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STABILITY ESTIMATING
IN OPTIMAL SEQUENTIAL HYPOTHESES TESTING

EVGUENI GORDIENKO, ANDREY NOVIKOV AND ELENA ZAITSEVA

We study the stability of the classical optimal sequential probability ratio test based
on independent identically distributed observations Xi, X2,... when testing two simple
hypotheses about their common density f: f = fo versus f = fi. As a functional to
be minimized, it is used a weighted sum of the average (under fp) sample number and
the two types error probabilities. We prove that the problem is reduced to stopping time
optimization for a ratio process generated by Xi, Xo,... with the density fo. For 7. being
the corresponding optimal stopping time we consider a situation when this rule is applied
for testing between fo and an alternative fi, where fi is some approximation to fi. An
inequality is obtained which gives an upper bound for the expected cost excess, when 7. is
used instead of the rule 7. optimal for the pair (fo, fl) The inequality found also estimates
the difference between the minimal expected costs for optimal tests corresponding to the
pairs (fo, f1) and (fo, f1).

Keywords: sequential hypotheses test, simple hypothesis, optimal stopping, sequential
probability ratio test, likelihood ratio statistic, stability inequality

AMS Subject Classification: 62110, 62L15

1. MOTIVATION AND PROBLEM SETTING

In this paper we will find a quantitative estimate of stability of optimal sequential
testing a simple hypothesis against a simple alternative. To set the problem, we
consider a measurable space (Q, F) with given three different probability measures
Py, Py and P,. Let X1, Xs, ... be a sequence of random variables on (Q, F) indepen-
dent and identically distributed with respect of each one of the above probabilities.
We assume that under Py, P and Ph the common distributions of X,,, n > 1, have
densities fo, f1 and f; with respect to some o-finite measure p on (R, %g), and that

p{z: fo(w) # fi(2)}) >0 and  p({z: fo(z) # fi(z)}) >0

Denote by Suppy, Supp; and Supp1 the supports of the distributions of X; under
Py, P1, Py, respectively. In what follows we assume that the densities fo, f1 and fi
are positive on the corresponding supports and that

Supp, C Supp; N Supp; . (1)



332 E. GORDIENKO, A. NOVIKOV AND E. ZAITSEVA

We consider sequential testing problems for two following pairs of simple hypothe-
ses about the density f of distribution of the observed sequence X:

(I) Hy: f = fo against Hy : f = f1, and (II) Hy : f = fo against Hy : f = fi

A sequential test is, by definition, a pair (7, d), where 7 is a stopping time with
respect to the filtration {%#,},>0 with %, = o{X1,Xs,..., X}, for n =1,2,...,
and F = {0,Q}, and ¢ is a terminal decision function, i.e. %.-measurable function
taking values in {0, 1}. The corresponding error probabilities are defined in Problem
I as follows:

e the type I error probability is
a(r,0) = Py(d = 1),

e the type II error probability is
B(r,6) = P1(6 =0).

Similarly (replacing Py by Py), the error probabilities &(r, ), B(T, 0) are defined
in Problem II.

Let cg > 0 be a given cost of an observation, and c¢1,ce > 0 be penalties to be
paid for corresponding erroneous decisions. We define the expected cost functionals
to be minimized over (7,9) as

W(Ta 6) = coEo7 + Cla(Tv 6) + 625(7—; 5)7 (2)
W(r,8) = coBor + cra(r,8) + c23(T, 8), (3)

where Eq stands for the expectation with respect to the probability Py, 7 € 7,
d € P, being 7 the class of all stopping times 7 such that Py(7 < 00) =1, and 2,
the class of all .%,-measurable decision functions.

