently, system stability and controllability via white noise have
been studied, one example is the stochastic stability of the Hamiltonian system [17].
The stability of a system is also illustrated in [12] that if the original system is
exponentially stable and stochastic perturbation is sufficient small, the controlled
system will remain exponentially stable. An unstable system, Ẋ(t) = F̂ (X(t)),
can be stabilized using a stochastic method, and the function F̂ (X(t)) satisfies the
condition

X(t)T F̂ (X(t)) ≤ −k|X(t)|2 (k > 0) (1)

A study by Craud and Flandoli [8] analyzes how additive noise destroys a pitchfork
bifurcation of one-dimensional dynamical system. In this study, a stochastic delay
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method is proposed for controlling a class of chaotic systems. The primary concerns
are on the qualitative of solutions of stochastic delay differential equations (SDDEs)
interpreted in the Itô sense. An Itô SDDEs is

dX(t) = F (X(t), X(t− τ)) dt +G(X(t), X(t− τ)) dw(t) (2)

where τ > 0 is the delay, F (X(t), X(t− τ)) is the drift term, and G(X(t), X(t− τ))
is the diffusion term. If SDDEs could be solved explicitly, it would be easy to
determine whether the trivial solution is stable. Nevertheless such solutions are
generally not available, our study applies the Lyapunov method and achieves analytic
conditions to control chaotic systems. The approximation solution of our approach
is developed via a numerical method by Euler–Maruyama [7]. A special case can
be found in [16]. The new approach has both noise and delay in the controlled
systems, therefore it is more realistic in system engineering than that of deterministic
methods. Another important feature is its simplicity and applicability, which leads
to simple and pragmatic system implementations.

The paper is organized as follows. In Section 2, the relevant theoretical work
is illustrated for the dynamical analysis of SDDEs; Section 3 identifies that the
controlled chaotic system has a unique solution, and the conditions for controlling a
class of chaotic systems are obtained thereafter. Section 4 takes the unified system
as an example to simulate and verify our results.

2. THE BASIC SETUP AND PRELIMINARY RESULTS

This study is on the stability of chaotic systems by the Lyapunov method. The
discussion covers the range of the Lyapunov exponents for the relevant SDDEs. In
order for the controlled system to be valid, it is necessary to show the uniqueness
and existence of the solution of SDDEs. In this section, the relevant theoretical
results are introduced.

2.1. Existence and uniqueness theorem

Let (Ω,F , P ) be a complete probability space with a filtration (Ft)t≥0 which is right-
continuous and satisfies that each (Ft)(t ≥ 0) contains all P -null sets in F . Let w(t)
be the given m-dimensional Brownian motion defined on (Ω,F , P ). Let τ > 0 and
C([−τ, 0];Rd) denote the family of continuous functions ξ(·) : [−τ, 0] → Rd with the
norm |ξ| = sup

−τ≤θ≤0

|ξ(θ)|.

Of our interest are the properties of the solutions of SDDEs of Itô type. The
following is the existence and uniqueness theorem of SDDEs. The SDDEs [12] is

dx(t) = f(xt, t) dt+ g(xt, t) dw(t), t ≥ t0 (3)

where xt = {x(t+ θ) : −τ ≤ θ ≤ 0}, the initial data xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0},
f : C([−τ, 0];Rd) × [t0, T ] → Rd and g : C([−τ, 0];Rd) × [t0, T ] → Rd×m.
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Lemma 1. Assume that there exist two positive constants K1 and K2, such that
(i) (Lipschitz condition) for all ϕ, ψ ∈ C([−τ, 0];Rd) and t ∈ [t0, T ]

|f(ϕ, t) − f(ψ, t)|2 ∨ |g(ϕ, t) − g(ψ, t)|2 ≤ K1|ϕ− ψ|2, (4)

(ii) (Linear growth condition) for all (ϕ, t) ∈ C([−τ, 0);Rd) × [t0, T ],

|f(ϕ, t)|2 ∨ |g(ϕ, t)|2 ≤ K2(|ϕ|2 + 1). (5)

