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ON METRIC DIVERGENCES
OF PROBABILITY MEASURES
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Standard properties of φ-divergences of probability measures are widely applied in var-
ious areas of information processing. Among the desirable supplementary properties fa-
cilitating employment of mathematical methods is the metricity of φ-divergences, or the
metricity of their powers. This paper extends the previously known family of φ-divergences
with these properties. The extension consists of a continuum of φ-divergences which are
squared metric distances and which are mostly new but include also some classical cases
like e. g. the Le Cam squared distance. The paper establishes also basic properties of the
φ-divergences from the extended class including the range of values and the upper and
lower bounds attained under fixed total variation.
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1. INTRODUCTION

Let us consider divergences D(P,Q) of probability measures P,Q from the general
space P of all probability measures on a measurable space (X ,A). For the obvious
mathematical reasons, the most interesting are the metric divergences satisfying the
conditions of reflexivity

D(P,Q) ≥ 0 for all P,Q ∈ P (1)

with the equality if and only if P = Q, symmetry

D(P,Q) = D(Q,P ) for all P,Q ∈ P (2)

and triangle inequality

D(P,Q) ≤ D(P,R) + D(R,Q) for all P,Q,R ∈ P. (3)

This paper is restricted to the narrower class of metric divergences of the form

D(P,Q) = Dφ(P,Q)π (4)
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where π is a positive power of the φ-divergence Dφ(P,Q) defined for arbitrary
P,Q ∈ P by the formula

Dφ(P,Q) =
∫

g φ

(
f

g

)
dµ, f =

dP

dµ
, g =

dQ

dµ
. (5)

Here and in the sequel, µ denotes a σ-finite measure on (X ,A) dominating P,Q
and φ(t) a nonnegative convex function on the domain 0 < t < ∞ strictly convex
and vanishing at t = 1. Behind the integral in (5) are considered the extensions and
conventions

φ(0) = lim
t↓0

φ(t) and 0φ

(
f

0

)
= f φ∗(0) for all f ≥ 0 (6)

where

φ∗(0) = lim
t↓0

φ∗(t) and φ∗(t) = t φ

(
1
t

)
, t > 0. (7)

By (5), for each constant c ∈ R,

Dφ(t)(P,Q) = Dφ(t)+c.(t−1)(P,Q) for all P,Q ∈ P (8)

but if the function φ(t) under consideration is differentiable at t = 1 then φ′(1) = 0
so that φ(t) + c · (t − 1) is nonnegative for 0 < t < ∞ and vanishing at t = 1 only if
c = 0.

Note that in the definition (4) we consider powers of φ-divergences rather than
the φ-divergences themselves because, by the Corollary to Theorem A.5 in the Ap-
pendix, the triangle inequality (3) with D(P,Q) replaced by Dφ(P,Q) holds only if
Dφ(P,Q) = δ · V (P,Q) where δ is a positive constant and

V (P,Q) =
∫

|g − f |dµ (9)

is the φ-divergence for φ(t) = |t − 1| called total variation of P,Q.

The metric properties (1) – (3) together with the following basic φ-divergence
properties (a) – (e) valid for all P,Q ∈ P guarantee wide applicability of the diver-
gences studied in this paper. The properties (a) – (e) are stated here for references
later. For their detailed proofs, and also for details about applications of (6) – (8) in
the definition (5), see Csiszár [1] and Liese and Vajda [8, 9].

(a) The range of values is

0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0) (10)

for φ(0), φ∗(0) given by (6), (7). Here Dφ(P,Q) = 0 if and only if P = Q so that the
reflexivity (1) holds for every power of φ-divergence considered in (4). On the other
hand, the upper bound Dφ(P,Q) = φ(0) + φ∗(0) is achieved if P⊥Q (orthogonality,
i. e. disjoint supports of P and Q). The “if” condition can be replaced by “if and
only if” when

φ(0) + φ∗(0) < ∞. (11)
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(b) The function φ∗(t) adjoint to φ(t) in the sense of (7) is nonnegative, convex
on the domain t > 0 and strictly convex and vanishing at t = 1. Thus it defines the
φ∗-divergence

Dφ∗(P,Q) = Dφ(Q,P ) for all P,Q ∈ P. (12)

