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DIRECT APPROACH TO MEAN–CURVATURE FLOW
WITH TOPOLOGICAL CHANGES

Petr Pauš and Michal Beneš

This contribution deals with the numerical simulation of dislocation dynamics. Disloca-
tions are described by means of the evolution of a family of closed or open smooth curves
Γ(t) : S → R2, t = 0. The curves are driven by the normal velocity v which is the function
of curvature κ and the position. The evolution law reads as: v = −κ + F . The motion law
is treated using direct approach numerically solved by two schemes, i. e., backward Euler
semi-implicit and semi-discrete method of lines. Numerical stability is improved by tangen-
tial redistribution of curve points which allows long time computations and better accuracy.
The results of dislocation dynamics simulation are presented (e. g., dislocations in chan-
nel or Frank–Read source). We also introduce an algorithm for treatment of topological
changes in the evolving curve.
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1. INTRODUCTION

In the field of material science, the dislocations are defined as irregularities or errors
in crystal structure of the material. The presence of dislocations strongly influences
many of material properties. This justifies the importance of developing suitable
physical [8, 14] and mathematical models [13]. From the mathematical point of
view, the dislocations are defined as smooth closed or open plane curves which
evolve in time. They are located in a plain called slip plane. Their motion therefore
is two-dimensional.

The evolving curves can be mathematically described in several ways. One pos-
sibility is to use the level-set method [5, 7, 15, 16, 20], where the curve is defined by
the zero level of some surface function. One can also use the phase-field method [3].
Finally, it is possible to use the direct (parametric) method [6, 10] where the curve
is parametrized in the usual way. This article discusses the direct approach.
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2. PARAMETRIC DESCRIPTION

When using the parametric approach, the planar curve Γ(t) is described by a smooth
time-dependent vector function

X : S × I → R2,

where S = 〈0, 1〉 is a fixed interval for the curve parameter and I = 〈0, T 〉 is the
time interval. The curve Γ(t) is then given as the set

Γ(t) = {X(u, t) = (X1(u, t), X2(u, t)), u ∈ S}.

The family of curves satisfies the equation of motion

v = −κ + F, (1)

where v is the normal velocity of the curve evolution, κ is the curvature, and F is
the forcing term which can depend on position vector x and time t.

The evolution law (1) is transformed into the parametric form. The unit tangen-
tial vector ~T is defined as ~T = ∂uX/|∂uX|. The unit normal vector ~N is perpendic-
ular to the tangential vector and ~N · ~T = 0 holds. In case of closed curve, ~N is the
outer vector to the interior of the curve. In case of open curve, ~N has a selected,
pre-defined direction (e. g., upwards). The orientation of the curve is clockwise. The
curvature κ is expressed as

−κ =
∂uX⊥

|∂uX|
· ∂uuX

|∂uX|2
= ~N · ∂uuX

|∂uX|2
,

where X⊥ is a vector perpendicular to X. The normal velocity v is defined as the
time derivative of X projected into the normal direction,

v = ∂tX · ∂uX⊥

|∂uX|
.

The equation (1) can now be written as

∂tX · ∂uX⊥

|∂uX|
=

∂uuX

|∂uX|2
· ∂uX⊥

|∂uX|
+ F (X, t),

which holds provided

∂tX =
∂uuX

|∂uX|2
+ F (X, t)

∂uX⊥

|∂uX|
. (2)

This equation is accompanied by the periodic boundary conditions for closed curves,
or by fixed-end boundary condition for open curves, and by the initial condition.
These conditions are considered similarly as in [6]. The solution of (2) exhibits a
natural redistribution property which is useful for short-time curve evolution [9, 17].
The redistribution of curve discretization points is operated by tangential forces
discussed below.
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The term ∂uuX/|∂uX|2 in (2) contains a tangential component which makes the
curve points to move along the curve. To modify or cancel this tangential force, a
term α in the tangential direction can be considered as follows

∂tX =
∂uuX

|∂uX|2
− α

∂uX

|∂uX|
+ F (X, t)

∂uX⊥

|∂uX|
. (3)

Consequently, one can derive an equation without a tangential force. Consider the
expression

1
|∂uX|

∂u

(
∂uX

|∂uX|

)
.

