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We show some families of lattice effect algebras (a common generalization of orthomod-
ular lattices and MV-effect algebras) each element E of which has atomic center C(E) or
the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every
block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and
blocks M of E is very useful equipment for the investigations of its algebraic and topologi-
cal properties, the existence or smearing of states on E, questions about isomorphisms and
so. Namely we touch the families of complete lattice effect algebras, or lattice effect alge-
bras with finitely many blocks, or complete atomic lattice effect algebra E with Hausdorff
interval topology.
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1. INTRODUCTION, BASIC DEFINITIONS AND FACTS

Lattice effect algebras generalize orthomodular lattices including non-compatible
pairs of elements [10] and MV-algebras including unsharp elements [2]. Effect alge-
bras were introduced by D. Foulis and M.K. Bennet [4] as a generalization of the
Hilbert space effects, that means self-adjoint operators between zero and identity
operator on a Hilbert space. They are providing an instrument for studying quan-
tum effects that may be unsharp, and they may have importance in the investigation
of the phenomenon of uncertainty.

Definition 1.1. A partial algebra (E;⊕, 0, 1) is called an effect algebra if 0, 1 are
two distinct elements and ⊕ is a partially defined binary operation on E which
satisfy the following conditions for any x, y, z ∈ E:

(Ei) x ⊕ y = y ⊕ x if x ⊕ y is defined,

(Eii) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that x ⊕ y = 1 (we put
x′ = y),
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(Eiv) if 1 ⊕ x is defined then x = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. On every effect
algebra E the partial order ≤ and a partial binary operation ª can be introduced
as follows:

x ≤ y and y ª x = z iff x ⊕ z is defined and x ⊕ z = y .

If E with the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1)
is called a lattice effect algebra (a complete lattice effect algebra)).

Definition 1.2. Let E be an effect algebra. Then Q ⊆ E is called a sub-effect
algebra of E if

(i) 1 ∈ Q

(ii) if out of elements x, y, z ∈ E with x ⊕ y = z two are in Q, then x, y, z ∈ Q.

If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect algebra of E
then Q is called a sub-lattice effect algebra of E.

Note that a sub-effect algebra Q (sub-lattice effect algebra Q) of an effect algebra
E (of a lattice effect algebra E) with inherited operation ⊕ is an effect algebra
(lattice effect algebra) in its own right.

Important sub-lattice effect algebras of a lattice effect algebra E are

(i) S(E) = {x ∈ E | x∧x′ = 0} a set of all sharp elements of E (see [6, 7]), which
is an orthomodular lattice (see [8]).

(ii) Maximal subsets of pairwise compatible elements of E called blocks of E (see
[22]), which are in fact maximal sub-MV-algebras of E. Here, x, y ∈ E are
called compatible (x ↔ y for short) if x ∨ y = x ⊕ (y ª (x ∧ y)) (see [12] and
[3]).

(iii) The center of compatibility B(E) of E, B(E) =
⋂
{M ⊆ E | M is a block

of E} = {x ∈ E | x ↔ y for every y ∈ E} which is in fact an MV-algebra
(MV-effect algebra).

(iv) The center C(E) = {x ∈ E | y = (y ∧ x) ∨ (y ∧ x′) for all y ∈ E} of E
which is a Boolean algebra (see [5]). In every lattice effect algebra it holds
C(E) = B(E) ∩ S(E) (see [19] and [20]).

For an element x of an effect algebra E we write ord(x) = ∞ if nx = x⊕x⊕· · ·⊕x
(n-times) exists for every positive integer n and we write ord(x) = nx if nx is
the greatest positive integer such that nxx exists in E. An effect algebra E is
Archimedean if ord(x) < ∞ for all x ∈ E, x 6= 0.

