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ON TESTING OF GENERAL RANDOM CLOSED SET
MODEL HYPOTHESIS

Tomáš Mrkvička

A new method of testing the random closed set model hypothesis (for example: the
Boolean model hypothesis) for a stationary random closed set Ξ ⊆ Rd with values in the
extended convex ring is introduced. The method is based on the summary statistics –
normalized intrinsic volumes densities of the ε-parallel sets to Ξ. The estimated summary
statistics are compared with theirs envelopes produced from simulations of the model given
by the tested hypothesis. The p-level of the test is then computed via approximation of the
summary statistics by multinormal distribution which mean and the correlation matrix is
computed via given simulations. A new estimator of the intrinsic volumes densities from
[6] is used, which is especially suitable for estimation of the intrinsic volumes densities of
ε-parallel sets. The power of this test is estimated for planar Boolean model hypothesis and
two different alternatives and the resulted powers are compared to the powers of known
Boolean model tests. The method is applied on the real data set of a heather incidence.

Keywords: Boolean model, Boolean model hypothesis, contact distribution function, Euler–
Poincaré characteristic, Intrinsic volumes, Laslett’s transform

AMS Subject Classification: 60D05, 62G05

1. INTRODUCTION

Simulation based tests are widely spread in stochastic geometry for testing a model
hypothesis. For example, the simulation based tests of random point process model
hypothesis are described in [5]. When testing a random closed set model hypothesis
(for example a Boolean model), it is important to choose a characteristic of the
model which is able to distinguish between different models.

The characteristics which are commonly used for describing a closed set are in-
trinsic volumes. The intrinsic volumes V0(K), . . . , Vd(K) of a convex body K ⊆ Rd

are determined by the Steiner formula

Vd(Kε) =
d∑

k=0

εkωkVd−k(K),

where Vd is the volume (d-dimensional Lebesgue measure), Kε = {x ∈ Rd : dist (x,K)
≤ ε} the (closed) ε-parallel set to K and ωk denotes the volume of the unit ball in Rk.
(Under a different normalization, they are known as quermassintegrals or Minkowski
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functionals.) The intrinsic volumes can be extended additively to polyconvex sets
(sets from the convex ring). For details see [12].

We consider a stationary random closed set Ξ in Rd with values in the extended
convex ring (e. g. Ξ can be represented as a locally finite union of convex bodies).
Under certain integrability condition, the intrinsic volume densities of Ξ can be
defined as in [13] or [10] by

V k(Ξ) = lim
r→∞

EVk(Ξ ∩ rB)
Vd(rB)

,

where B is any convex body with nonempty interior; for a detailed introduction see
[13] or [14]. In the plane, V 2(Ξ) is the volume density, V 1(Ξ) is one half of the
circumference density of border ∂Ξ and V 0(Ξ) is the mean Euler number density.

The intrinsic volumes densities alone are not able to distinguish different models,
therefore we use in our test the intrinsic volumes densities of ε-parallel sets to Ξ with
varying radius ε. These can easily reflect the differences between regular – Boolean
– cluster models.

There exist several methods for estimating intrinsic volumes densities introduced
in [7, 8, 9, 11] and [6]. The last method is especially suitable for purposes of es-
timating the intrinsic volumes densities of ε-parallel sets due to the following two
reasons:

1) It is an unbiased estimator of V k(Ξε), k = 0, . . . , d − 1 for ε > δ, where δ
depends on the estimation procedure.

2) When we estimate V k(Ξ), k = 0, . . . , d − 1 using method described in [6], we
use the approximation by estimating V k(Ξε), k = 0, . . . , d − 1 for as small ε > 0 as
possible. But we are limited by the resolution of a discretized image, therefore the
estimator of V k(Ξ) is biased and it is shown that this bias is crucial for the mean
square error of the estimator. Despite such a bias the estimator described in [6] is
comparable with any other estimator, see [6]. Therefore, when the crucial bias is
removed (due to the estimation of V k(Ξε), k = 0, . . . , d−1), this estimator will have
the smallest mean square error from all available estimators.

The chosen estimator of intrinsic volumes densities estimates only the values
V k(Ξε), k = 0, . . . , d− 1 therefore the classical point-counting estimator is used for
estimating volume density V d(Ξε).