Remark 1. A more traditional, Bayesian, setting uses yet another term, a multiple
of Eq7, in (2), and has been widely used in sequential hypothesis testing since the
seminal paper of Wald and Wolfowitz [15]. The results by Lorden [7] show that
minimizing (2) and minimizing the Bayesian risk are equivalent in the sense that
the solution of both problems is given by the (respective) sequential probability
ratio tests (SPRT). But using criteria (2) and (3) is more convenient in the present
stability estimation context, because it makes possible to use only one probability
measure, Py, for the analysis of the related functionals (see details below). On the
other hand, the use of only one average sample size functional may sometimes be
justified by practical reasons.

To obtain an equivalent setting to optimization problems (2) and (3), which is
more convenient for our purposes, we first introduce the standard log-likelihood ratio

statistics: n
_ f1 (Xk)]
S"‘,;ln[mxk) | W
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&\ N Fi(Xe)
Sn_kz::ll [fo(Xk)l’ )

forn =1,2,3,..., and Sy = 0 and Sy = 0, where, conventionally, 0/0 = 1 and
In(z/0) = oo for z > 0.
Second, we define the following functionals on .7:

V(1) = coEoT +Eo min{C]_,CQCST}'7 Te T, (6)
V(r) = coEom +Eo min{01,CQC§T}'7 Te J. (7)

It follows from Theorem 1 in Section 2 that for any stopping time 7 € .7 there
exists a decision rule d,(7) € 2, such that

inf W(r,d) =W(r,d.(r)) =V(7). (8)

0ED,

On the other hand, it is known (see, e.g., [7]), that the infimum over 7 € J of
the right-hand side of (8) is in fact attained at some 7, € 7

V(r) = inf V(7). )
Therefore, inf  W(r,0) = W(r.,6,) = V(r,) = inf V(7). (10)
regses, ’ i

According to [7], the structure of the solution (7, d.) of the optimization problem
in (10) is as follows: there exist constants A, B, —oo < A < B < 00, such that

T« = min{n >0:5, & (A, B)}, (11)
i >
R At (12)
0 if S, <A

(A. Wald’s SPRT [15]).
In a similar manner, for the problem of testing f = fy versus f = f; there exist
an optimal sequential test 7,

7. = min{n>0:S, ¢ (A B)}, (13)
o= ok i 2h w

with —co < A < B< 00, such that
V(7.) = inf V(7). (15)
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Remark 2.

(a) In contrast to (2), (3), the functionals V, V in (6), (7) are evaluated using only
the null-hypothesis Hy. This gives certain advantages in setting and solving
the stability problem formulated below. In particular, we will make use of
the fact that the minimization of V and V in (6), (7) is a standard optimal
stopping problem with bounded one-stage and terminal costs.

(b) By virtue of (1) the random variables

f1(Xk) and  In fi(Xy)
Jo(Xk) Jo(Xk)

are finite with Py-probability one. In fact, we have used this to define V' and
V in (6) and (7), and will exploit it later.

In

Remark 3.

(a) Because %y = {Q,0}, it is obvious that F = {79} U 71, where 7] is the class
of stopping times 7(with respect to {.%,}), such that 7 > 1, and 79 = 0.

(b) If So =0¢ (A, B) in (11) and (12), or if A = B, then 7, = 79, and the optimal
value V(7,.) = min{cy, co} with

1 if C1 S C2
04 (Tw) = 16
(T ) {0 if ¢ > co. ( )

On the other hand, if A < 0 < B then the optimal stopping time 7, can not
take the value 0. The same is true for the optimal stopping time 7.

Only the latter case is of practical interest, because in the former case, due to
(16), one of the error probabilities is always equal to 1.

Because of this, we will assume in what follows that 7, in (9) is of type (11)

with A < 0 < B, and 7, in (15) is of type (13) with A <0 < B.
(c) If o > co then 7, = 7, = 19 as well. Indeed, in this case,
V(10) = min{ecy, c2} < o < coEom + Eg min{ctheS*} =V(r)

for any 7 € Z;. Because, again, this case is not of practical interest, we will
be supposing throughout the paper that ¢y < cs.