Then there exists a unique solution x(t) of the Eq. (3) and the solution belongs to
M2([t0 − τ, T ];Rd), which denotes all real-value measurable {Ft}−adapted process

{f(t)}t0−τ≤t≤T with E
∫ T

t0−τ
|f(t)|2 dt < ∞. In this paper, the norms of vector

X(t) ∈ Rd and matrix A ∈ Rd×d are respectively defined as

|X(t)| =
√

x2
1(t) + · · · + x2

d(t), |A| =
√

trace(ATA) (6)

With Lemma 1, it is identifiable whether the SDDEs have a unique solution.

2.2. Lyapunov exponent

For a deterministic system, the Lyapunov exponent is an important index to verify
whether the system is chaotic or stable. For a random dynamical system, a com-
patible approach is applied. Hale [9] shows that the infinite-dimensional properties
are inherent in the delay equation; that is, for each solution trajectory based on an
arbitrary initial function Φ, the least Lyapunov exponent trends to be −∞. Many
studies on the stochastically stable in probability employ the maximal Lyapunov
exponent based on the Oseledets multiplicative ergodic theory [14]. Therefore, the
cases with the maximal Lyapunov exponent are considered [7].

Definition 2. For a solution Y (Φ, t) of an SDDE on [t0,+∞),

Λ(Y (Φ, t)) = lim
t→+∞

1

t
log |Y (Φ, t)|

provided the right-hand side is well-defined, and it is termed as the Lyapunov expo-
nent for the solution Y generated by Φ (an initial function). The maximal Lyapunov
exponent associated with the SDDE is

Λ∗ = sup
Φ

lim
t→+∞

1

t
log |Y (Φ, t)|

provided the right-hand side exists. Then, with probability one, we shall have

lim
t→+∞

1

t
log |Y (Φ, t)| = Λ∗ (7)

Many important results of stability can be derived using Lyapunov exponents for
SDDEs. When the maximal Lyapunov exponent is positive, the state of the system
is unstable. When the maximal Lyapunov exponent is negative, the state of the
system is exponentially stable.
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3. CONTROLLING ACLASS OF CHAOTIC SYSTEMS

Considering the following chaotic system [15]

Ẋ(t) = AX(t) + X̂(t)h(X(t)) (8)

where A is a n×nmatrix, X(t) = (x1(t), . . . , xn(t))T ∈ Rn, the diagonal matrix X̂(t)
is diag{xi1(t), . . . , xin(t)}, where (i1, . . . , in) is some permutation of (1, . . . , n). The
vector function h(·) : Rn → Rn is continuous and satisfies the Lipschitz condition,
i. e. there exists a positive constant L, such that

|h(X(t)) − h(Y (t))|2 ≤ L|X(t) − Y (t)|2, X(t), Y (t) ∈ Rn (9)

3.1. Problem statement

A controlled chaotic system can be illustrated by inserting an additive noise to a
deterministic system as follows

dX(t) = (AX(t) + X̂(t)h(X(t))) dt+G(X(t), X(t− τ)) dw(t) (10)

where w(t) is a one-dimensional Brownian motion defined on the complete prob-
ability space (Ω,F , P ) with a filtration (Ft)t≥0, the undetermined function G :
Rn ×Rn → Rn is assumed to be Borel measurable and satisfies the following condi-
tions

|G(X(t), X(t− τ)) −G(Y (t), Y (t− τ))|2

≤ α1|X(t) − Y (t)|2 + α2|X(t− τ) − Y (t− τ)|2
(11)

trace[G(X(t), X(t− τ))TG(X(t), X(t− τ))] ≤ γ1|X(t)|2 + γ2|X(t− τ)|2 (12)

|X(t)TG(X(t), X(t− τ))|2 ≥ β1|X(t)|4 + β2|X(t− τ)|4 (13)

where α1, α2, γ1, γ2, β1, β2 are nonnegative constants. When the controlled terms,
G(X(t), X(t−τ)) dω(t), are added, the deterministic chaotic system becomes stochas-
tic. It is necessary to show that this kind of control methods is meaningful, i. e.,
Eq. (10) has a solution.