Concerning the organization of the work, we give a short description of the avail-
able tests in Section 2. The proposed test is described in Section 3. Then we
compare the powers of all tests with respect to the certain alternatives in Section 4.
The real data study is performed in Section 5 on the heather incidence data which
were studied first in [2]. The real data study is considered for illustrative purpose.
Here a proposed test is applied to the data set to test the hypothesis that the data fit
the Boolean model of discs with the parameters estimated in [2]. This hypothesis is
rejected using the proposed test which confirms the conjecture given in [2], that the
data set does not fit the Boolean model. The same hypothesis was not rejected in
[2] by another simulation-based test. Furthermore another model is proposed which
is not rejected by the proposed test.
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2. TESTS DESCRIPTION

In this section we give a summary of the tests available for testing the Boolean
model assumption and the general model assumption. For testing the Boolean model
assumption one can use the following two procedures.

2.1. Laslett’s test

For details, see [1] or [3].

Briefly:

1. Take the tangent points in a certain direction u.

2. Apply Laslett’s transform on those points.

3. Test the Poisson property of the transformed points. If it is not Poisson then
the Boolean model hypothesis is rejected.

Disadvantages: A considerably big part of the tangent points have to be omit-
ted because of the dependencies between transformed points and the observation
window. Clustering or regularity may be lost after the Laslett’s transform, see [1],
p. 769.

For testing the Poisson property we used, in the simulation study, the method
using the reduced second-order moment function described in [14], p. 50-51.

2.2. Graphical test for contact distribution function

For details, see [14] or [3].
Usually the linear contact distribution function Ĥl(r) and the quadratic (spher-

ical) contact distribution function Ĥq(r) are estimated. Then the normalized loga-
rithm Ĥ l

l (r) = − 1
r ln(1 − Ĥl(r)) is graphically compared with a constant function.

And the normalized logarithm Ĥ l
q(r) = − 1

r ln(1 − Ĥq(r)) is graphically compared
with a linear function. If both normalized logarithms are graphically comparable
with appropriate functions then the Boolean model is accepted.

Disadvantages: No significance level is available.
For the purposes of our simulation study and the comparison of the tests we

need a clear decision algorithm whether the Boolean model is rejected or not. Since
Prof. Stoyan maintains (in personal communication) that only Ĥq(r) carries any
information about spatial structure of the random set, we chose Ĥq(r) only. We
calculated the coefficient of determination (R2) of Ĥ l

q(r), r = 1, . . . , 24 with respect
to the linear regression model (R2

Q) for the data. Then we performed 99 simulations
of the Boolean model with parameters estimated using estimated intrinsic volume
densities, like in [3], pp. 81–83 and we calculated R2

Q for each simulation. We reject
the Boolean model hypothesis if R2

Q computed from the data is among 5 minimal
values. (i. e. it is the simulation-based test with deviation measure R2

Q with Ĥq(r)
as the summary statistic with the significance level 0.05, see next section for details.)
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2.3. Simulation-based tests with deviation measure

For testing the general model assumption one can use the following procedures. The
simulation-based tests with deviation measure have exact significance level, therefore
they were used in a lot of applications. The simulation-based tests with envelopes
have unknown significance level therefore they were used only as a diagnostic plots.
We will compute the p-level of the simulation-based tests with envelopes in forth-
coming section, which upgrade these procedures to the proper tests. Any simulation
based test is applicable on any model assumption where we are able to estimate the
model parameters.

Generally, when a simulation based test with deviation measure is performed, the
following procedure is done:

1. A summary statistic S(ε) of the random process is chosen. The summary
statistic is a function S(ε) of ε ∈ R+ and it is estimated from the data in n
different points ε1, . . . , εn. Denote these estimates ŜD

ε1
, . . . , ŜD

εn
. Furthermore,

the deviation measure ∆D is computed.

2. The parameters θ of the assumed model in null hypothesis are estimated by
an estimator θ̂.

3. N independent samples of the null model with estimated parameters are sim-
ulated and the deviation measures ∆1, . . . , ∆N are computed.

4. We reject the hypothesis if ∆D is among m maximal values from ∆D, ∆1, . . . , ∆N

with significance level m
N+1 .