A minimal nonzero element of an effect algebra E is called an atom and E is
called atomic if under every nonzero element of E there is an atom. Properties
of the set of all atoms in a lattice effect algebra E are in several cases substantial
for the algebraic structure of E. For instance, the “Isomorphism theorem based on
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atoms” for Archimedean atomic lattice effect algebras can be proved [15]. Further,
the atomicity of the center C(E) of E gives us the possibility to decompose E into
subdirect product (resp. direct product for complete E) of irreducible effect algebras
[27]. Moreover, in such case if S(E) = C(E) then E is a direct product of horizontal
sums of finite chains (see [30]) and the existence of completely additive states on
E follows from that. If S(E) is a Boolean algebra (not necessarily equal to C(E),
e. g., if there exists a pseudocomplementation on E) and E is complete then every
(o)-continuous state ω on the Boolean algebra S(E) can be extended onto E (see
[32] and [33, Theorem 6.4]). Nevertheless, there exist atomic lattice effect algebras
E with non-atomic S(E) = C(E) (even for MV-effect algebra E, see [14]).

The aim of this paper is to show some families of atomic lattice effect algebras
in which S(E) or C(E), resp. B(E) or every block M of E is atomic for every E of
these families.

2. SETS OF SHARP ELEMENTS OF ARCHIMEDEAN ATOMIC LATTICE
EFFECT ALGEBRAS

For x ∈ E and Y ⊆ E we write x ↔ Y iff x ↔ y for all y ∈ Y . If every two elements
are compatible then E is called an MV-effect algebra. In fact, every MV-effect
algebra can be organized into an MV-algebra if we extend the partial ⊕ into total
operation by setting x⊕ y = x⊕ (x′ ∧ y) for all x, y ∈ E (also conversely, restricting
total ⊕ into partial ⊕ for only x, y ∈ E with x ≤ y′ we obtain an MV-effect algebra).

In [22] it was proved that every lattice effect algebra is a set-theoretical union of
MV-effect algebras called blocks. Blocks are maximal subsets of pairwise compatible
elements of E, under which every subset of pairwise compatible elements is by Zorn’s
Lemma contained in a maximal one. Further, blocks are sub-lattices and sub-effect
algebras of E and hence maximal sub-MV-effect algebras of E. Thus an MV-effect
algebra is a lattice effect algebra with a unique block. A lattice effect algebra with
finitely many blocks is called block-finite.

An orthomodular lattice L (see [10]) can be organized into a lattice effect algebra
by setting x⊕y = x∨y for every pair x, y ∈ L such that x ≤ y⊥. This is the original
idea of G. Boole, who supposed that x+ y denotes the logical disjunction of x and y
when the logical conjunction xy = 0. Lattice effect algebras generalize orthomodular
lattices (including Boolean algebras) if we assume existence of unsharp elements x ∈
E, meaning that x∧ x′ 6= 0. On the other hand the set S(E) = {x ∈ E | x∧ x′ = 0}
of all sharp elements of a lattice effect algebra E is an orthomodular lattice [8].
In this sense a lattice effect algebra is a “smeared” orthomodular lattice, while an
MV-effect algebra is a “smeared” Boolean algebra.

Remark 2.1. Recall that elements x, y of an orthomodular lattice (L;∨,∧,⊥, 0, 1)
are called compatible if x = (x ∧ y) ∨ (x ∧ y⊥) and maximal subsets of pairwise
compatible elements of L called blocks are in fact maximal Boolean subalgebras of
L (see [10, p. 23, 37]).

Lemma 2.2. If (L;⊕, 0, 1) is a lattice effect algebra derived from the orthomodular
lattice L then elements x, y of the derived lattice effect algebra are compatible iff
x, y are compatible in the orthomodular lattice (L;∨,∧,⊥, 0, 1).
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P r o o f . If the lattice effect algebra (L;⊕, 0, 1) is derived from the orthomodular
lattice L then for every x ∈ L we have x ∧ x′ = 0. If moreover x ↔ y in the effect
algebra then y ª (x ∧ y) = (x ∨ y) ª x ≤ (x ∨ y) ∧ x′ = (x′ ∧ x) ∨ (x′ ∧ y) = x′ ∧ y
since x′ ↔ x, y (see [8]). Thus y ≤ (x ∧ y) ⊕ (x′ ∧ y) = (x ∧ y) ∨ (x′ ∧ y) ≤ y. It
follows that x ↔ y in the orthomodular lattice L.

