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The paper deals with a class of discrete-time stochastic control processes under a dis-
counted optimality criterion with random discount rate, and possibly unbounded costs.
The state process {xt} and the discount process {αt} evolve according to the coupled dif-
ference equations xt+1 = F (xt, αt, at, ξt), αt+1 = G(αt, ηt) where the state and discount
disturbance processes {ξt} and {ηt} are sequences of i.i.d. random variables with densi-
ties ρξ and ρη respectively. The main objective is to introduce approximation algorithms
of the optimal cost function that lead up to construction of optimal or nearly optimal
policies in the cases when the densities ρξ and ρη are either known or unknown. In the
latter case, we combine suitable estimation methods with control procedures to construct
an asymptotically discounted optimal policy.
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1. INTRODUCTION

We are concerned with a class of discrete-time stochastic control processes under a
discounted optimality criterion with random discount rate, and possibly unbounded
costs. The state and discount processes evolve according to the coupled difference
equations:

xt+1 = F (xt, αt, at, ξt), (1)

αt+1 = G(αt, ηt), (2)

for t = 0, 1, . . . , where F and G are known continuous functions, xt, αt, and at

represent the state, the discount rate, and the control at time t, respectively. More-
over, the state and discount disturbance processes {ξt} and {ηt} are independent
sequences, each one consisting of independent and identically distributed (i.i.d.)
random variables with density functions ρξ and ρη, respectively.
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Our work is a sequel to [6] in which, applying a standard dynamic programming
approach, it has been shown the existence of discounted optimal policies for the
system (1) – (2). However, it is worth noting that [6] does not present computational
procedures neither of such policies nor of the value function.

The main objective in this paper is to introduce three approximation algorithms
for the control problem’s value function V ∗ that lead up to the construction of
optimal or nearly optimal policies. In the first one, V ∗ is approximated by means
of bounded-costs discounted programs. That is, we consider a sequence of bounded
costs {cn} converging to the original cost c. Then we show that the sequence of
corresponding value functions Un converges to V ∗. Next, we combine this procedure
with a value iteration scheme yielding a second approximation algorithm of V ∗. The
third one, is the well-known policy iteration method, which is an approximation
procedure on the control space.

Finally, we consider the case when the state and discount disturbance processes
{ξt} and {ηt} are observable with unknown densities ρξ and ρη. In this context, our
approach consists in combining suitable density estimation methods of the unknown
join density ρ := ρξρη with a particular algorithm to approximate V ∗ by means
of bounded costs. Next, this procedure is used to construct an asymptotically dis-
counted optimal policy π̄ =

{
f̄t

}
(where f̄t depends of the estimators ρt of ρ), and,

moreover, to show the convergence, in the sense of Schäl [15], of the sequence of
minimizers

{
f̄t

}
to an optimal stationary policy f∞.

The motivation to study systems of the form (1) – (2) comes from its applications
to economic and financial models. Indeed, usually, when a discounted optimality
criterion is applied, the discount factor is assumed to be fixed or constant in the
course of the process. However (see e. g., [1, 4, 7, 12, 13, 14, 17]), since the discount
factor is typically a function of interest rates, which in turn are random variables,
this assumption might be too strong or unrealistic. In these cases, we have a time-
varying random discount factor that can be represented as in (2).

The remainder of the paper is organized as follows. In Section 2 we introduce the
control model we will deal with. Next, Section 3 contains the assumptions on the
control model and some preliminary results on the randomized discounted criterion,
which are used in Sections 4 and 5 to obtain the approximation algorithms to the
value functions. Finally, in Section 6, we present an estimation and control procedure
to construct adaptive polices.

Notation. Given a Borel space X (that is, a Borel subset of a complete and sepa-
rable metric space) its Borel sigma-algebra is denoted by B(X), and “measurable”,
for either sets or functions, means “Borel measurable”. We denote by B(X) the
space of real-valued bounded measurable functions on X with the supremum norm
‖u‖ := supx∈X |u(x)| , and L(X) stands for the family of lower semi-continuous
(l.s.c.) functions on X bounded below. Let X and Y be Borel spaces. Then a
stochastic kernel Q(dx | y) on X given Y is a function such that Q(· | y) is a proba-
bility measure on X for each fixed y ∈ Y, and Q(B | ·) is a measurable function on
Y for each fixed B ∈ B(X).
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2. MARKOV CONTROL MODEL

Control model. The Markov control processes associated to the system (1) – (2)
is specified by the elements

M :=
(
X, Γ, A, Rk1 , Rk2 , F,G, ρξ, ρη, c

)
(3)

satisfying the following conditions. The state space X and the action space A are
Borel spaces. The set Γ := [α∗,∞), α∗ > 0, is the discount rate space. For each
pair (x, α) ∈ X × Γ, A(x, α) is a nonempty Borel subset of A denoting the set of
admissible controls when the system is in state x and a discount rate α is imposed.
The set