Possible deviation measures are

∆max = max
1≤i≤n

|Ŝεi − Sθ̂,εi
|

or
∆P =

n∑
i=1

(Ŝεi − Sθ̂,εi
)2,

where Sθ̂,ε is the theoretical S(ε) with the estimated parameter θ̂.

Remark. The disadvantage of the simulation-based tests is that there is tested the
hypothesis of the given model with certain parameters, which are estimated from the
data, and thus not only the hypothesis of the given model is tested. This imply that
bad estimate of the parameters can cause the rejection of the true model hypothesis.

We found only one application of the test of this kind for random sets in the
literature, see [2]. There the quadratic contact distribution function is used as the
summary statistic.

In our simulation study we processed this test with n = 24, N = 99, m = 5 and
with both deviation measures ∆max, ∆P.

In our simulation study we tested the Boolean model assumption. The parame-
ters of the Boolean model was estimated using empirical intrinsic volume densities
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V 0(Ξ), . . . , V d(Ξ) [3], pp. 81–83. The intrinsic volume densities V 0(Ξ), . . . , V d−1(Ξ)
are approximated by V 0(Ξε1), . . . , V d−1(Ξε1) as it is described in [6]. We used this
estimation procedure in all simulation-based test described in this note.

2.4. Simulation-based tests with envelopes

The following procedure describes the simulation-based tests with envelopes and the
computation of p-level via approximation of the summary statistics by the multi-
normal distribution.

1. A summary statistic S(ε) of the random process is chosen. The summary
statistic is a function S(ε) of ε ∈ R+ and it is estimated from the data in n
different points ε1, . . . , εn. Denote these estimates ŜD

ε1
, . . . , ŜD

εn
.

2. The parameters θ of the assumed null model are estimated by an estimator θ̂.

3. N independent samples of the model with estimated parameters are simulated
and the summary statistics Ŝi

ε1
, . . . , Ŝi

εn
, i = 1, . . . , N are computed.

4. To compute the p-level of this test, the summary statistics Sε1 , . . . , Sεn are ap-
proximated by the random vector X with multinormal distribution with mean
vector µ = (µ1, . . . , µn)T and the covariance matrix Σ = (Σij)i,j=1,...,n com-
puted from N simulations. The upper envelope is constructed as UE(s) =
(µ1 + s

√
Σ11, . . . , µn + s

√
Σnn)T and the lower envelope is constructed as

LE(s) = (µ1 − s
√

Σ11, . . . , µn − s
√

Σnn)T . The width of the envelopes de-
pend on the parameter s > 0.

5. The integer number K is chosen. This is the maximum number of values
ŜD

ε1
, . . . , ŜD

εn
which fall outside of the envelopes and for which the test does not

reject. The widest envelope when the test does not reject is then given by

ssup = sups(#{ŜD
εi

/∈ (LE(s)i, UE(s)i), i = 1, . . . , n} ≤ K).

6. The p-value is then the probability that more than K component of the random
vector X fall outside of the envelopes (LE(ssup), UE(ssup)). Since X is usually
high dimensional, the probability is computed by Monte Carlo method. (e. g.
The m random vectors are drawn from the estimated multinormal distribution
of X and each vector is tested if more than K components fall outside of the
envelopes. The ratio of the number of vectors satisfying the condition and m
is then Monte Carlo estimate of the p-value. In our simulation study m was
200000. This ensures the width of 95% confidence interval to be maximally
0.002.)

We implemented this test for the quadratic contact distribution function as the
summary statistic with n = 24, N = 99, K = 1. The parameters were estimated in
the same way as in all other cases.
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3. PROPOSED TEST

We propose a simulation based test with envelopes for testing the general model
assumption which is based on normalized intrinsic volumes densities of the ε-parallel
sets as the summary statistics.