Conversely, if y = (x ∧ y) ∨ (x′ ∧ y) then y = (x ∧ y) ⊕ (x′ ∧ y) and hence
yª(x∧y) = x′∧y. Moreover, x∨y = x∨(x∧y)∨(x′∧y) = x∨(x′∧y) = x⊕(x′∧y),
which gives that (x∨ y)ª x = x′ ∧ y. This proves that y ª (x∧ y) = (x∨ y)ª x and
hence x ↔ y in the derived lattice effect algebra (L;⊕, 0, 1). ¤

It follows that blocks in the orthomodular lattice (L;∨,∧,⊥, 0, 1) coincide with
blocks of the derived lattice effect algebra (L;⊕, 0, 1).

Lemma 2.3. Let (E;⊕, 0, 1) be an Archimedean atomic lattice effect algebra. Then

(i) [24, Theorem 3.3] To every nonzero element x ∈ E there are mutually distinct
atoms aα ∈ E and positive integers kα, α ∈ E such that

x =
⊕

{kαaα : α ∈ E} =
∨

{kαaα : α ∈ E},

and x ∈ S(E) iff kα = naα = ord(aα) for all α ∈ E .

(ii) [13, Theorem 8] A block M of E is atomic iff there exists a maximal pairwise
compatible set A of atoms of E such that A ⊆ M and if M1 is a block of E
with A ⊆ M1 then M = M1. Moreover, for x ∈ E it holds x ∈ M iff x ↔ a
for all a ∈ A.

Proposition 2.4. Let E be an Archimedean atomic lattice effect algebra. Then

(i) If a ∈ E is an atom of E then naa ∈ S(E) and ka 6∈ S(E) for all k, 0 < k < na.

(ii) If p ∈ S(E) is an atom of S(E) then there exists an atom a of E such that
p = naa.

(iii) If a, b ∈ E, a 6= b are atoms of E then ka ≤ lb, 1 ≤ k ≤ na, 1 ≤ l ≤ nb implies
a 6↔ b (a and b are non-compatible).

P r o o f . (i), (ii): It follows easily by Lemma 2.3 (i).
(iii): It follows from [31, Theorem 2.4 (ii)]. ¤

Example 2.5. The next example shows that the converse assertion of Proposition
2.4 (ii) is not true in general. Really, assume E = {0, a, a′, b, 1 = a⊕ a′ = 2b} i. e. E
is a horizontal sum of a 4-element Boolean algebra and a 3-element chain. Here the
element b is an atom of E, but 2b = nbb = 1 is not an atom of S(E) = {0, a, a′, 1}.

The well known fact is that there exists an atomic orthomodular lattice (hence its
derived lattice effect algebra is Archimedean and atomic) with a non-atomic block
(see [1]). Nevertheless, if a lattice effect algebra E has only finitely many blocks, we
can prove the following statement.
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Theorem 2.6. Let E be an Archimedean atomic block-finite lattice effect algebra.
Then

(i) S(E) is a block-finite atomic orthomodular lattice.

(ii) Every block of S(E) is atomic.

P r o o f . (i): By [8, Theorem 3.3, (c)] in every lattice effect algebra E the set S(E)
is an orthomodular lattice.

Let B ⊆ S(E) be a block of S(E). Then there exists a block M of E with B ⊆ M ,
which implies B = M ∩ S(E). This proves that S(E) is a block-finite.

By Lemma 2.3 (i), for every atom a ∈ E we have naa ∈ S(E). Assume that
there exists an infinite set {a1, a2, a3, . . . } of atoms of E such that n1a1 > n2a2 >
n3a3 > . . . . Then by Proposition 2.4 (iii), for every i 6= k we have that ai 6↔ ak and
consequently for blocks Mi, Mk of E such that ai ∈ Mi and ak ∈ Mk we must have
Mi 6= Mk, which contradicts to finite number of blocks of E. This proves, according
to Proposition 2.4 (ii) that for every x ∈ S(E), x 6= 0 there exists an atom a ∈ E
such that naa ≤ x and naa is an atom of S(E).

(ii): By [17, Theorem 1.2] every block of atomic block-finite orthomodular lattice
is atomic. Thus the statement follows from (i). ¤

In [25, Theorem 2.2] and [28] it was proved that every Archimedean atomic dis-
tributive (including MV-effect) lattice effect algebra has S(E) = C(E) being an
atomic Boolean algebra. Using this we obtain

Theorem 2.7. Let E be an Archimedean atomic lattice effect algebra such that
every block of E is atomic. Then S(E) is an atomic orthomodular lattice and every
block of S(E) is atomic.