K = {(x, α, a) : x ∈ X,α ∈ Γ, a ∈ A(x, α)} (4)

of admissible state-discount-action triplets is assumed to be a Borel subset of the
Cartesian product of X, Γ and A. The dynamics of the system is defined by the
coupled difference equations (1) – (2), where F : X × Γ × A × Rk1 → X and G :
Γ×Rk2 → Γ are continuous functions, and {ξt} and {ηt} are independent sequences
of i.i.d. random variables in Rk1 and Rk2 , respectively. Finally, the cost-per-stage
c(x, α, a) is a measurable real-valued function on K, possibly unbounded.

Interpretation. The control model M has the following interpretation. At stage
t, the system is in the state xt = x ∈ X and the discount factor αt = α ∈ Γ is
imposed. The controller chooses a control at = a ∈ A(x, α). As a consequence of
this the following happens: 1) a cost c(x, α, a) is incurred, and 2) the system moves
to a new state xt+1 = x′ and a new discount factor αt+1 = α′ is imposed according
to the transition laws:

P1(B|x, α, a) :=
∫

Rk1

1B (F (x, α, a, s)) ρξ(s) ds, B ∈ B(X),

P2(D|α) :=
∫

Rk2

1D (G(α, s)) ρη(s) ds, D ∈ B(Γ).

Once the transition to state x′ occurs, the process is repeated.

Control policies. We define the space of admissible histories up to time t by
H0 := X × Γ and Ht := (K × Rk1 × Rk2)t × X × Γ, t ≥ 1. A generic element
of Ht is written as ht = (x0, α0, a0, ξ0, η0, . . . , xt−1, αt−1, at−1, ξt−1, ηt−1, xt, αt). A
control policy is a sequence π = {πt} of measurable functions πt : Ht → A such
that πt(ht) ∈ A(xt, αt) for all ht ∈ Ht, t ≥ 0. We denote by Π the set of all control
policies.

Let F be the family of measurable functions f : X × Γ → A such that f(x, α) ∈
A(x, α) for every (x, α) ∈ X × Γ. A sequence {ft} of functions ft ∈ F is called a
Markov policy. A Markov policy {ft} is said to be stationary if ft = f for all t ≥ 0
and some f ∈ F. In this case we use the notation

c(x, α, f) := c(x, α, f(x, α)) and F (x, α, f, s) := F (x, α, f(x, α), s)

for all x ∈ X, α ∈ Γ and s ∈ Rk1 .
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Performance index. We assume that the costs are exponentially discounted with
accumulative random discounted rates. That is, a cost C incurred at stage t is
equivalent to a cost C exp(−St) at time 0, where St =

∑t−1
i=0 αi if t ≥ 1, S0 = 0. In

this sense, when using a policy π ∈ Π, given the initial state x0 = x and the initial
discount factor α0 = α, we define the total expected discounted cost (with random
discount rates) as

V (π, x, α) := Eπ
(x,α)

[ ∞∑
t=0

exp(−St)c(xt, αt, at)

]
, (5)

where Eπ
(x,α) denotes the expectation operator with respect to the probability mea-

sure Pπ
(x,α) induced by the policy π, given x0 = x and α0 = α. (see, e. g., [3] for the

construction of Pπ
(x,α))

The optimal control problem associated to the control model M is then to find
an optimal policy π∗ ∈ Π such that V (π∗, x, α) = V ∗(x, α) for all (x, α) ∈ X × Γ,
where

V ∗(x, α) := inf
π∈Π

V (π, x, α) (6)

is the optimal value function.

Remark 2.1. From (2), observe that {exp(−St)} is a sequence of random variables
(not independent) representing the rate of discount at each stage t. Moreover, if
αt = α for all t ≥ 0 and some α ∈ (0,∞), the performance index ( 5) reduces to the
usual β−discounted cost criterion with β = exp(−α).

3. ASSUMPTIONS AND PRELIMINARY RESULTS

Observe that we can write the system (1) – (2) as

yt+1 = H(yt, at, χt), t = 0, 1, . . . , (7)

where, letting Y := X × Γ, Rk := Rk1 × Rk2 , yT
t := (xt, αt), and χt := (ξt, ηt),

H : Y × A × Rk → Y is a continuous function defined as

H(yt, at, χt) := (F (xt, αt, at, ξt), G(αt, ηt))T ,

and {χt} is a sequence of i.i.d. Rk− valued random variables on a probability space
(Ω,F , P ), with common density function ρ(·) = ρξ(·)ρη(·).

In what follows, the probability space (Ω,F , P ) is fixed.