The stability estimation problem may appear in the following situation. Assume
that a statistician has the optimal stopping rule 7, corresponding to the (fo, f1)
pair, but he is not quite sure about the density f;. If, in fact, the true alternative
density is fl, then how big is the additional expected cost

A=V(r,)—=V(#) >0 (17)
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he pays because of applying the non-optimal stopping time 7, instead of the optimal
one, 7,7 Here, f/(%*) is the optimal expected cost which is attained using the optimal
test (7, 04), and V (7,) is the expected cost corresponding to the test (7, 8,) (optimal
for (fo, f1)), when the type II error probability is calculated according to the true
alternative density fi (see (3)).

For instance, fi of the form

f=0-e)fi+ef, (18)

where f’ is an unknown “contaminating” density, naturally appears in robust statis-
tics. It is used for judging about the robustness of statistical procedures letting
e — 0 (see, e.g., [4, 5, 6, 13, 16]).

Our purpose is to estimate the expected cost excess (17) in terms of a suitable
measure of discrepancy between f; and fl. More precisely, we are interested in an
upper bound for A defined by (17), which we call “stability index”. (Compare with
similar definitions of the stability index in [2, 3, 9].) Theorem 2 in Section 2 gives
such a bound. Namely, under the conditions of Section 2, we obtain that

ASKd(fl,fl)a (19)
where ath o= | \ln ;8 fol) du(z), (20)

and K is a constant explicitly calculated using cg, c1, co along with means and vari-
ances of corresponding likelihood ratios.
Also Theorem 2 gives the following bound for the difference between the respective

expected costs for the corresponding optimal tests (7u, 0. (7)) and (T«, 0. (7:)):

Vir) - V)| < St ). (21)

For example, if fo, f1 and f; are densities of exponential distributions with re-
spective parameters A\, p and p + ¢, € > 0, then from (19) and (20) we find that
A
A<K ﬂs
A
(see Example 1 for details).

Remark 4.

(a) In Example 2 of Section 2 we will see that if the distortion of f; is given by (18)
and f1(z) and f'(z) have significantly different rates of vanishing, as x — +o0,
then d(f1, fl) can be infinite. Moreover, by reasons given in Remark 6 it could
be conjectured that A in (17) does not approach zero as ¢ — 0. Such examples
explain the necessity of robust modifications of the sequential probability ratio
test (see, e.g., [4, 5, 6]).

(b) Essentially, (21) is a quantitative estimation of the sensitivity of the optimal
value in the optimal stopping problem (9). A rather general qualitative re-
sult on the convergence of optimal value in optimal stopping problems, for
continuous-time Markov processes, can be found in [8].
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2. ASSUMPTIONS, RESULTS AND EXAMPLES

Recall that the functionals W, W, V and V were defined, respectively, in (2), (3),
(6) and (7). The following theorem is implicit in [7]. It is proved in [10] in a much
more general situation.

Theorem 1. For each stopping time 7 € .7 there exist decision rules 0, (1), 0,(7) €
9, such that

6ienngW(T,6) = W(r,d.(7)) =VI(), (22)
5“5,”7(“5) = W(r,0.(1)) = V(). (23)

As was explained in the preceding Section, Theorem 1 allows to apply the general
theory of optimal stopping ([1, 14], see also [7]) to get the following

Corollary 1.

(a) There exist stopping times 7, of type (11) and 7. of type (13) such that

Vi) = Tiél{ng(T), (24)
V(f) = nf V(7). (25)

(b) The optimal decision functions 0, = 6,(7,), 6. = 0,(7.) are defined by (12)
and (14), respectively.

Because of Corollary 1, we will deal in what follows with the optimization problem
given in (24)—(25). To estimate the stability in this problem, we will use the follow-
ing additional condition. Let X be a generic random variable with the distribution
identical to that of X7, X, ..., under F.