P r o o f . Assume that B ⊆ S(E) be a block of S(E). In view of Remark 2.1 there
exists a block M of E such that B ⊆ M , as B is a pairwise compatible subset of
elements in E. It follows that B = B ∩S(E) ⊆ M ∩S(E) and hence B = M ∩S(E)
by maximality of B in S(E), as M ∩ S(E) is a pairwise compatible subset of S(E).

By the assumption M is an atomic Archimedean MV-effect algebra, which implies
that the centrum C(M) of M is atomic. We conclude that B = M∩S(E) = S(M) =
C(M) is an atomic Boolean algebra. This proves that S(E) is atomic because every
atom of its blocks is also an atom of S(E). ¤

Recall that the interval topology τi on a bounded lattice L is a topology for which
complements of finite unions of closed intervals generate an open base. Hence τi is
the coarsest topology on L in which every closed interval is a closed set.

It is well known that a complete Boolean algebra B is atomic iff the interval
topology τi on B is Hausdorff (see [11, 34]).

Theorem 2.8. The set S(E) of every complete atomic lattice effect algebra E with
Hausdorff interval topology is an atomic orthomodular lattice.
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P r o o f . If E is a complete atomic lattice effect algebra then S(E) is a complete
orthomodular lattice [8] and every block B of S(E) is a complete Boolean algebra.
Moreover, the interval topology τB

i = τE
i ∩ B. Since τE

i and hence also τB
i is

Hausdorff, we obtain that every block B of S(E) is atomic. It follows that S(E) is
atomic because every atom of a block of S(E) is also an atom of S(E). ¤

Note that a complete lattice effect algebra E with Hausdorff interval topology
(even MV-effect algebra) need not be atomic. For example, standard effect algebra:
interval of real numbers E = [0, 1] ⊆ R with a⊕ b = a+ b iff a+ b ≤ 1, a, b ∈ E is an
MV-effect algebra with S(E) = {0, 1}. Clearly, the interval topology τi is Hausdorff.
Nevertheless, E is not atomic.

In [18] it was proved that the interval topology τi on a complete lattice L is
Hausdorff iff L has separated intervals, i. e., if given any two disjoint intervals
[a, b], [c, d] ⊆ L, the lattice L can be covered by a finite number of closed inter-
vals each of which is disjoint with at least one of the intervals [a, b] and [c, d].

By Theorem 2.8, every complete lattice effect algebra E with separated intervals
has atomic S(E).

3. CENTERS OF COMPATIBILITY OF ATOMIC LATTICE EFFECT
ALGEBRAS AND ATOMIC BLOCKS

In every lattice effect algebra (E;⊕, 0, 1) the center of compatibility B(E) =
⋂
{M ⊆

E | M is a block of E} is an MV-effect algebra which is a a sub-lattice and sub-effect
algebra of E. Since every block M of a complete lattice effect algebra E is a complete
sub-lattice of E (all infima and suprema of subsets of M coincide with those in E,
[22]), also B(E) is a complete sub-lattice effect algebra of E.

Moreover, for the center [5] C(E) = {x ∈ E | y = (y∧x)∨(y∧x′) for all y ∈ E} of
a lattice effect algebra E we have C(E) = B(E)∩S(E), as x ∈ C(E) iff x ↔ E and
x∧x′ = 0 ([19, Theorem 2.5, (iv)]. Thus C(S(E)) = B(S(E))∩S(E) = B(S(E)) =⋂
{B ⊆ S(E) | B is a block of S(E)}. Since by [8], in a complete lattice effect

algebra E, S(E) is a complete sub-lattice effect algebra of E, we obtain that so is
C(E).

In [9] it was proved that C(E) of any orthocomplete (meaning that every or-
thogonal set of elements has the sum which is the supremum of sums of all finite
subsets) atomic effect algebra E is atomic. Clearly every complete lattice effect al-
gebra is also orthocomplete. It follows that in every complete atomic lattice effect
algebra E the center C(E) is atomic and hence E is isomorphic to a direct product∏
{[0, pκ] | pκ ∈ E is an atom of C(E), κ ∈ H}, where [0, pκ] are complete atomic

irreducible lattice effect algebras, meaning that C([0, pκ]) = {0, pκ = 1κ} (see [26,
Lemma 4.3]).