The symmetry
Dφ(P,Q) = Dφ(Q,P ) for all P,Q ∈ P (13)

takes place if and only if there exists a constant c ∈ R such that

φ∗(t) = φ(t) + c · (t − 1). (14)

For symmetric φ-divergences φ∗(0) = φ(0) − c so that (11) reduces to the simpler
boundedness condition

φ(0) < ∞. (15)

(c) The monotonicity deals with relations between the φ-divergences Dφ(P,Q)
of probability measures P,Q and the φ-divergences of restrictions PB, QB on sub-σ-
algebras B ⊂ A. It states the ordering

Dφ(PB, QB) ≤ Dφ(P,Q) (16)

with the equality if B is sufficient for the pair {P,Q}. The “if” condition can be
replaced by “if and only if” when φ(t) is strictly convex on the whole domain t > 0
and Dφ(P,Q) is finite.

(d) If the σ-algebra A is generated by an at most countable A-measurable par-
tition S of X (called spectrum of A) then the spectral representation provides the
simpler φ-divergence formula

Dφ(P,Q) =
∑
A∈S

Q(A)φ
(

P (A)
Q(A)

)
. (17)

(e) Finally, the finite approximation

Dφ(P,Q) = sup
S

∑
A∈S

Q(A)φ
(

P (A)
Q(A)

)
(18)

is a general alternative to the definition (5). Here the supremum is assumed to run
over all finite A-measurable partitions S of X . Let us note that the conventions (6),
(7) are supposed to be applied behind the sums in (18) and (17).

Remark 1. As said above, if the nonnegative convex φ(t) under consideration is
differentiable at t = 1 then φ′(1) = 0 which is equivalent to (φ∗)′(1) = 0. Thus
by (14)

φ∗(t) = φ(t) for all t > 0 (19)

is necessary and sufficient condition for the symmetry (13). Therefore in this case the
symmetric φ-divergences satisfy the identity φ∗(0) = φ(0). Some situations where it
is not so are illustrated in Example 1 below.
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Remark 2. The fact that φ∗ considered in (b) satisfies the conditions imposed
in (5) provided φ does so follows from Theorem A.1 in the Appendix. By Theorem
A.2 in the Appendix, (15) is the Csiszár necessary condition for the metricity of a
φ-divergence power D(P,Q) = Dφ(P,Q)π, π > 0. Hence the metrizable divergences
Dφ(P,Q) are uniformly finitely bounded on P and achieve the upper bound

φ(0) + φ∗(0) = 2φ(0) − c (cf. (14)) (20)

if and only if P⊥Q.

Example 1. Relation (8) and the symmetry conditions in (b) can be illustrated
by the class of functions

φα,β(t) = α(1 − t)I(t < 1) + β(t − 1)I(t > 1) for α, β ≥ 0, α + β > 0 (21)

where I(·) is the indicator function. Obviously, all these function belong to the class
of convex functions considered in this paper and satisfy the relation φ∗

α,β(t) = φβ,α(t)
and also the symmetry condition

φ∗
α,β(t) = φα,β(t) + (β − α) (t − 1) (cf. (14))

considered in (b). Hence if α 6= β then

φα,β(0) = α 6= β = φ∗
α,β(0).

It is easy to see that the functions (21) define the metric divergences

Dφα,β
(P,Q) =

α + β

2
V (P,Q) (22)

where V (P,Q) is the total variation (9).

The present paper follows [6] where the authors emphasized statistical applicabil-
ity of some φ-divergence classes with functions φ = φα continuously depending on a
real parameter α. According to what was said above, it is important to select among
them them the classes satisfying for positive powers π = πα the metric divergence
properties (1) – (3). One such class with parameters α ∈ R is investigated in the
present paper. It is an extension of the class introduced previously for α ≥ 0 in
Österreicher and Vajda [12].

2. METRIC DIVERGENCES

Let us start with some historical examples of φ-divergences which are or are not
metric divergences in the sense defined above, and with a review of previous results
in this area.