We consider the intrinsic volumes densities V k(Ξεi), k = 0, . . . , d, i = 1, . . . , 24
of the εi-parallel sets. The discretized version of the parallel set Ξεi is produced as
dilation of the set Ξ by a discretized disc with a radius εi. The radii of the discs
were determined as in [6], Section 6. We chose 24 different discs with radii ε1, . . . , ε24

evenly spanned between 1 and 25 pixels of the image. Here we can see that the test
is dependent on the resolution of the original image and the size of the particles,
but the radii can be shrunk or spread to cover the interesting area of pixels (for
example if the resolution is low, the parallel set for big radius can be whole white,
thus the radii must be shrunk, or on the other side if the resolution is big, the
neighbor parallel sets can be almost equal, thus the radii must be spread to cover
whole range of interactions). When the envelopes are made from the simulations,
the estimated intrinsic volumes densities V k(Ξε1) vary a lot for different simulations
thus the envelopes are wide. Therefore we fixed first point and choose as summary
statistics for the proposed test the normalized intrinsic volumes of parallel sets:

V k(Ξεi)
V k(Ξε1)

, i = 2, . . . , 24, k = 0, . . . , d.

This normalized intrinsic volumes reflect the interactions among the particles and
are unaffected by the number and size of the particles. The estimation of V d(Ξεi)
is performed by the standard unbiased point counting estimator and the estimation
of V 0(Ξεi

), . . . , V d−1(Ξεi
) is performed by the unbiased estimator described in [6].

We implemented this test with n = 69 (23 points for 3 normalized intrinsic
volumes densities), N = 99, K = 3. The parameters were estimated in the same
way as in all other cases.

The parameter K is arbitrary in simulation-based tests with envelopes. We chose
K = 3 for the proposed test and K = 1 for the test with quadratic contact distribu-
tion function as the summary statistic in the following way. Denote p(N,n,K) the
probabilities, that more than K values of the summary statistic, which have n values,
will lie outside of the envelopes (produced as maximum and minimum from N simu-
lations), under the non-realistic assumption that the values of the summary statistic
are independent. The probabilities p(99, 69, 3) = 0.0497 and p(99, 24, 1) = 0.0826
are the closest to the usual significance level 0.05. This choice cause that the tests
with envelopes do not allow too many small deviations from the theoretical summary
statistic (as the test with sum deviation function can allow) and that it is not too
strict to allow no greater deviation (as the test with maximum deviation measure is).

For completeness we implemented the simulation-based tests with deviation mea-
sure with normalized intrinsic volumes of parallel sets as the summary statistics too.
Since there are 3 different statistics in the plane V k(Ξε)

V k(Ξε1 )
, k = 0, . . . , 2 we had to
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adapt used deviation measures.

∆max = max
0≤k≤2

(
1

Ak
max

2≤i≤24

∣∣∣∣∣ V̂ k(Ξεi)

V̂ k(Ξε1)
−

V θ̂,k(Ξεi)

V θ̂,k(Ξε1)

∣∣∣∣∣
)

and

∆P =
2∑

k=0

 1
Ak

24∑
i=2

(
V̂ k(Ξεi)

V̂ k(Ξε1)
−

V θ̂,k(Ξεi)

V θ̂,k(Ξε1)

)2
 ,

where Ak is the average deviation measure of kth summary statistic computed from
all N simulations. The average here is computed from the simulations only.

In our simulation study we processed this test with n = 3 · 23, N = 99, m = 5
and with both deviation measures ∆max, ∆P.

4. SIMULATION STUDY

First we estimated the powers of all previously described tests with respect to certain
alternatives. We chose two alternatives (cluster model and regular model). In both
cases the model was tested on the Boolean model hypothesis.

4.1. Cluster model

As a representative of the cluster model we chose the germ-grain model in R2 where
the germs form a Matérn cluster point process with the intensity λ = 0.0012. The
cluster point process is constructed in two steps. First the Poisson point process
of cluster centers is generated with the intensity α = λ/ν, where ν is the mean
number of points per cluster. Then, in each cluster, there are generated points
which number follows the Poisson distribution with parameter ν = 6 and which
are uniformly distributed in the disc with radius R = 50 pixels around the cluster
center. The germs are discs with radii which follow the lognormal distribution with
parameters [µ = 2.690, σ = 0.19]. The point process of germs is the process of
centers of discs. We made 50 simulations in the observation window W = 500× 500
pixels. The typical observation of this model is shown in Figure 1.

For each simulation we performed 8 tests.