Lemma 3.1. [13] Let E be an Archimedean atomic lattice effect algebra. Then

(i) E =
⋃
{M ⊆ E | M is an atomic block of E}.

(ii) B(E) =
⋂
{M ⊆ E | M is an atomic block of E}.
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Theorem 3.2. Let E be an irreducible complete atomic lattice effect algebra. Then
either B(E) = C(E) = {0, 1} or E = B(E) = {0, a, 2a, . . . , 1 = naa} is a finite chain.

P r o o f . Since E is a complete atomic lattice effect algebra, by “Basic decomposition
of elements” (shortly “BDE”, see [29, Theorem 3.3]) for every x ∈ E, x 6= 0 there
exists a unique wx ∈ S(E) and a unique set {aα | α ∈ H} of atoms of E and unique
positive integers kα 6= ord(aα), α ∈ H such that x = wx ⊕ (

⊕
{kαaα | α ∈ H}).

Let x ∈ B(E) \ {0, 1}. Since, by Lemma 3.1 (ii), B(E) =
⋂
{M ⊆ E | M is an

atomic block of E} and every atomic block M of E is a complete and hence Archime-
dean atomic lattice effect algebra, we obtain that wx ∈ M and {aα | α ∈ H} ⊆ M
by “BDE” in M . It follows that wx ∈ B(E) ∩ S(E) = C(E) and therefore wx = 0.
Since aα ∈ B(E) for all α ∈ H, we have that naα

aα ∈ B(E) ∩ C(E). Hence
naαaα = 1 = naβ

aβ for all α, β ∈ H. Since aα ↔ aβ , we have by Lemma 2.4 (iii)
that aα = aβ i. e. H = {α0} for a suitable index α0. Hence x = kα0aα0 . Now,
let y ∈ B(E) \ {0, 1}. By the same arguments we have that y = lc for some atom
c ∈ B(E) and a positive integer l < nc. Hence 1 = naα0

aα0 = ncc and therefore
aα0 = c. This proves that either B(E) = {0, 1} or B(E) = {0, a, 2a, . . . , 1 = naa}
for a suitable atom a of E.

Assume now that B(E) 6= E and B(E) = {0, a, 2a, . . . , 1 = naa} for a suitable
atom a of E. Since E is atomic there exists an atom b of E such that b 6= a. Hence,
by Proposition 2.4 (iii), a ∧ b = 0, b ≤ 1 = naa implies a 6↔ b, a contradiction with
a ∈ B(E). This proves that if B(E) 6= {0, 1} then B(E) = E = {0, a, 2a, . . . , 1 =
naa} for a suitable atom a of E. ¤

Theorem 3.3. In every complete atomic effect algebra E the center of compatibility
B(E) is atomic.

P r o o f . By ([26, Lemma 4.3] E is isomorphic to a direct product of irreducible
complete atomic lattice effect algebras Eκ, κ ∈ H (written E ∼=

∏
{Eκ | κ ∈ H}).

Moreover, because operations on the cartesian product are defined “componentwise”
we have that B(E) ∼=

∏
{B(Eκ) | κ ∈ H}) (see [27]). In view of Theorem 3.2, every

B(Eκ) is a finite chain. It follows that B(E) is a complete atomic MV-effect algebra.
¤

The next example shows that if a complete atomic lattice effect algebra E is
irreducible then S(E) need not be an irreducible orthomodular lattice, hence C(E) 6=
C(S(E)) in general.

Example 3.4. Let E be the complete atomic lattice effect algebra from Example
2.5. Then S(E) = {0, a, a′, 1} = C(S(E)) since S(E) is a Boolean algebra and
C(E) = S(E) ∩ B(E) = {0, 1}.

4. COMPACTLY GENERATED LATTICE EFFECT ALGEBRAS

Definition 4.1. (1) An element a of a lattice L is called compact iff, for any D ⊆ L
with

∨
D ∈ L, if a ≤

∨
D then a ≤

∨
F for some finite F ⊆ D.

