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HIERARCHICAL MODELS, MARGINAL POLYTOPES,
AND LINEAR CODES

Thomas Kahle, Walter Wenzel and Nihat Ay

In this paper, we explore a connection between binary hierarchical models, their marginal
polytopes, and codeword polytopes, the convex hulls of linear codes. The class of linear
codes that are realizable by hierarchical models is determined. We classify all full di-
mensional polytopes with the property that their vertices form a linear code and give an
algorithm that determines them.
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1. INTRODUCTION

In theoretical statistics the marginal polytope plays an important role. It is the
convex hull of possible values that a sufficient statistics can take. It encodes in its face
lattice the combinatorial structure of the boundary of the exponential family defined
by the statistics. For a model on discrete random variables it can be represented
with vertices that have only components 0 or 1, commonly called a 0/1 polytope.

In coding theory when decoding binary linear codes one can apply techniques
from linear programming and optimize a linear function over the convex hull of the
code words, known as the codeword polytope [8].

Observing that for certain choices of sufficient statistics on binary random vari-
ables these two notions coincide, our main contribution is a characterization of the
corresponding polytopes. We do not address problems that are directly linked to
coding theory. However, we do hope that our result will contribute to a better un-
derstanding of the closure of exponential families, which is an important problem in
statistics.

The paper is organized as follows: In Section 2, we introduce the necessary notions
to define hierarchical models and fix the notation. We review different descriptions
of so called interaction spaces in Section 3. In Section 4, we establish the link to
coding theory. Finally, in Section 5 we give our main result, the classification of
all such full dimensional polytopes whose vertices form a linear code and give a
recursive formula for their number.



190 T. KAHLE, W. WENZEL AND N. AY

2. PRELIMINARIES

2.1. Exponential families of hierarchical models

Given a non-empty finite set X , we denote the set of probability distributions on X by
P(X ). The support of p∈P(X ) is defined as supp(p) := {x∈X :p(x) > 0}. The set of
distributions with full support is denoted as P(X ). The set P(X ) has the geometrical
structure of a (|X | − 1)-dimensional simplex lying in an affine hyperplane of

RX := {f : X → R} ,

the vector space of real valued functions on X . Statistical models, such as hierar-
chical models are subsets of P(X ). In this paper, we will only consider so called
exponential families which are smooth manifolds.

Definition 1. The map

exp : RX → P(X ), f 7→ ef∑
x∈X ef(x)

,

is called the exponential map. It acts component wise by exponentiating and nor-
malizing. Then, an exponential family (in P(X )) is defined as the image exp(I) of
a linear subspace I of RX .

An exponential family E naturally has full support and is therefore contained
in the open simplex P(X ). However, to get probability distributions with reduced
support one has to pass to the closure E with respect to the standard topology
of RX .

Now we consider a compositional structure of X induced by the set [N ] :=
{1, . . . , N}. Given a subset A ⊆ [N ], we define

XA := {0, 1}A
,

and the natural projection

XA : X[N ] → XA, (xi)i∈[N ] 7→ (xi)i∈A .

In the following, we will abbreviate X := X[N ]. One can view P(X ) as the set of joint
probability distributions of the binary random variables {Xi : i ∈ [N ]}. We now use
the compositional structure of X in order to define exponential families in P(X )
given by interaction spaces. Now, decompose x ∈ X in the form x = (xA, x[N ]\A)
with xA ∈ XA, x[N ]\A ∈ X[N ]\A, and define IA to be the subspace of functions that
do not depend on the configurations x[N ]\A:

IA :=
{

f ∈ RX : f(xA, x[N ]\A) = f(xA, x′
[N ]\A)

for all xA ∈ XA, and all x[N ]\A, x′
[N ]\A ∈ X[N ]\A

}
.

In the following, we apply these interaction spaces as building blocks for more gen-
eral interaction spaces and associated exponential families [7]. The definition of a
hierarchical model is based on the notion of a hypergraph [15]:
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Definition 2. A pre-hypergraph A is a non-empty subset of 2[N ] \{∅} that contains
all atoms {i} for i ∈ [N ].

A hypergraph is a pre-hypergraph that is (inclusion) complete in the following
sense: If A ∈ A and ∅ 6= B ⊆ A it follows that B ∈ A.

Remark. For technical convenience, we have defined hypergraphs to be complete.
In this way, it is easy to define a hierarchical model for each hypergraph. However,
the notion of a pre-hypergraph turns out to be more natural in the context of the
polytopes and linear codes that we consider below.

Given a hypergraph, we define the associated interaction space by

IA :=
∑
A∈A

IA.

Note that, since a function that depends only on its arguments in A, only depends
on its arguments in B ⊇ A, it suffices to consider the inclusion maximal elements in
A. We denote them by Am and have

IA =
∑

A∈Am

IA.