1. Laslett’s test.

2. The simulation-based test with deviation measure R2
Q with quadratic contact

distribution function as the summary statistic.

3. The simulation-based test with deviation measure ∆max with quadratic contact
distribution function as the summary statistic.

4. The simulation-based test with deviation measure ∆P with quadratic contact
distribution function as the summary statistic.

5. The simulation-based test with deviation measure ∆max with normalized in-
trinsic volumes densities of parallel sets as the summary statistics.
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Fig. 1. Left: One observation of the chosen cluster model in the observation window

W = 500 × 500 pixels. Right: One observation of the chosen regular model in the

observation window W = 500 × 500 pixels.

6. The simulation-based test with deviation measure ∆P with normalized intrin-
sic volumes densities of parallel sets as the summary statistics.

7. The simulation-based test with envelopes with quadratic contact distribution
function as the summary statistic.

8. Proposed test: Simulation-based test with envelopes with normalized intrinsic
volume densities of the parallel sets as the summary statistics.

For the test 1 no assumption is needed. For the simulation based tests we have
to assume shape of the particles and distribution of the size of the particles. Wrong
assumption can lead to a lower acceptance of the model thus we chose correct as-
sumptions because then we can expect lower number of successive rejections of the
Boolean model hypothesis for simulation-based tests. Thus only parameters (λ, µ, σ)
are necessary to estimate. The approach used for the estimation of the Boolean
model parameters leads to estimates of (λ, Ā, Ū), where Ā = EA(Ξ0) is the mean
area of the typical grain Ξ0 and Ū = EU(Ξ0) is the mean perimeter of the typical
grain Ξ0. From estimates of (λ, Ā, Ū) we estimated (λ, µ, σ) by comparing appropri-
ate moments of lognormal distribution with Ā, Ū .

The numbers of successive rejections of the Boolean model hypothesis are summa-
rized in Table 1. The proposed test 8 has the highest number of rejected simulations.
To test the significance of this assertion we compare the estimated power of the pro-
posed test with the second highest estimated power (test 2) in the following way:
We assigned value 0 to the not rejected simulations and value 1 to the rejected sim-
ulations then we subtracted the values for test 2 from the values for test 8. We
obtained a random sample from a distribution F and we proceed the asymptotic
one sided test with the hypothesis that the expectation of F is equal or less than 0.
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Table 1. The numbers of successive rejections of the Boolean model hypothesis

with significance level 0.05 from 50 simulations and the mean p-values.

Cluster model Regular model
N. reject. Mean p N. reject. Mean p

1) Laslett’s test 5 0.324 0 0.619
2) Qudratic CDF R2 29 0.132 0 0.496
3) Qudratic CDF maximum 5 0.386 26 0.069
4) Qudratic CDF sum 2 0.431 22 0.074
5) Intrinsic volumes maximum 21 0.121 49 0.005
6) Intrinsic volumes sum 14 0.133 47 0.021
7) Qudratic CDF invelopes 10 0.283 31 0.051
8) Intrinsic volumes invelopes 38 0.065 49 0.008

The resulted p-level is 0.021. Thus we reject the hypothesis that both tests have the
same power against the given cluster model alternative.

4.2. Regular model

As a representative of the regular model we chose the germ-grain model in R2 where
the germs form a regular point process with the intensity λ = 0.001. The regular
point process is constructed from evenly scattered points in R2 when each point is
then shifted in random direction by a distance h. The distance h was chosen to have
the uniform distribution with parameters [0, 15] pixels. The germs are discs with
radii which follow the lognormal distribution with parameters [µ = 2.6903, σ = 0.19].
The point process of germs is the process of centers of discs. We made 50 simulations
in the observation window W = 500 × 500 pixels. The typical observation of this
model is shown in Figure 1. We chose big volume fraction for the regular model
because for the small volume fraction the best way to test the hypothesis would be
detecting the disc centers and using the methods for point processes. Since there
is little empty space around the particles of the simulated data, we used, for the
dilation Ξε, discretized discs with radii ε1, . . . ε24 evenly spanned between 1 and 12
pixels of the image. (Larger discs produce after dilation just a white rectangle.)