Assumption 1. There exists a constant v > 0 such that

Eg exp {fy In ;;Ei; '} < 00, (26)
Eg exp {7 In ;;Eig ‘} < 0. (27)

Inequalities (26) and (27) imply that the following means and variances are finite:

e [ A i [ )
aEO{l fo(X)}<0’ Eoll fo(X)]d)
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(—a and —a being the corresponding Kullback-Leibler information numbers), and

2 ~ 2
o2 =E, [1 fl(X)] —a?>0, §2=E, [1 fl(X)] —a2>0.

n n
Jo(X) fo(X)
Let us introduce the random variables

—nfl(X)—a ~:nf1(X) a
YeERRm e VTR

From Assumption 1 it follows that there exists a number T > 0 such that

EoetY < ema,x{o—Z,&z}tz, Eoetf/ < emax{az,&z}t2 (28)

for all 0 <t < T (see the proof of Lemma 5, Chapt. III in [12]). Let us define:
_ _a a9,
gmax{ T T,2a,20 } (29)

(the terms of —% and —Z will be needed for Theorem 2 below). Then for all ¢,
0<t<T, we get that

max {Eoety, Eoet{/} < exp {th} . (30)
We have done all needed preparations to formulate our stability estimation result.

Theorem 2. Suppose that Assumption 1 holds. Then for any fl

A < 2¢, (31)
and if | melea)
d(f1, i) < (CO> K (32)
C2
then
A < Kd(fy, fi) max{1,In>d(f1, f1)}, (33)
where
Co S 39 2g°
K =2¢ (Q) + (max{a,a})? + (max{a, a})? +1f. (34)

Corollary 2. Under Assumption 1 and (32) we get that

V(n) - V(7)) < %d(fl,fl)max{l,an (1, ) (35)



338 E. GORDIENKO, A. NOVIKOV AND E. ZAITSEVA

Remark 5. Under Assumption 1, “the deviation measure” d(fi, fl) is finite.

Remark 6. By virtue of definition (20) and condition (1), the measure of discrep-
ancy between fy and fi, d(f1, f1), is small if f; does not deviate considerably from
f1 on the support of fy, Supp,. In this case the stability index A is relatively small
due to (33). At the same time it does not matter the behaviour of f; and f; outside
of Supp,. For example, let

1
folw) =A™ x>0, fi(x) = Jue”"V", 2 €R, and

%ue_’”, x>0,
filz) =141, -1<x<0,
0 < —1.

7

In this case d(f1, f1) = 0 and A = 0, which means that there is no difference between
the stopping rules 7. and 7, from the point of view of minimization of (2), (3) (see
also (3.17) in [11]).

Example 1. (Exponential densities) Let fy, f1 and f1 be the exponential densities
with the respective parameters A, p, p+ € (inverse to the means), A < p, 0 <e < 1.

Then f( )
z) p _
In fo(x) =In \ + ()\ ,u)x,
1n£g;:muig+ﬂ—u—@$ (z>0),

and therefore Assumption 1 is satisfied for any v < A/(uz+ 1 — X). Some constants
involved in (34) can be calculated explicitly. For instance,

a—lnE—L_)\ d—lnu_‘_g—u—i_g_)\

DY A B A A ’

In this example, inequality (33) holds for all sufficiently small & with

A+p
A

E.

d(fi, fr) <

Example 2. (“Contamination” with a “long tail” distribution) Let f; be the
exponential density with parameter 1,

__2 > (0
_ m(1+x2)? T =Y,

) =
Jo(@) {Q z <0,

and

fi=0—e)f1+efo (36)
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Since for x > 0

fl()
w1+ 22

fl( )

2 xr
:’1n<(1—5)—i—5 ¢ )’Nx, T — 00,

we obtain that d(fi, f1) =

Remark 7.

(a)

We make a conjecture that the problem of optimal testing in this example is
unstable. This means that it could be expected that the stability index A does
not approach zero as € — 0. A reason supporting this could be the fact that
in this case, as easily seen, a = —o0, Eq [In (f1(X)/fo(X))]* = oo, while & and

&2 are finite.