As it was said above, the triangle inequality

V (P,Q) ≤ V (P,R) + V (R,Q) for all P,Q,R ∈ P (23)
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holds for the total variation (9) since it is the L1-distance of probability densities
which fulfills also the remaining metric properties (1) and (2). Among the well known
φ-divergences (4) satisfying in the power π = 1/2 all metric properties (1) – (3) is
the squared Hellinger distance

H2(P,Q) = 2
∫ (√

g −
√

f
)2

dµ for φ(t) = 2
(√

t − 1
)2

(24)

since it is the squared L2-distance in the space of the square roots
√

f and
√

g of
probability densities. The reflexivity and symmetry (1), (2) of the squared LeCam
distance (sometimes called the Vincze – LeCam distance)

LC2(P,Q) =
1
2

∫
(f − g)2

f + g
dµ for φ(t) =

(t − 1)2

2(t + 1)
(25)

introduced independently by Vincze [14] and Le Cam [7] are easily seen from (a)
and (b) above, but the triangle inequality (3) for LC(P,Q) = (LC2(P,Q))1/2 is a
nontrivial problem to which we return in the next section. The best known example
of φ-divergence is the information divergence

I(P,Q) =
∫

f ln
(

f

g

)
dµ for φ(t) = t ln t − t + 1. (26)

Here (4) with no π is metric. Obviously, all powers D(P,Q) = I(P,Q)π, π > 0 are
reflexive but none of them is symmetric in the sense of (2). The powers J(P,Q)π of
the reflexive symmetrized version

J(P,Q) = I(P,Q) + I(Q,P )

called Jeffrey’s divergence do not satisfy the triangle inequality. Indeed, J(P,Q)
is the φ̃-divergence for the sum φ̃ = φ + φ∗ of the logarithmic function (26) with
the adjoint function φ∗(t) = − ln t + t − 1 where φ̃(0) = ∞ violates the necessary
metricity condition (15).

Metric properties of φ-divergences were for the first time studied by Csiszár [2]
who introduced the metricity condition (15). However, the classes of metric diver-
gences in the sense stated above started to be systematically studied by Kafka et al.
[4]. These authors proved the sufficient metricity condition of Theorem A.3 in the
Appendix cited in the sequel simply as the Kafka condition. In the selected exam-
ples above we find this condition with π = 1 satisfied by the total variation function
φ(t) = |t−1|, and with π = 1/2 by the Hellinger function φ(t) = 2

(√
t − 1

)2
and the

Le Cam function φ(t) = (t − 1)2 /2(t+1). In [4] this condition was used to establish
the metricity of the classes of φ-divergences of the form

D(P,Q) = Dφα(P,Q)1/α (cf. (4)) (27)

generated by the class

φα(t) = |1 − t1/α|α for 0 < α ≤ 1 (28)
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of Matusita [10] functions as well as by the the extensions

φα(t) =
|1 − t|α

(t + 1)α−1
for α ≥ 1

of the Le Cam function φ(t) = φ2(t).

Later Österreicher [11] used the Kafka condition to prove the metricity of the
class of φβ-divergences

D(P,Q) = Dφβ
(P,Q)1/2 (cf. (4)) (29)

defined by the class of convex functions

φβ(t) = (1 + tβ)1/β − 2(1/β)−1(1 + t), β > 1 (30)

including the limit φ∞(t) = |t − 1|/2.

Österreicher and Vajda [12] normalized and extended the functions (30) into the
class

fβ(t) =
φβ(t)

1 − 1/β
=

(1 + tβ)1/β − 2(1/β)−1(1 + t)
1 − 1/β

, β > 0, β 6= 1 (31)

including the limits f∞(t) = φ∞(t) and

f1(t) = lim
β→1

fβ(t) = t ln t + (t + 1) ln
2

t + 1

and proved that the class of the corresponding fβ-divergence powers

D(P,Q) = Dfβ
(P,Q)min{1/2,β}, 0 < β ≤ ∞

satisfy the metric properties (1) – (3).

The present paper further extends the previous extension, namely to the domain
β < 0. The basic step is the reparametrization of the class (31) by α = 1/β ≥ 0. A
slight modification consisting in the multiplication by

sign α =
α

|α|
for α 6= 0

allowed to extend the convexity of the functions φα(t) = f1/α(t) to the domain
α < 0. As a result, we introduce here the class of φα-divergences

Dα(P,Q) = Dφα(P,Q), α ∈ R (32)

for the convex functions φα(t) given in the domain t > 0 by the formula

φα(t) =
sign α

1 − α

[
(t1/α + 1)α − 2α−1(t + 1)

]
(33)

if α(α − 1) 6= 0 and by the corresponding limits

φ1(t) = lim
α→1

φα(t) = t ln t + (t + 1) ln
2

t + 1
(34)

and
φ0(t) = lim

α→0
φα(t) = |t − 1|/2 (35)

otherwise. Our main result is the next theorem proved in Section 3 below.
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Theorem 1.