Now, for notational convenience, we put the control model M in the form(
Y,A, {A(y) ⊂ A|y ∈ Y } , Rk, H, ρ, c

)
.
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Thus, the transition law determined by the system equation (7) is the stochastic
kernel on Y given K = {(y, a) : y ∈ Y, a ∈ A(y)} (see (4)) defined as

Q(B|y, a) :=
∫

Rk

1B (H(y, a, s)) ρ(s) ds, B ∈ B(Y ). (8)

To guarantee the existence of “measurable minimizers”, we will suppose the fol-
lowing continuity and compactness conditions.

Assumption 3.1. a) For each y ∈ Y, the set A(y) is compact. Moreover, the
multifunction y → A(y) is upper semi-continuous.
b) The one-stage cost c is nonnegative and belongs to L(K).
c) The function (y, a) → H(y, a, s) is continuous on K for every s ∈ Rk.

Upper semi-continuity of y → A(y) means: for each open set A′ ⊂ A, the set
{y ∈ Y : A(y) ⊂ A′} is open in Y.

Remark 3.2. a) Assumption 3.1(c) implies that the function

v̄(y, a) :=
∫

Rk

v (H(y, a, s))µ(ds) (9)

is continuous on K for any continuous and bounded function v on Y and any prob-
ability distribution µ on Rk. Hence, the transition law (8) is weakly continuous.

b) For each u ∈ L(Y ), we define the operator T by

Tu(y) := min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

u(H(y, a, s))ρ(s) ds

}
.

From Assumption 3.1, T maps L(Y ) into itself. We also define the sequence of
function {vn} in L(Y ) as v0(·) = 0 and vn = Tvn−1 for n = 1, 2, . . . . That is, for
n ≥ 1 and y ∈ Y,

vn(y) := min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

vn−1(H(y, a, s))ρ(s) ds

}
.

A first consequence of Assumption 3.1, which is stated in [6], with adequate
changes, is the following.

Theorem 3.3. Suppose that Assumption 3.1 holds. If V ∗(y) < ∞ for every y ∈ Y,
then

a) vn ↗ V ∗;
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b) V ∗ is the minimal solution in L(Y ) that satisfies the optimality equation:

V ∗(y) = min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

V ∗(H(y, a, s))ρ(s) ds

}
, ∀ y ∈ Y. (10)

Equivalently TV ∗ = V ∗.
c) There exists a stationary policy {f∗} , f∗ ∈ F, such that f∗(y) ∈ A(y) attains

the minimum in ( 10), i. e.,

V ∗(y) = c(y, f∗) + exp(−α)
∫

Rk

V ∗(H(y, f∗, s))ρ(s) ds, ∀ y ∈ Y,

and moreover, the stationary policy {f∗} is optimal.

4. APPROXIMATIONS

Part a) of Theorem 3.3 gives an approximation procedure of the value function V ∗

which is known as Value Iteration. Now, we present other types of approximation
algorithms.

Approximation via bounded costs. Let {cn(y, a)} be a sequence of nonnegative,
bounded and l.s.c. functions on K such that cn ↗ c, and we define the sequence of
performance indices with their corresponding value functions as:

Un(π, y) := Eπ
y

∞∑
t=0

exp(−St)cn(yt, at), (11)

Un(y) := inf
π∈Π

Un(π, y), y ∈ Y. (12)

We also define, for each n > 0 and u ∈ L(Y ), the operator Tn : L(Y ) → L(Y ) as

Tnu(y) = min
a∈A(y)

{
cn(y, a) + exp(−α)

∫
Rk

u(H(y, a, s))ρ(s) ds

}
, ∀ y ∈ Y. (13)

Observe that from Theorem 3.3, if the one-stage cost c is replaced by the bounded
cost cn, then Un is the unique bounded function in L(Y ) satisfying

Un = TnUn, n > 0. (14)

Following the ideas in Remark 3.2(b), we define the corresponding value iteration
functions as: u0 := 0, and

un(y) = min
a∈A(y)

{
cn(y, a) + exp(−α)

∫
Rk

un−1(H(y, a, s))ρ(s) ds

}
, n > 0, y ∈ Y.

(15)
That is, un = Tnun−1 for n > 0.
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Theorem 4.1. Under Assumptions 3.1, each of the sequences Un and un is mono-
tone increasing and converges to the value function V ∗.

The proof of Theorem 4.1 is based in the following result which is a consequence
of Lemma 4.2.4 in [9].

Lemma 4.2. Let u and un, n ≥ 1, be functions in L(K). If un ↗ u, then

lim
n→∞

min
A(y)

un(y, a) = min
A(y)

u(y, a), ∀ y ∈ Y.