We consider the corresponding exponential family:

Definition 3. The hierarchical model assigned to the hypergraph A is the expo-
nential family EA := exp(IA).

We give two examples for hypergraphs:

Example 4.
(1) Graphical models: Let G = (V,E) be an undirected graph, and define

AG := {∅ 6= C ⊆ V : C is a clique with respect to G} .

Here, a clique is a set C that satisfies the following property:

a, b ∈ C, a 6= b ⇒ {a, b} ∈ E .

The exponential family EAG
is characterized by Markov properties with respect to

G (see [15]).
(2) Interaction order: The hypergraph associated with a given interaction order
k ∈ {1, 2, . . . , N} is defined as

Ak,N := {∅ 6= A ⊆ [N ] : |A| ≤ k} .

If appropriate, we will sometimes drop the N and write Ak. We have defined a
corresponding hierarchy of exponential families studied in [1, 2]:

EA1 ⊆ EA2 ⊆ · · · ⊆ EAN
= P(X ).
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The elements of this hierarchy have nice interpretations. It can be seen that the
closure of the family EA1 contains exactly all probability distributions that factor.
This means that

p ∈ EA1 ⇔ p =
∏

i∈[N ]

pi(xi),

where pi(xi) are the marginal distributions of p. Generally, an element p ∈ EAk
will

allow a factorization as
p =

∏
A⊆[N ],|A|=k

φA(xA),

where φA depends only on xA. However, the φ are not necessarily probability
distributions and not unique. Note that p ∈ EAk

\ EAk
, k ≥ 2, does not necessarily

admit such a product structure.
We will clarify these definitions in the following simple

Example 5. Consider the case N = 2. The configuration space is given as

X := {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .

The vector space of real valued functions RX is 4-dimensional and the probability
measures form a 3-dimensional tetrahedron. Considering the hypergraphs of fixed
interaction order and their exponential families, one has only two examples here:
EA1,2 and EA2,2 = P(X ), only the first being nontrivial. The figure shows the

δ(1,1)

1
2

`

δ(0,0) + δ(1,1)

´

1
2

`

δ(1,0) + δ(0,1)

´

δ(1,0)

δ(0,1)

δ(0,0)

EA1,2

Fig. The exponential family EA1,2 in the simplex of probability distributions.

situation. The exponential family EA1,2 is a two-dimensional manifold lying inside
the simplex. One should already think about this as a square (the two dimensional
cube) molded into the simplex.

In the following, we will study the interaction spaces more thoroughly by com-
paring different generating systems.
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3. GENERATING SYSTEMS OF INTERACTION SPACES

In this section, let A be fixed. In statistics, different representations of exponential
families have been considered, each of which has its own benefits and highlights
different aspects. We will review a number of these representations. The particular
choice of parity functions will allow us to make a link to coding theory.

As we have introduced exponential families, the key concept is the interaction
space IA which is sometimes also called tangent space to the exponential family.
This space completely characterizes the exponential family. However, there is a
choice of the parameterization of this space, which has been made differently in
different fields. Speaking in terms of linear algebra, one has to choose a generating
system of a linear space.

Let B := {bk : k ∈ K} be any finite generating system of IA. Each such choice
gives a different parameterization of the exponential family and a different sufficient
statistics. The parameterization is identifiable if B is a basis. The exponential
family is parameterized as

EA,B =

{
p ∈ P(X ) : p(x) = Z−1

θ exp

(∑
k∈K

θkbk(x)

)
: θ ∈ Rd

}
,

where again Zθ is the normalization and d = |B| equals the number of parameters.
In statistical physics the exponent is commonly called the energy.

To each choice of B there is a polytope constructed as follows. Consider the
vectors bK(x) = (bk(x))k∈K .

Each such vector has as its components the evaluation of every element in B at x.
The polytope is

PB := conv {bK(x) : x ∈ X} .

Since A contains all atoms, it can be seen that the polytope has |X | vertices and
the dimension equals the dimension of the exponential family. By applying some
classical theorems from statistics, such as the existence and uniqueness of maximum
likelihood estimates [14, 5], it can be seen that the points of the polytope are in
one to one correspondence with points in the closure of the exponential family. As
we have introduced it here, it is clear that the different choices of B yield different
representations of the same polytope in the sense that they are all affinely equivalent.
In particular, they have the same face lattice.

The polytope PB encodes in its face lattice the combinatorial structure of the
exponential family in the sense that a knowledge of the face lattice gives precise
knowledge about the supports of elements in the closure of the exponential family.
However, direct computation is infeasible for real world problems.

In statistical physics, and also for various inference methods it is of interest to
compute the free energy, given as the logarithm of the partition function. There,
variational principles and the techniques of Legendre transform are applied. In this
setting the points in the polytope are then the so called dual parameters. See for
instance [19].