Here

∂u

(
∂uX

|∂uX|

)
=

∂uuX
(
|∂uX|

)
− ∂uX∂u|∂uX|

|∂uX|2
,

with

∂u

(
|∂uX|

)
= ∂u

√
∂uX · ∂uX =

∂uX · ∂uuX

|∂uX|
.

Then

∂u

(
∂uX

|∂uX|

)
=

(∂uX)2∂uuX − (∂uX · ∂uuX)∂uX

|∂uX|3
.

Therefore, we have

1
|∂uX|

∂u

(
∂uX

|∂uX|

)
=

|∂uX|2∂uuX − (∂uX · ∂uuX)∂uX

|∂uX|4

=
∂uuX

|∂uX|2
− ∂uX · ∂uuX

|∂uX|4
∂uX.

Hence the tangential term contained in equation (3) has the form

α =
∂uuX · ∂uX

|∂uX|3
. (4)

Then the equation without a tangential force has the following form:

∂tX =
∂uuX

|∂uX|2
− ∂uuX · ∂uX

|∂uX|4
∂uX + F (X, t)

∂uX⊥

|∂uX|
. (5)

This equation is not suitable for numerical simulations because the curve points do
not move along the curve and can accumulate in some parts or move from each
other in other parts of the curve. This can cause a slow-down in computation. The
equation (2) is better for numerical simulations but still for long time simulations
similar accumulation of points can happen. Additional algorithm for tangential
redistribution of points has to be considered.
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For long time computations with time and space variable external force F (X, t),
the algorithm for curvature adjusted tangential velocity is used. This algorithm
moves points along the curve according to the curvature, i. e., areas with higher cur-
vature contain more points than areas with lower curvature. This improves numerical
stability and also accuracy of computation. Unlike the case with no tangential force
(Eq. 5), the term α is not given by a simple formula but it is based on the relative
local length between points. Details are described in [21]. Another approach based
on finite-element discretization of equations for curve parametrization is in [2], where
existing multiple junctions are treated as well.

3. NUMERICAL SCHEME

For numerical approximation we consider a regularized form of (3) which reads as

∂tX =
∂uuX

Q(∂uX)2
− α

∂uX

Q(∂uX)
+ F (X, t)

∂uX⊥

Q(∂uX)
, (6)

where Q(x1, x2) =
√

x2
1 + x2

2 + ε2 with ε being a small parameter. Two numerical
schemes are used for numerical solution of the differential equation (3), i. e., backward
Euler semi-implicit and semi-discrete method of lines. With two numerical schemes
it is possible to compare the solution and error of computation.

In the semi-discrete scheme of method of lines, spatial derivatives are approxi-
mated by fourth-order central differences. The first derivative is approximated as

∂uX|u=jh ≈

[
X1

j−2 − 8X1
j−1 + 8X1

j+1 − X1
j+2

12h
,
X2

j−2 − 8X2
j−1 + 8X2

j+1 − X2
j+2

12h

]
,

and the second one as

∂uuX|u=jh ≈
[−X1

j−2 + 16X1
j−1 − 30X1

j + 16X1
j+1 − X1

j+2

12h2
,

−X2
j−2 + 16X2

j−1 − 30X2
j + 16X2

j+1 − X2
j+2

12h2

]
,

where Xi
j denotes an approximation of Xi(jh, ·), i ∈ {1, 2}, h = 1/m. Here m is a

number of intervals dividing S. The difference expressions above are denoted as Xu

for the first difference and Xuu for the second difference.
The equation (6) in the semi-discrete scheme of method of lines has the following

form:

dXj

dt
=

Xuu,j

Q2(Xu,j)
− αj

Xu,j

Q(Xu,j)
+ F (Xj , t)

X⊥
u,j

Q(Xu,j)
,

j = 1, · · · ,m − 1, t ∈ (0, T ), (7)

where again Q(x1, x2) =
√

x2
1 + x2

2 + ε2, X⊥
u,j is a vector perpendicular to Xu,j , and

αj is the redistribution coefficient. The term with ε serves as a regularization to
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avoid singularities when the curvature tends to infinity. This scheme is solved by
the fourth order Runge–Kutta method [4, 15].