(2) A lattice L is called compactly generated iff every element of L is a join of
compact elements.
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It was proved in [16, Theorem 6] that every compactly generated lattice effect
algebra is atomic. If moreover E is Archimedean then every compact element u ∈ E
is finite, meaning that u = a1 ⊕ a2 ⊕ · · · ⊕ an for some finite sequence a1, a2, . . . , an

of atoms of E ([16, Lemma 4]). Compact elements are important in the semantic
approach in computer science as primitive elements representing information which
cannot be approximated by elements strictly below them. Moreover, desirable cases
are those when all elements can be obtained as directed suprema of compact elements
because usually they form a smaller subset than original poset. In [16, Theorem 7]
it was proved that an Archimedean lattice effect algebra E is compactly generated
iff E is atomic and (o)-continuous. The (o)-continuity of E means that for any net
(xα)α∈E of elements of E and any y ∈ E the implication xα ↑ x =⇒ y ∧ xα ↑ y ∧ x
holds. Here xα ↑ x means that xα1 ≤ xα2 for every α1 ≤ α2, α1, α2 ∈ E and
x =

∨
{xα | α ∈ E}.

Lemma 4.2. Let L be a compactly generated lattice. If L is a complete lattice and
D ⊆ L is a complete sub-lattice of L then D is compactly generated.

P r o o f . Let x ∈ D. Since L is compactly generated and D ⊆ L, there exists C ⊆ L
such that every u ∈ C is a compact element in L and x =

∨
L C ∈ D. Let u ∈ C be

arbitrary and let uD =
∧
{z ∈ D | u ≤ z} ∈ D. Clearly, Z = {z ∈ D | u ≤ z} 6= ∅

since x ∈ Z and so u ≤ uD ≤ x.
Assume that Q ⊆ D and uD ≤

∨
D Q. Since u ≤ uD ≤

∨
D Q =

∨
L Q, where

Q ⊆ D ⊆ L and u ∈ C, we obtain that there is a finite subset F ⊆ Q such that
u ≤

∨
E F =

∨
D F ∈ D as F ⊆ Q ⊆ D. It follows that

∨
D F ∈ Z and hence

uD ≤
∨

D F , which proves that uD is compact in D. Further, x =
∨

L C =
∨

L{u ∈
L | u ≤ x, u is compact in L} ≤

∨
L{uD ∈ D | u ≤ x, u is compact in L} =

∨
D{uD ∈

D | u ≤ x, u is compact in L} ≤ x, which proves that D is compactly generated. ¤

Theorem 4.3. Let E be an (o)-continuous and atomic complete lattice effect alge-
bra. Let G ⊆ E be a complete sub-lattice effect algebra of E. Then

(i) G is an (o)-continuous and atomic complete lattice effect algebra.

(ii) S(E), C(E), B(E) and every block of E are (o)-continuous and atomic com-
plete lattice effect algebras.

P r o o f . (i): By [21, Theorem 3.3], every complete lattice effect algebra is Archimedean.
Moreover, by [16, Theorem 7], an Archimedean lattice effect algebra E is compactly
generated iff E is atomic and (o)-continuous. Thus E is compactly generated and
by Lemma 4.2 G is again compactly generated which gives that G is (o)-continuous
and atomic.

(ii): This follows by part (i) since S(E), C(E), B(E) and all blocks of E are
complete sub-lattices and sub-effect algebras of E (see [8, 23]). ¤

Note that examples of compactly generated (hence (o)-continuous and atomic)
complete lattice effect algebras are e. g. all complete atomic Boolean algebras and
also all complete atomic modular lattice effect algebras (including complete atomic
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MV-effect algebras), see [26]. The well known fact is that all distributive lattice
effect algebras (including MV-effect algebras and hence also Boolean algebras) are
(o)-continuous, but if they are not atomic they cannot be compactly generated.

It is worth to note that, for G ⊆ E in Theorem 4.3, if G and E are two (o)-
continuous atomic complete lattice effect algebras such that, for the set AG of all
atoms of G and for the set AE of all atoms of E, we have AG 6⊆ AE in many cases.