We will review a number of choices for B:
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Statistical Physics – Potentials. In statistical physics one considers so called
potentials [18, 9]. A potential is a collection of functions UA, A ⊆ N , where UA ∈ IA

and U∅ = 0, such that the energy can be written as a linear combination hereof.
Typically one has a distinguished state o called the vacuum. A potential is called
normalized if UA(x) = 0 as soon xi = oi for some i ∈ A. Given a strictly positive
distribution, a corresponding normalized potential exists and is unique. In our binary
setting, choosing (0, 0, . . . , 0) as the vacuum state, the normalized potential is given
by the functions UA = cA

∏
i∈A xi, where cA ∈ R.

One has B =
{∏

i∈A xi : A ∈ A
}
, and a basis of the interaction space is given by

B together with the constant function x 7→ 1. Expanding a function H ∈ RX in
terms of this basis was called the χ-expansion in the works of Caianiello [4, 3].

In the case of pair interactions where the hypergraph is given by A2,N , the poly-
tope PB coincides with the so called correlation polytope [6]. Extending the termi-
nology to an arbitrary hypergraph A, we call PB the moment polytope, as each point
in it is the vector of moments of some distribution.

Marginals. One representation of an exponential family is given via the linear
map that computes the marginals. Denote Am the set of inclusion maximal sets in
A. Consider the linear map

πA : RX →
⊕

A∈Am

RXA

u 7→ (uA)A∈A .

That, for a given vector u computes the set of its maximal marginals defined as

uA(xA) :=
∑

y:XA(y)=xA

u(y).

When represented as a matrix with respect to the canonical basis, πA has rows
indexed by pairs (A, yA) of a set A ∈ Am and a configuration yA ∈ XA. The
columns are indexed by configurations x ∈ X . Each component then contains the
value of the indicator 11{XA=yA}.

Denote the xth column of this matrix as πx then, the exponential family is pa-
rameterized as p(x) = Z−1

θ exp(〈θ, πx〉), θ ∈ Rd.

In terms of these vectors, the polytope is commonly called the marginal polytope.
It is represented as 0/1 polytope embedded in a high dimensional space.

An orthogonal basis of characters. In the binary case X = {0, 1}[N ], a natural
basis for RX is given by the characters of X . Here, we assume pointwise addition
modulo 2 as the group operation. For every subset A ∈ A define the function
eA : X → {−1, 1} by

eA(x) := (−1)E(A,x)

where E(A, x) := |{i ∈ A : xi = 1}|. It can be seen that, if A is a hypergraph,
{eA : A ∈ A} together with the constant function e∅ : x 7→ 1 is an orthogonal basis
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of the interaction space IA. This approach was followed in [12]. Various people,
starting with Caianiello [3] have called this the η-expansion. Note that if one con-
siders random variables taking values in {±1}, this basis equals the monomial basis{∏

i∈A xi : A ⊆ [N ]
}

considered above.

A basis of parity functions. Finally, we will introduce yet another basis of IA
which is derived from the basis of characters. To each ∅ 6= A ⊆ [N ], we define a
vector in RX .

fA(x) :=

{
1 if |supp(x) ∩ A| is odd
0 otherwise.

(1)

The following proposition is easily checked:

Proposition 6. Let 11 : X → R be the constant function x 7→ 1. The set
{fA : A ∈ A} ∪ 11 is a basis of IA.

One crucial point about choosing this representation is that it gives, if the con-
stant function is omitted, a full dimensional 0/1 polytope, the vertices of which
form an additive group and thereby a linear code (see Proposition 10). For all other
choices of B discussed in this section the image of bK is not a subgroup of {0, 1}d

or the multiplicative group {±1}d.
While in the construction of a hierarchical model we assumed a hypergraph, the

following polytope is an interesting object of study also in the general case of a
pre-hypergraph:

Definition 7. Let A be a pre-hypergraph. We define

FA := conv {fA(x) : x ∈ X} .

If A is a hypergraph, then this is affinely equivalent to the marginal polytope
of the corresponding exponential family. In the case of the hypergraphs Ak,N we
write Fk,N := FAk,N

. The rest of the paper is devoted to the study of this class of
polytopes.

Remark. (CUT-Polytopes) There is a well known [6] affine equivalence between
CUT polytopes of graphs [21] and binary marginal polytopes:

Namely, to each graph G we can associate the hypergraph AG = V (G) ∪ E(G).
This is distinct from what was called a graphical model above, as not the cliques
are considered. Some authors refer to the corresponding statistical model as a graph
model. From G construct the coned graph Ĝ with an additional vertex:

V (Ĝ) := V (G) ∪ {∗} ,

and edges
E(Ĝ) := E(G) ∪ {(v, ∗) : v ∈ V (G)} .

Then, denoting the CUT polytope of Ĝ as CUT(Ĝ) one has

FAG = CUT(Ĝ).