If we define d = n,m = 1 and

f(ϕ) = F (ϕ(0), ϕ(−τ)) = AX(t) + X̂(t)h(X(t))

g(ϕ) = G(ϕ(0), ϕ(−τ)) = G(X(t), X(t− τ))

for ϕ ∈ C([−τ, 0];Rd), then Eq. (10) can be written as Eq. (3), therefore Lemma 1.
can be applied to Eq. (10).

With the definition in Eq. (6) and combined with Eqs. (11) and (12), the function
G(X(t), X(t− τ)) satisfies the Lipschitz condition and the linear growth condition.
Before doing the similar analysis of the function F (ϕ(0), ϕ(−τ)), it is worth to notice
some facts of the chaotic system (8). Based on the chaotic property, the state X(t)
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of system (8) is bounded, i. e. |X(t)| ≤ L1 for some positive constant L1. Since the
function h(X(t)) is continuous, h(X(t)) is also bounded, i. e. |h(X(t))| ≤ L2 for some
positive constant L2. The following is to prove that the function F (ϕ(0), ϕ(−τ))
satisfies the Lipschitz condition and the linear growth condition.

For any X(t) = (x1(t), . . . , xn(t))T ∈ Rn, Y (t) = (y1(t), . . . , yn(t))T ∈ Rn

|AX(t) + X̂(t)h(X(t))| ≤ |A||X(t)| + |X̂(t)||h(X(t))|
≤ (|A| + L2)|X(t)|

(14)

|AX(t) + X̂(t)h(X(t)) −AY (t) − Ŷ (t)h(Y (t))|
≤ |A||X(t) − Y (t)| + |X̂(t)h(X(t)) − Ŷ (t)h(Y (t))|
≤ |A||X(t) − Y (t)| + |X̂(t)||h(X(t)) − h(Y (t))| + |h(Y (t))||X̂(t) − Ŷ (t)|
≤ (|A| + L1

√
L+ L2)|X(t) − Y (t)|

(15)

A combination of Eqs. (14) and (15) indicates that the function F (ϕ(0), ϕ(−τ))
satisfies the Lipschitz condition and linear growth condition. By Lemma 1, system
(10) has a unique solution, and this solution has a continuous path and its every
moment is finite.

Remark: From the following conditions:

1. X̂(t) = diag{xi1(t), . . . , xin(t)}, Ŷ (t) = diag{yi1(t), . . . , yin(t)};

2. X(t) and Y (t) are the states of the same kind of chaotic systems;

3. Based on 1, 2 and Eq. (6), |X(t)| = |X̂(t)| and |X(t) − Y (t)| = |X̂(t) − Ŷ (t)|.
To control the chaotic system to the equilibrium point, it is assumed thatG(0, 0) = 0,
and F (0, 0) ≡ 0. Hence system (10) has the solution X(t) ≡ 0 corresponding to the
initial value X(t0) = 0, and white noise is the multiplicative noise. The set {0} is
considered to be the attractor of this random dynamical system, thus leading to the
conclusive result for the controlled chaotic systems.

One of the applications of the proposed controlled chaotic system is in designing
the initial system conditions for the local oscillation of radio receivers, which white
noise is considered to be a necessary input to the positive feedback oscillator. In
such a system, white noise is generated at start, where selected frequency component
is supplied with energy and the rest is resided into the origin, or zero energy state.

3.2. Designing the suitable controllers

The control of chaotic systems is proposed in Theorem 4. To prove the theorem, the
following Lemma is a necessary step [12].