P r o o f . [Theorem 4.1] Since cn ↗ c, from (11) and (12), {Un} is an increasing
sequence in L(Y ). Thus there exists a function u ∈ L(Y ) such that

Un ↗ u. (16)

Therefore, to prove Un ↗ V ∗, it is sufficient to show

u = V ∗. (17)

To this end, first observe that from (11) and (12) Un ≤ V ∗ for all n, and from (16)
we obtain u ≤ V ∗. On the other hand, letting n → ∞ in (14), Lemma 4.2 yields
u = Tu, i. e., u satisfies the optimality equation. Therefore, from Theorem 3.3(b),
u ≥ V ∗ which proves ( 17). Finally, applying similar arguments we can also obtain
un ↗ V ∗. ¤

Policy iteration. First observe that for any stationary policy f ∈ F, applying the
Markov property, the corresponding cost V (f, y), y ∈ Y, satisfies

V (f, y) = c(y, f) + exp(−α)
∫

Rk

V (f,H(y, a, s))ρ(s) ds, y ∈ Y. (18)

Let f0 ∈ F be a stationary policy with a finite valued cost w0(·) := V (f0, ·) ∈ L(Y ).
Then from (18),

w0(y) = c(y, f0) + exp(−α)
∫

Rk

w0(H(y, f0, s))ρ(s) ds, y ∈ Y. (19)

Now, let f1 ∈ F be such that

c(y, f1) + exp(−α)
∫

Rk

w0(H(y, f1, s))ρ(s) ds (20)

= min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

w0(H(y, a, s))ρ(s) ds

}
.
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That is,

c(y, f1) + exp(−α)
∫

Rk

w0(H(y, f1, s))ρ(s) ds = Tw0(y), (21)

where T is the operator defined in Remark 3.2(b). We define w1(·) = V (f1, ·).

In general, we define a sequence {wn} in L(Y ) as follows. Given fn ∈ F, suppose
that wn(·) := V (fn, ·) ∈ L(Y ), and let fn+1 ∈ F be such that

c(y, fn+1) + exp(−α)
∫

Rk

wn(H(y, fn+1, s))ρ(s) ds = Twn(y)

= min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

wn(H(y, a, s))ρ(s) ds

}
.

Theorem 4.3. Under Assumption 3.1, there exists a measurable nonnegative func-
tion w ≥ V ∗ such that wn ↘ w, and Tw = w. Moreover, if w satisfies

lim
n→∞

Eπ
y [exp(−Sn)w(yn)] = 0 ∀π ∈ Π, y ∈ Y, (22)

then w = V ∗.

To prove Theorem 4.3 we need the following two results. The first one, Lemma
4.4(a) is stated in [6], whereas the Lemma 4.4(b) is the Lemma 3.3 in [11].

Lemma 4.4. a) Under Assumption 3.1, if u : Y → R is a measurable function such
that Tu is well defined, u ≤ Tu, and

lim
n→∞

Eπ
y [exp(−Sn)u(yn)] = 0 ∀π ∈ Π, y ∈ Y,

then u ≤ V ∗.

b) If un is a sequence of function on K such that un ↘ u, then

lim
n→∞

inf
a∈A(y)

un(y, a) = inf
a∈A(y)

u(y, a), y ∈ Y.

P r o o f . [Theorem 4.3] According to Lemma 4.4(a), it is sufficient to show the
existence of a function w ≥ V ∗ such that wn ↘ w and Tw = w.

From (19) – (21),

w0(y) ≥ min
a∈A(y)

{
c(y, a) + exp(−α)

∫
Rk

w0(H(y, a, s))ρ(s) ds

}
= c(y, f1) + exp(−α)

∫
Rk

w0(H(y, f1, s))ρ(s) ds. (23)
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Iterating this inequality, a straightforward calculation shows that

w0(y) ≥ V (f1, y) = w1(y), y ∈ Y.

In general, similar arguments yield

wn ≥ Twn ≥ wn+1, n = 1, 2, . . . (24)

Hence, there exists a nonnegative measurable function w such that wn ↘ w. In
addition, since wn ≥ V ∗ ∀n, we have w ≥ V ∗. Now, applying Lemma 4.4(b) to
(24), we have w ≥ Tw ≥ w, which yields w = Tw. ¤

An obvious sufficient condition for (22) is that

(C1) for some constant m, 0 ≤ c(y, a) ≤ m ∀ (y, a) ∈ K.

Indeed, under bounded costs, {wn} is a bounded sequence which in turn implies
(since wn ↘ w) the boundeness of the function w. This fact clearly yields (22).

Other less obvious sufficient conditions are the following.

(C2) There exist a measurable function W : Y → [1,∞) and constants M >
0, β ∈ (0, 1), and b < ∞, such that for all (y, a) ∈ K (see Assumption 6.2
below),

sup
A(y)

c(y, a) ≤ MW (y)

and ∫
Rk

W [H(y, a, s)]ρ(s) ds ≤ βW (y) + b.