(i) The functions φα(t) given by (33) – (35) and used in the definition of Dα(P,Q)
in (32) satisfy the assumptions concerning φ in the definition of φ-divergence
(5), with the strict convexity instead of the ordinary convexity on the domain
t > 0 unless α = 0. Moreover, they are are self-adjoint in the sense φα(t) =
tφα(1/t) ≡ φ∗

α(t) on this domain so that the φα-divergences Dα(P,Q) are
symmetric in the sense of (2).

(ii) The powers

D(P,Q) = Dα(P,Q)π(α) for π(α) =


1
2 when −∞ < α ≤ 2

1
α when α > 2

(36)

of the extended φα-divergences satisfy the metric properties (1) – (3).

Example 2. It is easy to verify for all P,Q the formulas

D0(P,Q) = V (P,Q)/2 (total variation (9)), (37)
D2(P,Q) = H2(P,Q)/4 (Hellinger (24)), (38)

D−1(P,Q) = LC2(P,Q)/4 (Le Cam (25)), (39)

D1(P,Q) = I (P, (P + Q)/2) + I(Q, (P + Q)/2)

(normalized and symmetrized I-divergence (26)).
(40)

Thus the roots
√
Dk(P,Q) for k = −1, 0, 1, 2 are metrics on the space of probability

measures P.

In connection with the normalized I-divergence I (P, (P + Q)/2) and I(Q, (P +
Q)/2) appearing in (40) and sometimes called the Jensen–Shannon divergence (see
e. g. Fuglede and Topsøe [3]), one can mention that the general normalized versions

Dφ (P, (P + Q)/2) = Dφ(1)(P,Q), φ(1)(t) =
1 + t

2
φ

(
2t

1 + t

)
(41)

and

Dφ (Q, (P + Q)/2) = Dφ(2)(P,Q), φ(2)(t) =
1 + t

2
φ

(
2

1 + t

)
(42)

of arbitrary φ-divergences were introduced and studied previously in [13]. Their
symmetrized variants

Dφ(1)+φ(2)(P,Q) =
∫

f + g

2

[
φ

(
2f

f + g

)
+ φ

(
2g

f + g

)]
= Dφ (P, (P + Q)/2) + Dφ (Q, (P + Q)/2) (43)
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contain as a special case the symmetrized and normalized I-divergence D1(P,Q)
given by (40). However, powers of the general normalized and symmetrized diver-
gences Dφ(1)+φ(2)(P,Q) usually do not satisfy the triangle inequality − see e. g. the
next example. In this sense the Jensen–Shannon divergence D1(P,Q) represents an
exception.

Example 3. Consider the nonnegative convex function φ(t) = − ln t+t−1 leading
to the reversed information divergence Dφ(P,Q) = I(Q,P ). Here

φ(1)(t) + φ(2)(t) = (1 + t) ln
(

1 + t

2
√

t

)
(cf. (41), (42))

defines the normalized and symmetrized reversed I-divergence

Dφ(1)+φ(2)(P,Q) = I ((P + Q)/2, P ) + I ((P + Q)/2, Q) .

Since φ(1)(0)+φ(2)(0) = ∞ violates the necessary metricity condition (15), no power
of this divergence fulfills the triangle inequality on P.

3. SUPPLEMENT AND PROOF OF THEOREM 1

The following supplement of Theorem 1 presents bounds obtained for the class of
the divergences Dα(P,Q), α ∈ R defined by (33) – (35). Among them are the tight
lower and upper bounds

Lα(V ) ≤ Dα(P,Q) ≤ Uα(V ) (44)

attained for fixed values α ∈ R by the φα-divergences Dα(P,Q) of distributions
P,Q ∈ P with a given total variation value V (P,Q) = V, 0 ≤ V ≤ 2.

Theorem 2.