For each simulation we performed the same tests and the same parameter estima-
tion procedure as for the cluster model. The numbers of successive rejections of the
Boolean model hypothesis are summarized in Table 1. The proposed test 8 and all
the tests based on Intrinsic volumes have the higher number of rejected simulations
than the other tests. We tested the significance of this assertion in the same way
as for the cluster case, we compare the estimated power of the proposed test with
the estimated power of test 7. The resulted p-level is 7.6 ∗ 10−8. Thus we reject
the hypothesis that both tests have the same power against the given regular model
alternative.



302 T. MRKVIČKA

Table 2. The numbers of wrong rejections of the Boolean model hypothesis

with significance level 0.05 from 50 simulations of Boolean model

and the mean p-values.

Boolean model
N. reject. Mean p

1) Laslett’s test 3 0.487
2) Qudratic CDF R2 0 0.477
3) Qudratic CDF maximum 0 0.768
4) Qudratic CDF sum 0 0.804
5) Intrinsic volumes maximum 0 0.779
6) Intrinsic volumes sum 0 0.812
7) Qudratic CDF invelopes 0 0.819
8) Intrinsic volumes invelopes 0 0.808

4.3. Boolean model

Here, for completeness, we estimated the significance level of all studied tests.
We made 50 simulations in the observation window W = 500 × 500 pixels of the

Boolean model with the intensity λ = 0.00018. The germs are discs with radii which
follow the lognormal distribution with parameters [µ = 3.383, σ = 0.19].

For each simulation we performed the same tests and the same parameter esti-
mation procedure as for the cluster model. The numbers of wrong rejections of the
Boolean model hypothesis are summarized in Table 2.

4.4. Sensitivity of the proposed test to wrong assumptions

In this subsection, we look at the sensitivity of the proposed test to

1. no wrong assumption

2. the wrong choice of the shape of the particles,

3. the wrong choice of the distribution of the particle sizes,

4. the wrong choice of the particle shapes and distribution of the particle sizes.

More specifically:

1. We estimated the significance level of the proposed test from 1000 simulation of
the Boolean model with disc grains where the radii of the discs had lognormal
distribution.

2. We simulated 1000 Boolean models with ellipse grains where the length a
of the shorter axis of the ellipse had lognormal distribution with parameters
[µ = 3.11, σ = 0.31] and the length of the longer axis of the ellipse was b = aU ,
where U is a random variable with uniform distribution with parameters [1, 2].
We tested the hypothesis that the model is Boolean with disc grains, where
the radii of the discs have lognormal distribution.
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Table 3. The numbers of rejections of the Boolean model hypothesis from

1000 simulations under different wrong assumptions and 95% confidence

intervals of the rejection probability produced with help of CLT.

Wrong assumption rejections 95% confidence intervals
1) no wrong assumption 43 (0.0295, 0.0565)
2) shape of the particles 79 (0.0655, 0.0925)
3) distribution of the particles sizes 39 (0.0255, 0.0525)
4) both 71 (0.0575, 0.0845)

3. We simulated 1000 Boolean models with disc grains where the radii of the
discs had uniform distribution with parameters [20, 40] pixels. We tested the
hypothesis that the model is Boolean with disc grains, where the radii of the
discs have lognormal distribution.

4. The same situation as in (1) but the length a of the shorter axis of the ellipse
had uniform distribution with parameters [10, 37].

The observation window was 500 × 500 pixels and the intensity was 0.00018 in
all four cases. The parameters of the simulated models were set in such a way that
their typical primary grains have the same mean volume and mean circumference as
the model in the tested hypothesis (Boolean model with disc grains, where the radii
of the discs have lognormal distribution with parameters [µ = 3.383, σ = 0.19]). We
used same envelopes for all 4000 simulations. These envelopes were constructed from
99 simulation of the model in the tested hypothesis. Thus we did not perform the
parameter estimation part. This simplification was made because of the acceleration
of the procedure and it could imply that the numbers of rejections was a bit higher
than it would be done without applying such simplification.

The numbers of rejections of the Boolean model hypothesis with significance level
0.05 are summarized in Table 3. Furthermore, there is computed the 95% confidence
intervals for rejection probability. The number of rejections in case (1) estimates the
significance level and the confidence interval contains required significance level 0.05.
Furthermore the simulations showed that the wrong distribution of the radii has no
influence on the result of the test and that the wrong shape of the particles has a
small influence on the result of the test.