Lemma 3. For all x0 6= 0 in Rn, P{x(t; t0, x0) 6= 0 on t ≥ t0} = 1. That is, almost
all the sample path of any solution starting from a non-zero state will never reach
the origin.

Now, we can state the main result as follows.
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Theorem 4. Suppose that the conditions Eqs. (4) and (11) – (13) hold, τ > 0 is
arbitrary delay, and

γ2 ≤ 4β2, (16)

2(|A| + L2) + γ1 +
γ2

2
− 2β1 < 0. (17)

Then the controlled chaotic system (10), with the initial value date ξ = {ξ(θ) : θ ∈
[−τ, 0]}, can be stabilized to the equilibrium point almost surely, and

Λ∗ = |A| + L2 +
γ1

2
+
γ2

4
− β1 a.s. (18)

P r o o f . Since X(t; t0, 0) ≡ 0, the conclusion is valid for X(t0) = 0. Next, it

needs to prove the result for X(t0) 6= 0. A combination of the Lyapunov function
V (t,X(t)) = log |X(t)|2 and the Itô formula leads

V (t,X(t)) = log |X(t)|2 = log(XT (t)X(t))

= log(ξT (t0)ξ(t0)) + 2

t
∫

t0

XT (s)(AX(s) + X̂(t)h(X(s)))

XT (s)X(s)
dds

+

t
∫

t0

trace(GT (X(s), X(s− τ))G(X(s), X(s − τ)))

XT (s)X(s)
ds

−2

t
∫

t0

|XTG(X(s), X(s− τ))|2
[XT (s)X(s)]2

ds+M(t)

(19)

where

M(t) = 2

t
∫

t0

XTG(X(s), X(s− τ))

XT (s)X(s)
dw(s)

is a continuous martingale with initial value M(t0) = 0. By the exponential martin-
gale inequality, there exists arbitrary positive constants T, ε, β such that

P{ω : sup
t0≤t≤T



M(t) − 2ε

t
∫

t0

|XTG(X(s), X(s− τ))|2
|X(s)|4 ds



 > β} < e−εβ (20)

Equation (20) implies that, for almost every ω ∈ Ω,

M(t) ≤ β + 2ε

t
∫

t0

|XTG(X(s), X(s− τ))|2
|X(s)|4 ds, ∀ t ∈ [t0, T ]. (21)
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Since the trajectory X(t) is bounded for all t ≥ t0, the inequality (21) can be
extended to the case of T → ∞. Substituting inequality (21) into Eq. (19) and using
Eq. (12) and Eq. (13), it yields that, for almost every ω ∈ Ω,

V (t,X(t)) = log |X(t)|2 = log(XT (t)X(t))

≤ log(ξT (t0)ξ(t0)) + 2

t
∫

t0

|XT (s)(AX(s) + X̂(s)h(X(s)))|
|X(s)|2 ds

+

t
∫

t0

trace(GT (X(s), X(s− τ))G(X(s), X(s− τ))

XT (s)X(s)
ds+ β

−2(1 − ε)

t
∫

t0

|XTG(X(s), X(s− τ))|2
[

XT (s)X(s)]2
ds

≤ log(ξT (t0)ξ(t0)) + 2

t
∫

t0

|A||X̂(t)| + |X̂(t)||h(X(s))|
|X(s)| ds+ β

+

t
∫

t0

γ1|X(s)|2 + γ2|X(t− τ)|2
|X(s)|2 ds− 2(1 − ε)

t
∫

t0

β1|X(s)|4 + β2|X(t− τ)|4
|X(s)|4 ds

≤ log(ξT (t0)ξ(t0)) + 2(|A| + L2 + γ1

2
− (1 − ε)β1)(t− t0)

+γ2

t
∫

t0

|X(s− τ)|2
|X(s)|2 ds− 2(1 − ε)β2

t
∫

t0

|X(s− τ)|4
|X(s)|4 ds

]

+ β

(22)
Based on Eq. (16), the Hölder inequality and the inequality 2ab ≤ a2 +b2, for almost
every ω ∈ Ω, the Lyapunov function V (t,X(t)) is bounded by