(C3) limn→∞ Eπ
y [exp(−Sn)V (π′, y)] = 0 ∀π, π′ ∈ Π, y ∈ Y.

In fact, using similar arguments as is Proposition 4.3.1 in [9] , we have the fol-
lowing relations

(C1) =⇒ (C2) =⇒ (C3) =⇒ (22).

5. APPROXIMATION AND ESTIMATION

In this section we study the approximation problem of V ∗ for the control system
(1) – (2) assuming that the state and discount disturbance processes {ξt} and {ηt}
are observable with unknown densities ρξ and ρη, respectively. In this context, in
contrast with the interpretation of the control model M introduced in Section 2,
before choosing the action at at time t, the controller gets an estimate ρt of the
unknown density ρ := ρξρη and combines this with the history of the system to
select a control a = at(ρt).
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Our approach consists in combining suitable density estimation methods of ρ with
a particular case of approximation of V ∗ via bounded costs treated in the previous
section.

Let χ0, χ1, . . . , χn−1 be independent r.v.’s (observed up to time n − 1) with the
unknown density ρ. We consider the control model

Mn =
(
Y,A, {A(y) ⊂ A|y ∈ Y } , Rk,H, ρn, c̄n

)
satisfying the following conditions. The space Y , the control space A and the
function H are define as before (see (3) and (7)); ρn(s) := ρn(s; χ0, χ1, . . . , χn−1),
s ∈ Rk, is an estimator of ρ such that, for some γ > 0,

E
∫

Rk

|ρn(s) − ρ(s)| ds = O(n−γ) as n → ∞; (25)

and, finally, c̄n : K → R is the truncated cost defined as

c̄n(y, a) := min {c(y, a), n} , (y, a) ∈ K. (26)

Estimators satisfying (25) are given, for instance, in [2, 5], see also Example 5.3.

Remark 5.1. a) Observe that, for each n, the cost c̄n satisfies Assumption 3.1(b).
Moreover

ūn ↗ V ∗ as n → ∞, (27)

where {ūn} is the sequence of l.s.c. functions on B(Y ) defined in (15) corresponding
to the cost c̄n. That is, ū0 = 0, and for n ≥ 1

ūn(y) = min
a∈A(y)

{
c̄n(y, a) + exp(−α)

∫
Rk

ūn−1(H(y, a, s))ρ(s) ds

}
, y ∈ Y. (28)

b) Since c̄n(y, a) ≤ n for each n ≥ 0, it is easy to see that

ūn(y) ≤
n∑

k=1

k(exp(−α))n−k ≤ n
∞∑

k=0

exp(−α∗k) =
n

1 − exp(−α∗)
(29)

for every y ∈ Y .

For each fixed t ≥ 0 and n > 0, we define the sequence {V ρt
n } of l.s.c. function

on B(Y ) as:

V ρt

0 = 0;

V ρt
n (y) = min

a∈A(y)

{
c̄n(y, a) + exp(−α)

∫
Rk

V ρt

n−1(H(y, a, s))ρt(s) ds

}
. (30)

In addition, for an arbitrary real number ν ∈ (0, γ/2), we define a sequence {nt} of
integer numbers as nt := [tν ], where γ is as (25) and [x] represents the integer part
of x. Recall that a function u on Y ‖u‖ = supy∈Y |u(y)|.
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Theorem 5.2. Suppose that Assumption 3.1 holds. Then:
a) E

∥∥V ρt
nt

− ūnt

∥∥ → 0 as t → ∞;
b) For each y ∈ Y,

E
∣∣V ρt

nt
(y) − V ∗(y)

∣∣ → 0 as t → ∞.

P r o o f . Observe that part (b) is a consequence of (a) and the fact that ūn ↗ V ∗

(see Theorem 4.1). Indeed, for each y ∈ Y and t ≥ 0,∣∣V ρt
nt

(y) − V ∗(y)
∣∣ ≤ ∣∣V ρt

nt
(y) − ūnt(y)

∣∣ + |ūnt(y) − V ∗(y)| . (31)

Hence, part (b) follows by taking expectation on both sides of (31) and letting
t → ∞.