The second approach uses the backward Euler semi-implicit scheme. In this case
lower order differences are used. The first derivative is discretized by the backward
difference as follows

∂uX|u=jh ≈

[
X1

j − X1
j−1

h
,
X2

j − X2
j−1

h

]
,

and the second derivative as

∂uuX|u=jh ≈

[
X1

j+1 − 2X1
j + X1

j−1

h2
,
X2

j+1 − 2X2
j + X2

j−1

h2

]
.

The approximation of the first derivative is denoted as Xū,j and of the second deriva-
tive as Xūu,j .

The semi-implicit scheme for equation (3) has the following form

Xk+1
j − τ

Xk+1
ūu,j

Q2(Xk
ū,j)

+ ταj

Xk+1
ū,j

Q(Xk
ū,j)

= Xk
j + τF (Xk

j , kτ)
X⊥k

ū,j

Q(Xk
ū,j)

,

j = 1, · · · ,m − 1, k = 0, · · · , NT − 1, (8)

where Q(x1, x2), X⊥
ū,j , m, and αj have the same meaning as for semi-discrete scheme.

Xk
j ≈ X(jh, kτ), τ is a time step and NT is the number of time steps. The matrix of

the system (8) for each component of Xk+1 has the following tridiagonal structure:
1 + 2τ

h2Q2 − τα
hQ

−τ
h2Q2 0 · · ·

−τ
h2Q2 + τα

hQ

. . . . . . . . .

0
. . .

...
. . .

 .

The scheme (8) is solved for each k by means of matrix factorization. Since there
are two components of X, two linear systems are solved in each timestep.

4. TOPOLOGICAL CHANGES

In curve dynamics in general, and in dislocation dynamics in particular, topological
changes may occur (e. g., connecting or splitting, closing of open curves, etc.). The
parametric approach does not handle them intrinsically, and we therefore need an
additional algorithm allowing for such changes of discretized curves.

The algorithm we present is not supposed to be universal for every situation and
possibility. Main purpose is to simulate topological changes that can happen during
dislocation dynamics (see [18]), i. e., topological changes such as merging or splitting
of curves, closing of open curves, etc. As the initial condition, we consider only curves
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which do not intersect itself and do not touch each other. The orientation of curves is
clockwise. The algorithm is designed for topological changes of curves which touch
only at one point. More complex changes can be treated by multiple application of
the algorithm in one timestep. The evolution after merging or splitting behaves as
expected. Normal vectors and evolution speed correspond to the situation captured
by the level-set method. The results of the algorithm were compared with the level-
set method in [19].

Let us consider two closed or open curve parametrizations discretized as X =
{x1, x2, · · · , xn} and Y = {y1, y2, · · · , ym} in R2. Curves evolve independently ac-
cording to the equation (3). The algorithm for merging two curves is as follows:

1. Compute the distance between X and Y and find one point from each curve
where the minimum is reached. Let us denote the distance as d, the point from
X as xmax and from Y as ymax.

2. Check if the distance d between curves is smaller than a given tolerance δ. If
not, compute new timestep and go to 1.

3. Create new empty curve Z. We must take into account the type of merged
curves. Merging two closed curves will produce one closed curve. Merging one
open and one closed curve will produce one open curve and merging two open
curves will produce two open curves.