(i) The divergences Dα(P,Q) take on values between 0 and and the strictly posi-
tive values

φα(0) + φ∗
α(0) = 2φα(0) =



2α

|α| + 1
when α < 0

2α − 2
α − 1

when α ≥ 0, α 6= 1

2 ln 2 when α = 1.

(45)

The bounds Dα(P,Q) = 0 or Dα(P,Q) = 2φα(0) are attained if and only if
P = Q or P ⊥ Q (disjoint supports of P and Q), respectively.

(ii) The attainable lower bounds in (44) are for every argument 0 ≤ V ≤ 2 con-
tinuous in the variable α ∈ R and given by the formulas

Lα(V ) =
|α|

α(α − 1)

(
2α −

[
(1 + V/2)1/α + (1 − V/2)1/α

]α)
(46)
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if α(α − 1) 6= 0 and by their limits

L0(V ) = V/2, L1(V ) = (1 + V/2) ln (1 + V/2)+(1 − V/2) ln (1 − V/2) (47)

for α → 0 and α → 1 otherwise.

(iii) If the observation space (X ,A) is dichotomous in the sense that A contains
only two nonvoid sets A, X − A then the attainable upper bound defined in
(44) is the convex function

Uα(V ) =
V

2
cα +

2 − V

2
φ

(
2

2 − V

)
(48)

of variable 0 ≤ V ≤ 2, where the constants cα > 0 continuously depend on the
parameter α ∈ R and are given by the formula

cα = φα(0) =


2α−1/(|α| + 1) when α < 0

(2α−1 − 1)/(α − 1) when α ≥ 0, α 6= 1

ln 2 when α = 1.

. (49)

(iv) If the σ-algebra A contains more than two nonvoid sets then the attainable
upper bounds defined in (44) are linear functions of the form Uα(V ) = cαV
where the constants cα > 0 are the same as in (49).

P r o o f o f T h e o r em 1. For α ≥ 0 the desired results follow from what was
proved in Österreicher and Vajda [12] so that it suffices to prove the extensions for
α < 0. Next follows a proof covering all cases α ∈ R. It uses the auxiliary functions

ψ(k)
α (t) =

(
1 + t1/α

)α−k

, t > 0

for k = 0, 1, 2, ... and α 6= 0.

(i) For α = 0 the statement is obvious so let α 6= 0. The nonnegativity and strict
convexity of φα(t) follow from the first and second derivative formulas

φ′
α(1) = 0 and φ′′

α(t) =
1
|α|

ψ(2)
α (t)t(1−2α)/α > 0.

Further, it is easy to verify that the functions ψ
(0)
α (t) are self-adjoint in the sense

tψ
(0)
α (1/t) = ψ

(0)
α (t). Then the self-adjointness of φα(t) follows easily and implies the

symmetry of Dα(P,Q) directly from the definition of φ-divergence in (5).

(ii) The reflexivity and symmetry of Dα(P,Q)π(α) follow from (i). It remains to
prove the triangle inequality

Dα(P,Q)π(α) ≤ Dα(P,R)π(α) + Dα(R,Q)π(α) (50)
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for arbitrary probability measures P,Q,R ∈ P, and arbitrary α ∈ R. In fact, this
suffices to prove for all α from a dense subset R∗ ⊂ R Namely, for restrictions
PB, QB, RB of P,Q,R ∈ P on the sub-algebras B ⊂ A generated by arbitrary finite
A-measurable spectra S the inequality

Dα(PB, QB)π(α) ≤ Dα(PB, RB)π(α) + Dα(RB, QB)π(α) (51)

can be extended from R∗ to R by using the spectral representations of the divergences
in (51) stated in (c) above, and applying the continuity of the expressions

Q(A)φα

(
P (A)
Q(A)

)
, R(A)φα

(
P (A)
R(A)

)
, Q(A)φα

(
R(A)
Q(A)

)
, A ∈ S

in the variable α ∈ R. The inequality (51) established in this manner for all α ∈ R
can be further extended into the general form (50) by applying for every fixed α ∈ R
the finite approximation of the divergences appearing in (50) in the sense of (d)
above. Here we shall prove (50) for all α ∈ R∗ = R − {0, 1}, i. e. for α(1 − α) 6= 0.
Fix such α and consider the ratio (54) of the Kafka criterion for π = 1/2, i. e. let

fα(t) =
(
√

t − 1)2

φα(t)
, φα(t) =

sign α

1 − α

[
ψ(0)

α (t) − 2α−1(1 + t)
]
, t > 0.