By a plain verification one can see that Assumption 1 is satisfied when the
“tails” of all of the densities fy, f1 and f; have power orders (possibly different)
of vanishing.

The simplest example of an unstable testing problem can be given admitting
that the error costs c¢1, co may depend on a “small parameter” € > 0. Let p
be the counting measure on {0, 1} fo and fi be the unit masses concentrated,
respectively, at 0 and 1, and let f1(0) = ¢, fi(1) =1 — &. Assume that ¢o = 1
and let ¢; = ¢1(¢) = ¢a = ca(€) be defined as specified below. Let A and B,
A < 0 < B, be any two constants. In [7] it is proved (see the proof of Theorem
2 [7]) that there exist ¢; and ¢y such that the sequential probability ratio
test (13) - (14) with the constants A and B is a solution of the optimization
problem (15). But in this case it is easy to see that, under the null-hypothesis,

A /Ine [7 where ]a[ stands for the minimum integer greater or equal than

a. If we choose now A = —1In’¢, and its corresponding ¢; and ¢z as above,
then Eg7. — o0, as € — 0, and thus V(7.) > Eo7. tends to infinity, as € — 0.

At the same time, it is obvious that 7. = 1 and hence V(7,) = 1.

Example 3. (Normal densities) Let fy, f1 and f1 be the normal densities with
zero means and standard deviations og, 01 and o1 + €, respectively. It is easy to see
that Assumption 1 is satisfied. Consequently, the inequalities of Theorem 2 apply.
In addition, one can calculate that

d(f1, f1) < 1 (1‘1“70/‘71)

Indeed, by (20),

where X is an 4/(0, 0}

X2 1 1 €
(flafl ‘ (0_1_"_6)20_%>+1H(1+0_1>

-random variable. Thus,
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3. THE PROOFS

To prove Theorem 1 we need the following almost obvious lemma (see also [10]).

Lemma 1. Let F} : 2 — R, F, : 4 — R be some measurable non-negative
functions on a measurable space 2~ with a measure p, and let A be a measurable
subset of 2.

Then for any measurable function ¢ : 2 — [0, 1]

/A ((2)Fy () + (1 — §(a)) Fal(x)) du(x)
> / min{ 71 (z), Fo(z)} du(z), (37)
A

with an equality if

I Py ()< Fo(2)} < (@) < I(Fy (2)<Fo(a)} (38)
for x € A.

The proof of Theorem 1. Let us only prove (22): the proof of (23) is the
same.
Let 7 € 91 be any stopping time. For any n = 1,2,... let us denote:

" = (21,...,7,) ER", f1(2") = Hfj(xi), j=0,1,
i=1

L(T,(S) = 61P0(§ = ].) +62P1(§ = 0)
Then

Lr6) =Y / TR o+ eaff @ -] 6. 39
n=1 T=n

Applying Lemma 1 to each summand in (39) (with ¢ = I{5—}), we have that

L(7,0) > Z /{ } min{ey f§ (z™), co f1 (™) Fdpu™ (™), (40)
with an equality if
§=0.(1) = Lieyfp(am)<eafp @)} Lr=n}- (41)
n=1

It is easy to see that

/ min{ecy fo' ("), ca f1'(2™)} dp" (2") = Eg min{cy, c2 2, }H (7 =ny,
{r=n}
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where

ﬁ n=12,...,

i
so it follows from (40) that
L(7,0) > Egmin{cy, 2 Z, },

or, because of (2) and (6),
W(r,8) > V(7). (42)
There is an equality in (42) if (41) is fulfilled. Thus, (22) follows. O

Remark 8. Because the optimal stopping rule 7, in (10) has form (11) with A <
In(c1/e2) < B (see Section 3 in [11]), it follows that the optimal decision function §
defined in (41) is equivalent to (12) if 7 = 7.