Therefore, to complete the proof of Theorem 5.2, it only remains to prove part
(a). To do this, by (28) and (30), by adding and subtracting the term

exp(−α)
∫

Rk

ūnt−1(H(y, a, s))ρt(s) ds,

we have, for each t ≥ 0,

∣∣V ρt
nt

(y) − ūnt(y)
∣∣ ≤ sup

a∈A(y)

{∫
Rk

∣∣V ρt

nt−1(H(y, a, s)) − ūnt−1(H(y, a, s))
∣∣ ρt(s) ds

+
∫

Rk

ūnt−1(H(y, a, s)) |ρt(s) − ρ(s)| ds

}
≤

∥∥V ρt

nt−1 − ūnt−1

∥∥ + ‖ūnt−1‖
∫

Rk

|ρt(s) − ρ(s)| ds,

which implies∥∥V ρt
nt

− ūnt

∥∥ ≤
∥∥V ρt

nt−1 − ūnt−1

∥∥ + ‖ūnt−1‖
∫

Rk

|ρt(s) − ρ(s)| ds.

Iterating the latter inequality we have (recall V ρt

0 = ū = 0)

∥∥V ρt
nt

− ūnt

∥∥ ≤ (‖ū0‖ + · · · + ‖ūnt−1‖)
∫

Rk

|ρt(s) − ρ(s)| ds.

Now, using the fact that {ūn} is an increasing sequence, (29) yields

∥∥V ρt
nt

− ūnt

∥∥ ≤ nt ‖ūnt−1‖
∫

Rk

|ρt(s) − ρ(s)| ds

≤ n2
t

1 − exp(−α∗)

∫
Rk

|ρt(s) − ρ(s)| ds, t ≥ 0. (32)
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Taking expectation on both sides of (32), we get

E
∥∥V ρt

nt
− ūnt

∥∥ = O(t2ν)O(t−γ) = O(t2ν−γ) → 0 as t → ∞,

since, by definition of nt,

n2
t

1 − exp (−α∗)
= O(t2ν) as t → ∞,

and ν < γ/2. This proves the desired results. ¤

Example 5.3. The following example shows a sequence of densities fn that satisfies
equation (25). Let g be a strictly positive function such that

∫ ∞
θ

g(x) dx < ∞ for
some θ in R. Let us define the density function

f(x) :=
g(x)∫ ∞

θ
g(y) dy

, x ∈ (θ,∞).

Let {x1, x2, . . . , } be a sequence of random variables i.i.d. with this distribution. Let
θn := min{x1, x2, . . . , xn} for n = 1, 2, . . . and

fn(x) :=
g(x)∫ ∞

θn
g(y) dy

, x ∈ (θn,∞).

Then

|f(x) − fn(x)| =
{

f(x), if θ < x ≤ θn

fn(x) − f(x) if x > θn

Hence ∫ ∞

θ

|f(x) − fn(x)|dx = 2
∫ θn

θ

f(x) dx = 2F (θn)

where F is the distribution function corresponding to f . Therefore,

E (2F (θn)) = 2
∫ ∞

θ

F (y)fθn(y) dy = 2
∫ ∞

θ

nF (y)(1 − F (y))n−1f(y) dy

=
2

n + 1
= O(n−γ) for 0 < γ ≤ 1.

6. ESTIMATION AND CONTROL

We consider again the setting of the previous section. That is, we assume that the
density ρ = ρξρη is unknown and the estimator ρn is applied. Then we must combine
this estimation scheme with control procedures in order to construct optimal policies.
It worth noting that, as the discounted index (5) depends strongly on the controls
selected at the first stages (precisely when the information about the density ρ is
deficient), we cannot ensure, in general, the existence of such policies (see, e. g.,
[8, 16]). Therefore, the optimality of the resulting policy in the combination of
estimation and control will be studied in the following sense.
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Let Φ : K → R be the discrepancy function defined as

Φ(y, a) := c(y, a) + exp(−α)
∫

S

V ∗ (H(y, a, s)) ρ(s) ds − V ∗(y), (y, a) ∈ K

Observe that (10) is equivalent to

min
a∈A(y)

Φ(y, a) = 0, y ∈ Y,

and in addition a stationary policy {f∗} is optimal if

Φ(y, f∗) = 0, y ∈ Y.

This fact motivates the following definition.

Definition 6.1. A policy π = {ft} , ft ∈ F, is called pointwise asymptotically
discounted optimal for the control model M if, for each y ∈ Y,

lim
t→∞

E Φ(y, ft) = 0.

In this section we use the algorithm in Theorem 5.2 to show the existence of a
policy π̄ =

{
f̄t

}
(f̄t depending of the estimators ρt) which is (expected) asymptot-

ically discounted optimal. Furthermore, we show that the sequence of minimizers{
f̄t

}
converges, in the sense of Schäl [15], to an optimal stationary policy f∞ for the

control model M.