If −∞ < α ≤ 2 then it suffices to prove that the derivative f ′
α(t) is nonpositive in

the domain 0 < t < 1. But

f ′
α(t) =

(
1√
t
− 1

)[
gα(t)
φ2

α(t)

]
for

gα(t) =
sign α

1 − α

[
2α−1(1 +

√
t) − ψ(1)

α (t)
(
1 + t(2−α)/2α

)]
where gα(1) = 0. Hence it suffices to prove that the function

hα(t) =
√

tg′α(t) =
sign α

1 − α

{
2α−2 − ψ(2)

α (t)t1/α

[
1 − α

α
(1 −

√
t) +

1 +
√

t

2

]}

is nonnegative in the domain 0 < t < 1. However, hα(1) = 0 so that the nonnega-
tivity of hα(t) follows from the obvious nonpositivity of the derivative

h′
α(t) = −2 − α

2α2
ψ(3)

α (t)t
1
α−2.

If α > 2 then it suffices to apply the Kafka criterion for π = 1/α. This step is skipped
here as it can be realized by obvious modifications of the steps in Österreicher and
Vajda [12]. ¤



On Metric Divergences 895

P r o o f o f T h e o r em 2. (i) It follows from (33) – (35) that the limits φα(0)
satisfy (45). The range of values and the conditions for equalities thus follow from
the self-adjointness in (i) of Theorem 1 and from the general range of values property
(a) above.

(ii) For α = 0 the coinciding bounds L0(V ) = U0(V ) = V/2 are trivial conse-
quences of the equality D0(P,Q) = V (P,Q)/2 established in (37). If α 6= 0 then the
function φα satisfies for all 0 < V < 2 the relation

(2 + V ) φα

(
2 − V

2 + V

)
= (2 − V ) φα

(
2 + V

2 − V

)
= Lα(V )

for Lα(V ) given in (46). Hence Proposition 8.28 in Liese and Vajda [9] implies that
the functions Lα(V ) given by (46) are the desired lower bounds. The continuity of
Lα(V ) in α ∈ R can be verified with the help of the l’Hospital rule.

(iii) By Theorem A.6 in the Appendix, the attainable upper bound is

Uφα(V ) = max
{

V

2
φα(0) +

2 − V

2
φα

(
2

2 − V

)
,
V

2
φ∗

α(0) +
2 − V

2
φ∗

α

(
2

2 − V

)}
where by (b),

φ∗
α(t) = φα(t) + cα.(t − 1) for all t > 0.

This implies that both maximized expressions coincide. By (45), φα(0) = cα for cα

given by (49). It is easy to verify the continuity of the constant cα of (49) in the
parameter α ∈ R.

(iv) By Proposition A.6 in the Appendix and (45),

Uφα(V ) = V · cα where cα =
φα(0) + φ∗

α(0)
2

= φα(0). (52)

The rest is clear from the previous step. ¤

Remark 2. For the particular parameter α = 0 and the corresponding divergence
power (2D0(P,Q))1/2 =

√
V (P,Q) we get the triangle inequality√

V (P,Q) ≤
√

V (P,R) +
√

V (R,Q)

which is weaker than the classical inequality (23). This indicates that also for α 6= 0
are not excluded stronger triangular inequalities than those obtained from Theo-
rem 1.
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Example 4. Take the divergence D−1(P,Q) = LC2(P,Q)/4, i. e. the modified
squared LeCam from Example 2. Then assertion (i) of Theorem 2 leads to the
lower bound

L−1(V ) =
1
2

(
1
2
−

[
1

1 + V/2
+

1
1 − V/2

]−1
)

=
1
2

[
1
2
− 1 − (V/2)2

2

]
=

(
V

4

)2

.

Assertion (ii) of the same theorem implies that c−1 = 1/8 which leads to the upper
bound U−1(V ) = V/8. Thus we obtained the relation

V (P,Q)/2 ≤ LC(P,Q) ≤
√

V (P,Q)/2 (53)

for the LeCam distance where both the inequalities are tight. This result seems to
be new.