5. REAL DATA STUDY – HEATHER INCIDENCE

The heather incidence data (see Figure 2) was studied in [2]. Since individual heather
plants grow into hemispherical bushes, reaching a maximum radius of about 50
cm, the Boolean model of discs was chosen in [2] as a model for the real data
description. For the distribution of the discs radii the shifted Weibull distribution
with parameters (0.0281, 0.8471, 144.7) was fitted. The intensity λ was estimated
at 221 discs per unit area. The realization of the Boolean model fitted in [2] can be
seen in Figure 3. As we can see from the realization and as was mentioned in [2]



304 T. MRKVIČKA

Fig. 2. The heather incidence data in a rectangular area 2 × 1 collected

with the resolution 200 × 100 binary pixels. Heather is the white area.

and [1], p. 765, the Boolean model is unsatisfactory for the data description because
the data contains fewer patches than the Boolean model. Nevertheless there was
performed simulation based test with deviance measure which did not reject the
Boolean model hypothesis in [2].

Fig. 3. Left: One realization of the Boolean model of discs with parameters fitted in [2]

in the resolution 100 × 100 pixels. Right: One realization of the fitted Matérn Cluster

model of discs in the resolution 100 × 100 pixels.
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Fig. 4. The results of the proposed test on the Boolean model assumption for Heather

incidence data. The points represents the estimates of normalized intrinsic volumes

densities of parallel sets ( V 2(Ξε)
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– upper left, V 1(Ξε)
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for 23 different radii from the data. The envelopes are constructed from 99 simulations

and they correspond to 95 % envelopes.
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Fig. 5 The results of the proposed test on the Matérn cluster model assumption for

Heather incidence data. The points represents the estimates of normalized intrinsic

volumes densities of parallel sets ( V 2(Ξε)
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– upper right, V 0(Ξε)
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–

bottom) for 23 different radii from the data. The envelopes are constructed from 99

simulations and they correspond to 95% envelopes.
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We chose this data set to show how the proposed test works for the real data.
Since the data set has the resolution 200 × 100, we used, for the dilation Ξε, the
discretized discs with radii ε1, . . . ε24 evenly spanned between 1 and 6 pixels of the
image. (Larger discs produce after dilation just a white rectangle.) First we per-
formed the proposed test on the Boolean model hypothesis where the Boolean model
is fitted as above. As we can see from Figure 4, the Boolean model hypothesis is
clearly rejected by this test with p-level 0.0034.

Thus, we tried to fit another model for the heather incidence data. We chose the
Matérn cluster model (for details see [14]) for the discs centers. For the distribution
of the radii we chose the same Weibull distribution as above. Thus only 3 parameters
remain to be estimated, namely the intensity λ, the maximum radius of the clusters
R and the mean number of discs centers in the cluster µ.

The extensive estimation procedure was recently developed in [4]. Since this
work is not concerned with the estimation of the model parameters we only give an
example of the parameters for which the proposed test does not reject the model
assumptions. Note here that all model assumptions are: Matérn cluster disc model
with parameters (λ = 330, R = 0.035, µ = 1) with Weibull distribution of the radii
with parameters (0.0281, 0.8471, 144.7). The realization of this model, shown in
Figure 3, reflects a correct number of patches. And the proposed test, shown in
Figure 5, does not reject the model assumptions with the p-level 0.119.

6. DISCUSSION

The comparison of the tests shows that the simulation-based tests with envelopes
are more powerful than the simulation-based tests with deviation measure.

The comparison also shows that the normalized intrinsic volumes densities are
more powerful summary statistics than quadratic contact distribution function.

And it also shows that the simulation-based tests with envelopes are valuable
procedures even for testing the Boolean model hypothesis where other specific tests
are available.

Furthermore the proposed test seems to be a sensitive tool for distinguishing
the interaction among particles of the binary image. And, on the other side, the
proposed test is not sensitive to the wrong assumption of the distribution of the
primary grain, as was shown by simulations.

The computer programme prepared for public use is published on
www.pf.jcu.cz/∼mrkvicka/math.
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