4. Copy points from X from the beginning (i. e., from x1) up to xmax to Z.

5. Copy points from Y from ymax up to the end (i. e., up to ym) to Z.

6. Copy points from Y from the begining (i. e., from y1) up to ymax to Z.

7. Copy points from X from xmax up to the end (i. e., up to xn) to Z.

8. Delete X and Y .

9. Compute a new timestep for Z and go to 1.

We also consider that one curve can intersect itself and thus split itself into 2
parts. Let us consider a closed or open curve discretized as X = {x1, x2, · · · , xn}.
The curve evolves independently according to the equation (3). The algorithm for
splitting into two curves is as follows:

1. Compute the distance between points in X and find two points where the
minimum was reached. Let us denote the distance as d, and the points as
xmax1 and xmax2. We do not consider several points in the neighbourhood of
each point when measuring the distance to avoid finding minimal distance for
two neighbor points. The number has to be computed according to the value
of a given tolerance δ (see the next step). We recommend to omit all points
with the distance smaller than at least 4δ.

2. Check if the distance d between points is smaller than a given tolerance δ. If
not, compute new timestep and go to 1.
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3. Create two new empty curves Xnew1 and Xnew2. If X is an open curve, Xnew1

will be open and Xnew2 closed curve. If X is a closed curve then Xnew1 and
Xnew2 will be closed curves.

4. Copy points from X from the beginning (i. e., from x1) up to xmax1 to Xnew1.

5. Copy points from X from xmax1 up to xmax2 to Xnew2.

6. Copy points from X from xmax 2 up to the end (i. e., up to xn) to Xnew1.

7. Delete X.

8. Compute new timestep for Xnew1 and Xnew2 and go to 1.

The numerical simulation is shown in Figure 8.

5. RESULTS OF NUMERICAL SIMULATION

In this section, the results of numerical simulation are presented. Schemes were
tested on open or closed curves with or without tangential redistribution of points.
At first, we simulated evolution of a circle and compared with analytical solution.
Experimental order of convergence and absolute error were measured. For more
details see [17].

Figure 1 (a) illustrates the evolution of a closed curve with external force variable
in space. Values are as follows: F = 10 for |X| < 0.35, F = −5 for |X| > 0.35. The
initial curve is a four-leaf clover curve. The positive force moves the curve to the
center but the negative force move the rest of the curve from the center. In a short
time, high curvature appears and overcomes the positive external force F = 10. This
causes the whole curve to expand.

Figure 1 (b) shows the evolution of the curve which intersects itself. Intersections
can evolve into singularities and it is not possible to continue evolution because cur-
vature goes to infinity. However, the regularization term Q(x1, x2) =

√
x2

1 + x2
2 + ε2

allows the curve to be evolved beyond singularities. One can see that the curve
asymptotically adopts the circular shape. In this case, the algorithm for splitting
and merging curves is not used since we needed to check how the curve evolution
with regularization term behaves in singularities. Singularities are studied in detail
in [1].

Figure 2 shows the evolution of a star shaped curve using the scheme (8) with
α = 0 (Figure 2(a)) and α computed by (4) (Figure 2(b)). The equation (2) con-
tains some tangential force which helps to move points along curve and improve the
stability of the computation. In Figure 2(a), one can see that the points are almost
uniformly distributed at the end of the simulation. On the other hand, when the
tangential force is removed by computing α according to (4), the curve points remain
accumulated. This configuration requires smaller timestep and therefore larger CPU
time. Numerical error also increases.

In practical applications such as dislocation dynamics, long time computations
with variable external force are considered. In this case, accumulation of points
occurs even for the evolution by (2). A redistribution algorithm then has to be
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(a) t ∈ (0, 0.184), h = 1/200, F = 10

for |X| < 0.35, F = −5 for |X| > 0.35
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(b) F = 0, t ∈ (0, 0.495), h = 1/400

Fig. 1. Time evolution of closed curves, scheme (7).
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(a) With tangential force. Eq. (8), α=0
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(b) Without tangential force. Eq. (8),

α according to (4)

Fig. 2. Comparison of evolution with and without tangential force.

considered (see the remarks in Section 3 and [21]). Figures 3 (b) and 3 (a) present
the position of an open curve at t = 1.38. There is an external force F = 3 which
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changes the sign (i. e., F = 3 or F = −3) with the period of 0.3. This force causes
the curve to move up and down. Figure 3 (a) shows the evolution by equation (2).
One can see that in the central part of the curve the points accumulate. If tangential
redistribution (mentioned in Section 2 and described in [21] is used (Figure 3 (b)),
the points tend to be uniformly distributed along the curve.
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 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

Parametric

(a) Without tangential redistribution

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

Parametric

(b) With tangential redistribution

Fig. 3. Comparison of evolution with and without

tangential redistribution at time t = 1.38.