APPENDIX

Here are stated the assertions needed in Sections 1 – 3.

Theorem A.1. If φ : (0,∞) 7−→ R is convex then the function

ψ(u, v) = vφ
(u

v

)
of two variables is convex on the domain (u, v) ∈ (0,∞)2.

P r o o f . Consider λ ∈ (0, 1) and two points xi = (ui, vi) from the domain of φ.
For

w =
λv1

λv1 + (1 − λ)v2
and ti =

ui

vi

we get
φ(wt1 + (1 − w)t2) ≤ wφ(t1) + (1 − w)φ(t2)

so that

(λv1 + (1 − λ)v2)φ
(

λu1 + (1 − λ)u2

λv1 + (1 − λ)v2

)
≤ λv1φ

(
u1

v1

)
+ (1 − λ)v2φ

(
u2

v2

)
or, equivalently,

ψ(λx1 + (1 − λ)x2) ≤ λψ(x1) + (1 − λ)ψ(x2)

which completes the proof. ¤
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Theorem A.2. If a positive power D(P,Q) = Dφ(P,Q)π of a symmetric φ-
divergence satisfies the triangle inequality (3) then φ(0) < ∞.

P r o o f . Let the triangle inequality hold an let by contrary φ(0) = ∞. Then
the desired contradiction is based on the possibility to choose P,Q,R ∈ P such that
Dφ(P,Q) = ∞ and Dφ(P,R) + Dφ(Q,R) < ∞. For details we refer to Csiszár [2]
who established this metricity criterion. ¤

Theorem A.3 If for a convex function φ(t) considered in (4) defines symmetric
φ-divergence and for some π > 0 the ratio

(1 − tπ)1/π

φ(t)
(54)

is nonincreasing in the variable t ∈ (0, 1) then the power (10) satisfies the triangle
inequality (3).

P r o o f . For the proof we refer to Kafka et al. [4] where this metricity criterion
was established. ¤

Theorem A.4. If a convex function φ : (a, b) 7−→ R is strictly convex at no
t ∈ (a, b) then φ is linear on (a, b).

P r o o f . By definition, φ is not strictly convex at t ∈ (a, b) if and only if there
is an open neighborhood Ut ⊂ (a, b) of t such that φ is linear on it. By choosing
a countable subcovering of (a, b) from the covering {Ut : t ∈ (a, b)} and using the
mathematical induction, the linearity of can be extended from any neighborhood
Ut to the whole interval (a, b). ¤

Theorem A.5. If the φ-divergence D(P,Q) = Dφ(P,Q) under consideration sat-
isfies the triangle inequality (3) then φ(t) is linear on the subdomains (0, 1) and
(1,∞).

P r o o f . Similar result was obtained recently by Khosravifard et al. [5]. Next
follows a more transparent and simpler proof. Consider the Bernoulli probability
measures

P = (p, q) and Q = (q, p) where q = 1 − p and let t =
q

p
∈ (0, 1) ∪ (1,∞).

Under the assumptions of theorem,

Dφ(P,Q) ≤ Dφ

(
P,

P + Q

2

)
+ Dφ

(
P + Q

2
, Q

)
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where using the convexity of φ∗ (t) and the assumption φ (1) ≡ φ∗ (1) = 0 we get
from (12) and from the spectral representation formula (17)

Dφ

(
P,

P + Q

2

)
= Dφ∗

(
P + Q

2
, P

)
= pφ∗

(
t + 1

2

)
+ qφ∗

(
t−1 + 1

2

)
≤ p

2
[
φ∗ (t) + tφ∗ (

t−1
)]

=
p

2
[
tφ

(
t−1

)
+ φ (t)

]
=

1
2
Dφ(P,Q).

By means of the auxiliary functions Aφ(t) = t
[
φ

(
t−1

)
+ φ (1)

]
/2 and Bφ(t) =

[φ (t) + φ (1)] /2 and the assumption φ (1) = 0 the get from here
1
2
Dφ(P,Q) = p [Aφ(t) + Bφ(t)]

≤ Dφ

(
P + Q

2
, Q

)
= p

[
tφ

(
t−1 + 1

2

)
+ φ

(
t + 1

2

)]
where the convexity of φ (t) implies

Aφ(t) ≥ tφ

(
t−1 + 1

2

)
and Bφ(t) ≥ φ

(
t + 1

2

)
.