The proof of Theorem 2. According to (17) and (6) we have:

A=V(r)=V(E) = (V) - V(r) + (V(r) - V(7))

< )V(T*) V)| +| min V() - min V()
TE{T, T} Te{T., T}
<2 max V(T)—V(T)‘
TE{Tw, T}
=2 r{nax~} Eo min{c;, c2e57} — Eg min{cl,CQegT} . (43)
TELT*,Tx

Let 7 = 7, or 7 = 7, and 7(z) = min{c;, cae®}, x € R, I = Eo|r(S;) — 7(S,)|.
For any n > 1 we have: I = I} + I, where

I =Y Eo{|r(S;) = r(S:)lim =k}, L =Eo{|r(S;) —r(S,)lim>n}.  (44)
k=1

It is easy to see that the function r satisfies the Lipschitz condition with the
constant ¢;. Thus, for n > 1

n k k
Li<ey Eo|) &-Y &l
k=1 i=1 i=1

where

&=In

SO

I1<C1ZkE0|51 Gl=c—— ( 2

k=1

Eolé1 — & (45)
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Thus, by (44), (45) and (20),

n(n + 1)d

I<Cl|: B)

(f1, fi) + P(r > n)] : (46)
Therefore, (43), (46) give that
A< [n(n + 1)d(f1, f1) + 2T€I{I‘1ra)‘{,~_ P(r > n)] . (47)

To bound P(7 > n) in (47) we need first the following simple

Lemma 2. If 7, of type (11) is a solution of the optimization problem (10), then

A > 1In(cp/ca). (48)

Proof. From Theorem 5 [11] it follows that z = e is a solution of the equation

e (445 <o

where p(z) is some non-negative function. Thus,

C22 2 Cp,

or
eA 2 CO/CQa

o (48) follows.

Remark 9. It is obvious that if 7. of type (13) is a solution of the optimization
problem (9) then A > In(cq/c2) as well.

Let us introduce further

HXe) o 1
Jo(Xk) & Y%=l fo(Xk)

Let Ag = In(co/cz2) (which is negative, see Remark 3 (c)). Let us define:

~

Y, =In —a, k=12,...

Ta, =min{n >1:8, < Ay}, 7a, =min{n>1:8, < Ay},
2]
No=|—1 .
a

Po(T > ’/l) < Po(TAO > Tl) =F <1I§I}clgnSk > AO)

and

For 7 = 7, we obtain:
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§P0(5n>A0):P0 (iYk>Aona>. (49)

k=1

To find an upper bound for the right-hand side of (49), we use the following

inequality:
n 2
Py (me) <exp{—2x}, (50)
gn

k=1
which is valid under conditions (30) for 0 < z < ngT, (see Theorem 15, Chapt. III

n [12]). Using the choice of the constant ¢ as in (29) we see that for any n > ng

OSAO—nag—na:n%aTgngT.

Thus, applying (50) with z = Ayp — na to (49) we obtain for n > ng:

n
Py <Z Y. > Ag — na) < e@Ao/9=a*n/(29) (51)
k=1
Analogously,
Py (Z Y, > Ao — nd) < dAo/go=a’n/(29) (52)
k=1

for all n 2]%[.
Let A = min{a,a}, p = max{a,a}, n. = } % {, Ky = 2exp{’\5#}, K= % (recall
that Ag, A, u are negative numbers).

Then, combining (47) - (50) together we conclude that for all n > n,
A<y [n(n+1)d+ Koe "], (53)

where d = d(fy, f1).

The first affirmation of Theorem 2 immediately follows from (43).

Let now d < exp _ Aok . (54)
i R
Then choosing " — ] N ‘[7 (55)
Kk d
it is easy to see that n > n,. Making use of (55) in (53), we get:
1.1 1.1
A < “In=+1)(=In=+2)d+ Kod
- Cl[(nnd+)(ﬁnd+)+ O]
, o1 3
< cldmax{l,ln d} — + = +2+ Kol . (56)
K K

The last inequality yields the desired stability inequality (33) with the constant
defined in (34). Inequality (35) in Corollary 2 follows from (43) and (56). d
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