V (t,X(t)) = log |X(t)|2 = log(XT (t)X(t))

≤ log(ξT (t0)ξ(t0)) + 2(|A| + L2 +
γ1

2
− (1 − ε)β1)(t− t0)

+γ2





t
∫

t0

|X(s− τ)|4
|X(s)|4 ds)

1

2 (t− t0)
1

2 − 2(1 − ε



 β2

t
∫

t0

|X(s− τ)|4
|X(s)|4 ds+ β

(23)

≤ log
(

ξT (t0)ξ(t0)
)

+ 2
(

|A| + L2 +
γ1

2
− (1 − ε)β1 +

γ2

4

)

(t− t0)

+
(γ2

2
− 2(1 − ε)β2

)

t
∫

t0

|X(s− τ)|4
|X(s)|4 ds+ β

≤ log(ξT (t0)ξ(t0)) + 2(|A| + L2 +
γ1

2
− (1 − ε)β1

+
γ2

4
)(t− t0) + 2εβ2

t
∫

t0

|X(s− τ)|4
|X(s)|4 ds+ β
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Let the both sides of Eq. (23) be divided by t > 0, and let t→ ∞, and ε→ 0. Then,

lim
t→+∞

1

t
log |X(t)|2 = 2

(

|A| + L2 +
γ1

2
− β1 +

γ2

4

)

a.s. (24)

A combination of Eqs. (17) and (24) leads to

lim
t→+∞

1

t
log |X(t)| = |A| + L2 +

γ1

2
+
γ2

4
− β1 < 0. a.s. (25)

Hence, the maximal Lyapunov exponent is negative, and as a result, the controlled
chaotic system converges to the equilibrium point almost surely. �

In the proof above, functionAX(t)+X̂(t)h(X(t)) is estimated, i. e. |XT (t)(AX(t)+
X̂(t)h(X(t)))| ≤ (|A| + L2)|X(t)|2. The exact bound and positively invariance set
of a chaotic system can be technically challenging. Rigid bounds for some specific
chaotic systems can be identified [10], and this approach helps in deriving more rigid
bounds for L1, L2 that are useful in designing the controllers.

4. EXAMPLE

In this section, the unified chaotic system is employed as an example to verify the
usefulness of the theoretical results in Section 3.

4.1. Controlling the unified chaotic system

The unified system is described as [11]











ẋ1(t) = (25α+ 10)(x2(t) − x1(t)),

ẋ2(t) = (28 − 35α)x1(t) − x1(t)x3(t) + (29α− 1)x2(t),

ẋ3(t) = x1(t)x2(t) − 8+α
3
x3(t),

(26)

which has the equilibrium points

O = (0, 0, 0);

P1 =
(

√

(8 + α)(9 − 2α),
√

(8 + α)(9 − 2α), 27 − 6α
)

;

P2 =
(

−
√

(8 + α)(9 − 2α),−
√

(8 + α)(9 − 2α), 27 − 6α
)

.

The system (26) is chaotic for all α ∈ [0, 1]. In particular, when α = 0 or 1, it
becomes the Lorenz system or the Chen system respectively [13]. For the chaotic
unified system, we have

X(t) =





x1(t)
x2(t)
x3(t)



 , X̂ =





x1(t) 0 0
0 x3(t) 0
0 0 x2(t)



 ,
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h(X) =





0
−x1(t)
x1(t)



 , A =





−(25α+ 10) 25α+ 10 0
28 − 35α 29α− 1 0

0 0 − 8+α
3



 .