Therefore the equalities

Aφ(t) ≡ t
φ

(
t−1

)
+ φ (1)

2
= tφ

(
t−1 + 1

2

)
and Bφ(t) ≡ φ (t) + φ (1)

2
= φ

(
t + 1

2

)
hold for all t ∈ (0, 1) ∪ (1,∞). This implies that φ (t) is strictly convex at no point
of the form

t−1 + 1
2

or
t + 1

2
for t ∈ (0, 1) ∪ (1,∞).

Since such points cover the whole domain (0, 1) ∪ (1,∞), the rest is clear from
Theorem A.4. ¤

Corollary. If Dφ(P,Q) is the φ-divergence considered in (5) then the metricity
conditions (1) – (3) with D(P,Q) replaced by Dφ(P,Q) hold if and only if Dφ(P,Q) =
δ.V (P,Q) where δ is a positive constant and V (P,Q) is the total variation (9).

P r o o f . This assertion was previously obtained in [5]. The verification of metric-
ity for Dφ(P,Q) = δ.V (P,Q) is the same as at the beginning of Section 2. If con-
versely Dφ(P,Q) is a metric then Theorem A.5 together with the condition φ(1) = 0
implies that φ(t) coincides with one of the functions φα,β(t) of Example 1. From the
symmetry discussed in Example 1 we get that Dφ(P,Q) must be of the form (22).¤

The last theorem of this section deals with the tight upper φ-divergence bound

Uφ(V ) = sup
(P,Q)∈QV

Dφ(P,Q), 0 ≤ V ≤ 2 (55)

where QV = {(P,Q) ∈ P ⊗ P : V (P,Q) = V }. Special cases Uα(V ) := Uφα(V ) for
the family of functions φα defined in (33) were introduced in (44). This theorem
deals with observation spaces (X ,A) nontrivial in the sense A 6= {∅,X} and sharpens
Proposition 8.27 of Liese and Vajda [8].
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Theorem A.6. If the observation space (X ,A) is dichotomous in the sense that
A contains only two nonvoid sets A, X −A then the attainable upper bound (55) is

Uφ(V ) = max
{

V

2
φ(0) +

2 − V

2
φ

(
2

2 − V

)
,
V

2
φ∗(0) +

2 − V

2
φ∗

(
2

2 − V

)}
. (56)

In all remaining observation spaces this bound is linear of the form

Uφ(V ) =
φ(0) + φ∗(0)

2
V. (57)

P r o o f . In the dichotomous case with

Q(A) = t and P (A) = t + V/2 for 0 ≤ V ≤ 2 and 0 ≤ t ≤ 1 − V/2

we get from the spectral representation formula (17)

Dφ(P,Q) = tφ

(
t + V/2

t

)
+ (1 − t)φ

(
1 − t − V/2

1 − t

)
.

This function is convex in t and it is easy to verify that the arguments of the maxima
in (56) are the extremal values of this function at t = 0 and t = 1−V/2. If A contains
three nonvoid sets A,B,C = X − A ∪ B and

P (A) = Q(A) = 1 − V/2, P (B) = Q(C) = 0, P (c) = Q(B) = V/2

then
V (P,Q) = V and Dφ(P,Q) = V (φ(0) + φ∗(0))/2

so that the values (57) are attained. The fact that (57) is the bound follows from
the inequalities

φ(t) ≤ φ(0) (1 − t) + tφ(1) = φ(0) (1 − t)

and
φ∗(t) ≤ φ∗(0) (1 − t) + tφ∗(1) = φ∗(0) (1 − t)

valid for all 0 ≤ t ≤ 1. Indeed, using these inequalities we get from from the
definitions (5) and (9) for the set A = {f ≥ g}

Dφ(P,Q) =
∫

A
fφ∗ (g/f) dµ +

∫
X−A

gφ (f/g) dµ

≤ φ∗(0)
∫

A
(f − g)dµ + φ(0)

∫
X−A

(g − f)dµ

= φ∗(0)V (P,Q)/2 + φ(0)V (P,Q)/2

which implies the desired result. ¤
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