6. APPLICATION IN DISLOCATION DYNAMICS

Dislocation curves as defects in material evolve in time. The dislocation evolution
history contains shape changes of open curves, closing of open dislocation curves up
to collision of dipolar loops (see [14]). Interaction of dislocation curves and dipolar
loops has been studied, e. g., in [11, 12, 13].

Figure 4 illustrates the evolution of a dislocation curve in time. The external
force F = −3 is applied to the curve which causes the expansion in the upward
direction. At time t = 0.54, the sign of the force is changed. The curve then moves
downwards. In a real material, one can observe similar behavior.

Dislocations can interact with other defects through the stress field. In this case,
dislocation curve can be blocked by a potential barrier. Figure 5 shows this case
with a weak barrier. Dislocation curve expands by means of F = −3 until it reaches
the barrier made by the spatially variable force F = 9 at x2 = 1.7. This barrier
is not strong enough to lock the curve. At the ends of the barrier there is a very
high curvature. High curvature results into a strong force resisting the barrier. The
curve can leave the barrier and continue to expand. The simulation in Figure 6 was
computed for t ∈ (0, 2.1).
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(a) Dislocation curve expands (F = −3)

for t ∈ (0, 0.54).
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(b) Curve goes back and expands to the

other side (F = 3) for t > 0.54.

Fig. 4. The evolution of the dislocation curves with variable external force F .
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Fig. 5. The dislocation curve expands over a barrier

created by spatially variable external force.

In the case of a strong barrier, the curve is locked in it and cannot continue in
the evolution. The curve can expand to sides only. The barrier is at x2 = 1.7 and
the value of a barrier force is |F | = 35. Figure 6 (a) illustrates the curve expansion
by F = −3 and the case when it is locked at the barrier (t ∈ (0, 1.5)). Figure 6 (b)
shows the curve shrinking by F = 3 for t ∈ (1.5, 3). The curve is locked at the
barrier and cannot go back to a straight line. This example should represent a real
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(a) Curve expansion
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(b) Curve moves back

Fig. 6. Spatially variable external force F with high value, t ∈ (0, 1.5).

dislocation curve expansion when the curve is locked in a channel.

The evolution of the curve at the infinite channel is shown in Figure 7. The
infinite channel is created by a spatially variable external force. The curve cannot
cross the barrier (at x2 = 1.2 and x2 = 0).

-0.50
0.51
1.5

-4 -3 -2 -1 0 1 2 3 4
Fig. 7. Curve evolution at the channel.
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The last example shows the simulation of the Frank–Read mechanism (see [14])
which describes how new dislocation loops are created. A force is applied to the
dislocation line (similar to Figure 4). The curve keeps expanding until it touches
itself. At this moment, the curve splits into two parts – dipolar loop and dislocation
line. The loop continues in expansion. The dislocation line will again undergo the
same process.
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Fig. 8. The Frank–Read mechanism.



Direct Approach to Mean-Curvature Flow with Topological Changes 603

7. CONCLUSION

The simulation of dislocation dynamics is important in practice as dislocations affect
many material properties. Dislocation dynamics can be mathematically simulated
by the mean curvature flow. We presented a method based on a parametric ap-
proach and two numerical schemes. We applied the model to situations similar to
the real context including a mechanism of creating new dislocations (i. e., Frank–
Read source). The scheme had to be improved by an algorithm for tangential re-
distribution of points and by an algorithm for topological changes for parametric
model.
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