Example 4.4. Let E be an (o)-continuous atomic complete lattice effect algebra.
Let AE be the set of all atoms of E. If G = S(E) is a set of all sharp elements then
for the set AS(E) of all atoms of G we have AS(E) ⊆ {naa | a ∈ AE}. If E 6= S(E)
then AS(E) 6⊆ AE .

Theorem 4.5. Let E be a block-finite Archimedean atomic lattice effect algebra
such that Ê = MC(E) is the MacNeille completion of E. Then

(i) Every block of E and of Ê is atomic.

(ii) To every block M̂ of Ê there is a block M of E and a maximal set A of atoms
of A such that A ⊆ M ⊆ M̂ and M̂ = MC(M) and M and M̂ are unique
blocks of E resp. Ê with the property A ⊆ M ⊆ M̂ .

(iii) S(Ê) is atomic and S(Ê) = MC(S(E)).

P r o o f . (i): By [21, Theorem 4.5], for a block-finite Archimedean atomic lattice
effect algebra E, its MacNeille completion Ê = MC(E) is a complete lattice effect
algebra containing E as a sub-lattice effect algebra. By Schmidt characterization
of the MacNeille completion [35] E and Ê have the same set of all atoms, hence
A = Â, where A resp. Â are sets of all atoms of E resp. Ê. By [13] to every
maximal set A of pairwise compatible atoms of E there exist a unique block M of
E and hence a unique block M̂ of Ê with A ⊆ M and A ⊆ M̂ . Since every atom a
of E has ord(a) < ∞, the effect algebra Ê is also Archimedean and atomic lattice
effect algebra.

Moreover, by [21, Theorem 4.4] and by [13], we have that E =
⋃n

k=1Mk, where
Mk are atomic blocks of E with maximal set Ak of pairwise compatible atoms
and Ê =

⋃n
k=1M̂k and again by [13] M̂k are atomic blocks of Ê. This yields

A =
⋃n

k=1Ak and Ak ⊆ Mk ⊆ M̂k.
Let M̂ be a block of Ê. Then M̂ =

⋃n
k=1M̂k ∩ M̂ . Since M̂k ∩ M̂ ⊆ M̂k, M̂k is

a compactly generated complete effect algebra and M̂k ∩M̂ is a complete sub-lattice
of M̂k, we obtain by Theorem 4.3 that M̂k ∩ M̂ is atomic. Let x̂ ∈ M̂ , x̂ 6= 0, then
there is k1 such that x̂ ∈ M̂k1 ∩ M̂ and there exists an atom q̂k1 of M̂k1 ∩ M̂ with
q̂k1 ≤ x̂. Further, either q̂k1 is an atom of M̂ or there exists 0 6= ŷk1 < q̂k1 and
thus there exist k2 such that ŷk1 ∈ M̂k2 ∩ M̂ and an atom q̂k2 of M̂k2 ∩ M̂ with
q̂k2 ≤ ŷk1 < q̂k1 ≤ x̂. Proceeding by induction we obtain that there exists an atom
q̂ of M̂ with q̂ ≤ x̂, because we have k ∈ {1, 2, . . . , n} a finite set. Thus every block
M̂ of Ê is atomic.
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If M ⊆ E is a block of E then there exists a block M̂ of Ê such that M ⊆ M̂ ∩E.
This gives that the set A of all atoms of M̂ is a subset of M since A ⊆ E. Thus
A ⊆ M implies that M is atomic by [13].
(ii): Since blocks Mk and M̂k have the same set Ak of all atoms we have that
M̂k = MC(Mk) by [35] and [24, Theorem 3.3].
(iii): It follows by Theorem 2.7 that S(Ê) is atomic. Let p̂ ∈ S(Ê). Then there exists
an atom a of Ê and hence a ∈ E such that p̂ = naa. Clearly, naa ∈ S(E). Moreover,
S(E) ⊆ S(Ê) by the definition of a sharp element. It follows that naa is an atom
of S(E) and also conversely by Schmidt characterization of S(Ê) = MC(S(E)) (the
equality follows by [33, Lemma 6.2]). It follows that S(Ê) and S(E) have the same
set of all atoms and hence also the same set of finite elements. ¤
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