The existence of such policies is guaranteed by Assumption 3.1 (see Theorem 3.3
and Remark 3.2(a)). That is, for each t > 0, there exists f̄t ≡ f̄ρt

t ∈ F such that
f̄t(y) ∈ A(y) attains the minimum in (30) with nt instead of n. Thus, for each t > 0,

V ρt
nt

(y) = c̄nt(y, f̄t) + exp(−α)
∫

Rk

V ρt

nt−1(H(y, f̄t, s))ρt(s) ds, y ∈ Y, (33)

where the minimization is done for every ω ∈ Ω. Now, using the compactness of
the sets A(y), by a result of Schäl [15], which is reproduced in [9, Proposition D7],
there is a stationary policy {f∞} for the control model M such that, for each y ∈ Y,
f∞(y) ∈ A(y) is an accumulation point of

{
f̄t

}
. Hence, for every y ∈ Y, there exists

a subsequence {ti} of t (ti = ti(y)) such that fti(y) → f∞(y) as i → ∞. Moreover,
observe that from (33), letting ti = i for notational convenience, we have for each
i > 0,

V ρi
ni

(y) = c̄ni(y, f̄i) + exp(−α)
∫

Rk

V ρi

ni−1(H(y, f̄i, s))ρi(s) ds, y ∈ Y. (34)

In order to show the optimality of the policies π̄ and {f∞} , we need the following
technical requirements on the control model M.
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Assumption 6.2. a) For every y ∈ Y, the one-stage cost c(y, a) is nonnegative and
continuous in a ∈ A(y). Moreover, there exist a measurable function W : Y → [1,∞)
and constants M > 0, β ∈ (0, 1), and b < ∞, such that

sup
A(y)

c(y, a) ≤ MW (y)

and ∫
Rk

W [H(y, a, s)]ρ(s) ds ≤ βW (y) + b.

b) For each y ∈ Y and v ∈ B(Y ), the function a →
∫

Rk v[H(y, a, s)]ρ(s) ds is
continuous and bounded on A(y).
c) For each y ∈ Y, the function a →

∫
Rk W [H(y, a, s)]ρ(s) ds is continuous on A(y).

Remark 6.3. Under Assumption 6.2, supA(y) c̄n(y, a) ≤ MW (y) for all y ∈ Y,
n ≥ 0. Furthermore, straightforward calculation shows that, for each n ≥ 0, the
function ūn defined in (28) satisfies

ūn(y) ≤ M ′W (y), y ∈ Y, (35)

for some constant M ′ < ∞, which in turns yields

V ∗(y) ≤ M ′W (y), y ∈ Y. (36)

We can now state our result as follows.

Theorem 6.4. Under Assumptions 3.1 and 6.2, the policy π̄ =
{
f̄t

}
is pointwise

asymptotically discounted optimal. That is, for each y ∈ Y,

EΦ(y, f̄t) → 0, as t → ∞.

In addition, the stationary policy {f∞} is optimal for the control model M.

The proof of Theorem 6.4 is consequence of the following lemma.

Lemma 6.5. Suppose that Assumption 3.1 and 6.2 hold. Then, for each y ∈ Y,

E sup
a∈A(y)

|Φ(y, a) − Φt(y, a)| → 0 as t → ∞, (37)

where Φt is the approximate discrepancy function defined as

Φt(y, a) := c̄nt(y, a) + exp(−α)
∫

Rk

V ρt

nt−1(H(y, a, s))ρt(s) ds − V ρt
nt

(y). (38)
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(Note that, from (30), Φt is nonnegative.) Moreover, for each y ∈ Y,

E
∣∣∣∣∫

Rk

V ∗(H(y, f̄t, s))ρ(s) ds −
∫

Rk

V ρi

ni−1(H(y, f̄t, s))ρt(s) ds

∣∣∣∣ → 0 (39)

as t → ∞.

P r o o f . By definition of Φ and Φt, adding and subtracting the terms∫
Rk ūnt−1(H(y, a, s))ρ(s) ds and

∫
Rk ūnt−1(H(y, a, s))ρt(s) ds, we have, for each y ∈ Y

and t ≥ 0,

supa∈A(y) |Φ(y, a) − Φt(y, a)| ≤ ct + dt

+supa∈A(y)

∣∣∫
Rk V ∗(H(y, a, s))ρ(s) ds −

∫
Rk ūnt−1(H(y, a, s))ρ(s) ds

∣∣
+ supa∈A(y)

∫
Rk ūnt−1(H(y, a, s)) |ρt(s) − ρ(s)| ds

+ sup
a∈A(y)

∫
Rk

∣∣ūnt−1(H(y, a, s)) − V ρt

nt−1(H(y, a, s))
∣∣ ρt(s) ds, (40)

where ct := supa∈A(y) |c(y, a) − cnt(y, a)| and dt :=
∣∣V ∗(y) − V ρt

nt−1(y)
∣∣ .