It is shown that the function h(X(t)) satisfies inequality (9). Next, the bound is
derived for |XT (t)(AX(t) + X̂(t)h(X(t)))|, where

|X(t)T [AX(t) + X̂(t)h(X(t))]|
=

∣

∣−(25α+ 10)x2
1(t) + (38 − 10α)x2(t)x1(t) + (29α− 1)x2

2(t) − 8+α
3
x2

3(t)
∣

∣

≤
∣

∣−(25α+ 10)x2
1(t) + (38 − 10α)x1(t)x2(t) + (29α− 1)x2

2(t)
∣

∣ + 8+α
3
x2

3(t)

≤ (25α+ 10)x2
1(t) + (38 − 10α)|x1(t)x2(t)| + (1 − 29α)x2

2(t) + 8+α
3
x2

3(t)

≤ (−30α+ 29)x2
1(t) + (20 − 34α)x2

2(t) + 8+α
3
x2

3(t)

≤ (29 − 30α)|X(t)|2 = K(α)|X(t)|2

(27)

The function K(α), instead of |A| + L2, is used in the following control theorem of
the unified chaotic system.

Corollary 5. If Eqs. (11) – (13) hold, and

2K(α) + γ1 + γ2 < 2(β1 + β2), for all α ∈ [0, 1/29)

the controlled unified system with the initial value ξ = {ξ(θ), θ ∈ [−τ, 0]} can be
stabilized to the equilibrium point almost surely.

4.2. Numerical simulation

Next the original Lorenz system, i. e. α = 0, is taken as an example to show the
effectiveness of this stochastic method. Let

G(X(t), X(t− τ)) = (11.5 − sinx1(t− τ))











x1(t)

x2(t)

x3(t)











(28)

Correspondingly, the controlled Lorenz system is described as follows














dx1(t) = 10(x2(t) − x1(t)) dt + (11.5 − sinx1(t− τ))x1(t) dw(t)

dx2(t) = (28x1(t) − x2(t) − x1(t)x3(t)) dt + (11.5 − sinx1(t− τ))x2(t) dw(t)

dx3(t) = (x1(t)x2(t) − 8

3
x3(t)) dt+ (11.5 − sinx1(t− τ))x3(t)dw(t)

(29)
and

tr(G(X(t), X(t− τ))TG(X(t), X(t− τ)))

= (11.5 − sinx1(t− τ))2|X(t)|2 ≤ 12.52|x(t)|2 = γ1|X(t)|2
|X(t)TG(t, x(t), x(t − τ))|2
= (11.5 − sinx1(t− τ))2|X(t)|4 ≥ 10.52|X(t)|4 = β1|X(t)|4

(30)
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Corollary 5. is specified by

Λ∗ = K(0) +
1

2
× 12.52 − 10.52 = −3.125 < 0 (31)

With the Euler–Maruyama method [7]

Xn+1 = Xn + hF (Xn, Xn−m) +G(Xn, Xn−m)△ωn (32)

where h is the step size, tn = t0 + nh, τ = mh, m,n ∈ N . The increment △w =
w(tn+1)−w(tn) is an N(0, h)-distributed Gaussian random variable. Let the initial
value ξ = 1, Therefore, equation * has numerical solution. The state means of
x1(t), x2(t) and x3(t) are shown in Figure. Our experiment shows that with various
value of τ , the equilibrium state is repeatedly reached.
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Fig. When α = 0, τ = 0.1, the left figures show 400 trajectories of the state x1(t), x2(t), x3(t)

respectively; and the right ones show the corresponding mean of state x1(t), x2(t), x3(t) re-

spectively.
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5. CONCLUSION

A stochastic delay method of controlling a class of chaotic systems is presented in
this paper. Provided the suitable controllers, the attractor of the random dynamical
system is a one-point set {0} almost surely, and, the chaotic states converge to
the origin exponentially almost surely. The value of delay τ does not affect the
convergence of the chaotic system to its equilibrium state.
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[11] J. H. Lü and G.R. Chen: A new chaotic attractor conined. Internat. J. Bifurcation
and Chaos 12(2002), 3, 659–661.

[12] X.R. Mao: Stochastic Differential Equations and Their Applications. Horwood Publ.
1997, Chap. 5, pp. 179–183.
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