On the other hand, from Assumption 6.2(a) and Theorem 5.2 (b) we obtain, as
t → ∞,

ct → 0 and E ηt → 0, (41)

for each y ∈ Y. Moreover, from Remark 6.3 and an extension of Fatou’s lemma (see
Lemma 8.3.7 in [10]), it is easy to see that for each y ∈ Y,

sup
a∈A(y)

∣∣∣∣∫
Rk

V ∗(H(y, a, s))ρ(s) ds −
∫

Rk

ūnt−1(H(y, a, s))ρ(s) ds

∣∣∣∣ → 0 as t → ∞.

(42)
Now, from (29) and (32) we get a.s., for every y ∈ Y .

l
(1)
t := sup

a∈A(y)

∫
Rk

ūnt−1(H(y, a, s)) |ρt(s) − ρ(s)| ds

≤ nt

1 − exp(−α∗)

∫
Rk

|ρt(s) − ρ(s)| ds (43)
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and

l
(2)
t := sup

a∈A(y)

∫
Rk

∣∣ūnt−1(H(y, a, s)) − V ρt

nt−1(H(y, a, s))
∣∣ ρt(s) ds

≤ (nt − 1)2

1 − exp(−α∗)

∫
Rk

|ρt(s) − ρ(s)| ds

≤ n2
t

1 − exp(−α∗)

∫
Rk

|ρt(s) − ρ(s)| ds. (44)

Thus, taking expectation on both sides of (43) and (44), the definition of nt together
(25) implies, for each y ∈ Y,

E l
(1)
t = O(tν)O(t−γ) → 0 as t → ∞; (45)

and
E l

(2)
t = O(t2ν)O(t−γ) → 0 as t → ∞. (46)

Hence, (37) follows from (40) – (46).

Finally, applying similar arguments as in (40) and (42) – (46) we get (39). ¤

P r o o f . [Theorem 6.4] First observe that from (33), (38) and definition of the
policy π̄ we conclude

Φt

(
y, f̄t(y)

)
= 0 y ∈ Y,

which in turn yields

Φ
(
y, f̄t(y)

)
=

∣∣Φ (
y, f̄t(y)

)
− Φt

(
y, f̄t(y)

)∣∣
≤ sup

a∈A(y)

|Φ(y, a) − Φt (y, a)| , y ∈ Y.

Then, the optimality of π̄ follows by taking expectation on both sides of this
inequality and using Lemma 6.5.

On the other hand, to prove the optimality of the policy {f∞} (see (34)), we fix
an arbitrary y ∈ Y and observe that for each i > 0,∫

Rk

V ρi

ni−1(H(y, f̄i, s))ρi(s) ds =
[∫

Rk

V ρi

ni−1(H(y, f̄i, s))ρi(s) ds

−
∫

Rk

V ∗(H(y, f̄i, s))ρ(s) ds

]
+

∫
Rk

V ∗(H(y, f̄i, s))ρ(s) ds.
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Taking expectation and lim inf as i → ∞ on both sides of this equality, from (39)
we get

lim inf
i→∞

E
∫

Rk

V ρi

ni−1(H(y, f̄i, s))ρi(s) ds ≥ lim inf
i→∞

E
∫

Rk

V ∗(H(y, f̄i, s))ρ(s) ds.

Thus, since f̄i → f∞, from the lower semicontinuity of V ∗ (Theorem 3.3), the
continuity of H (Assumption 3.1), and Fatou’s Lemma,

lim inf
i→∞

E
∫

Rk

V ρi

ni−1(H(y, f̄i, s))ρi(s) ds ≥
∫

Rk

V ∗(H(y, f∞, s))ρ(s) ds.

On the other hand, taking expectation and lim inf as i → ∞ in (34) (see (41)),
we obtain

c(y, f∞) + exp(−α)
∫

Rk

V ∗(H(y, f∞, s))ρ(s) ds ≤ V ∗(y). (47)

Finally, as y was arbitrary, by (10), the equality holds in (47) for every y ∈ Y. Hence
(see Theorem 3.3(c)) {f∞} is optimal for the control model M. ¤
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CyT) under Grant 46633.

(Received March 7, 2008.)

REFERE NC ES

[1] H. Berument, Z. Kilinc, and U. Ozlale: The effects of different inflation risk premiums
on interest rate spreads. Physica A 333 (2004), 317–324.

[2] L. Devroye and L. Györfi: Nonparametric Density Estimation the L1 View. Wiley,
New York 1985.

[3] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes. Springer–Verlag,
New York 1979.

[4] A. Gil and A. Luis: Modelling the U. S. interest rate in terms of I(d) statistical model.
Quart. Rev. Economics and Finance 44 (2004), 475–486.

[5] R. Hasminskii and I. Ibragimov: On density estimation in the view of Kolmogorov’s
ideas in approximation theory. Ann. Statist. 18 (1990), 999–1010.
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