Using the representation in terms of the vectors fAG(x), x ∈ X , the proof of this
equivalence becomes a simple renaming of coordinates.
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Remark. (Covariance Mapping) As remarked above, in the representation with
monomials

∏
i∈A xi one finds the correlation polytope COR(N) as a special case.

From the last remark it follows that the CUT-polytope of the complete graph
KN+1 is equal to FA2,N

. There exists an affine equivalence between COR(N) and
CUT(KN+1) called the covariance mapping [6]. It can be seen that this mapping
generalizes to a mapping between binary marginal polytopes and the corresponding
moment polytopes. It therefore might be suitable to consider the parity represen-
tations FA of binary marginal polytopes for a generalization of CUT-polytopes to
arbitrary (pre)-hypergraphs.

3.1. Computations and elementary properties

Using the geometry software polymake [10], one can compute linear descriptions of
polytopes. As an example, we give here the f-Vectors of Fk,N for the cases N = 3, 4.
For N = 5, the f-Vector is too complicated to be computed by the brute force
approach of polymake. However, waiting sufficiently long, one can get the 6800
facet defining inequalities of F3,5 and the 3835488 facets of F4,6.

Example 8. In Tables 1 and 2, we give the f-Vectors of Fk,N for N = 3, 4, computed
using polymake. The rows label the dimension of the faces, the columns the value
of k. The reader might wonder about the fact that the face lattices of Fk,N are up
to a certain dimension isomorphic to the face lattice of the simplex. This property,
commonly called neighborliness, follows from a general result in [13]. The last row
refers to whether the polytope is simple or not.

Table 1. Face structure of Fk,3.

d\k 1 2 3

0 8 8 8

1 12 28 28

2 6 56 56

3 1 68 70

4 — 48 56

5 — 16 28

6 — 1 8

7 — — 1

sum 27 225 255

simple y n y

Table 2. Face structure of Fk,4.

d\k 1 2 3 4
0 16 16 16 16
1 32 120 120 120
2 24 560 560 560
3 8 1780 1820 1820
4 1 3872 4368 4368
5 — 5592 8008 8008
6 — 5060 11440 11440
7 — 2600 12868 12870
8 — 640 11424 11440
9 — 56 7952 8008
10 — 1 4256 4368
11 — — 1680 1820
12 — — 448 560
13 — — 64 120
14 — — 1 16
15 — — — 1
sum 81 20297 65025 65535
simple y n n y

In the following, we will list elementary properties of Fk,N that follow easily from
the definition.
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(i) F1,N is the N -cube.

(ii) FN,N is the (2N − 1)-dimensional simplex.

(iii) every Fk,N has dimension d = |Ak,N |.

(iv) every Fk,N has 2N vertices.

(v) (0, . . . , 0) is a vertex.

(vi) every Fk,N is a projection of the (2N − 1)-dimensional simplex FN,N along
coordinate axes.

(vii) For every Fk,N , there is a projection along coordinate axes that projects it to
the N -cube F1,N .

Remark. In [11] it was remarked that FN−1,N has exactly 4N−1 facets. The
extreme points of these facets are also known. A set Y ( X defines a face if and
only if it contains neither U :=

{
x ∈ X : f[N ](x) = 1

}
nor its complement. Note

that the set U and its complement are exactly the set of configurations with a fixed
parity. As the vertices of FN−1,N have only one affine dependency, it is not difficult
to prove this fact using the Gale transform. By the above FN−1,N is combinatorially
isomorphic to the so called cyclic polytope [20].

In the following, we develop the connection to coding theory.

4. A LINK TO CODING THEORY

We briefly recall the definition of a linear code. For a detailed introduction into
coding theory see for instance [16]. Consider the finite field F2 = ({0, 1} ,⊕,¯) with
addition and multiplication mod 2. In coding theory, one studies particularly vector
spaces over this field.

Definition 9. A binary [n, k]-linear code is a linear subspace L of Fn
2 such that

dimL = k. A generator matrix G for L is a k by n matrix which has as its rows a
basis of L. Given L one can find an equivalent1 code such that it has a generator
matrix in standard form, i. e. G = (Ek,H), where Ek is the k by k identity matrix.

The following proposition states that the vertices of FA form a linear code for
any pre-hypergraph A. A special case of this connection has been mentioned in
Example 2 in [19].

Proposition 10. Let {0, 1}A be considered as a vector space over the finite field
F2. Then the image of X under fA is a linear subspace. If we also consider X = FN

2

as a vector space over F2, fA is an injective homomorphism between vector spaces.
Its image forms an [|A| , N ]-linear code. A generator matrix in standard form has
as its rows the vectors fA(ei) for i = 1, . . . , N , where ei is the ith unit vector in FN

2 .

1Two codes are called equivalent if one can be transformed into the other by applying a permu-
tation on the positions in the codewords, and for each position a permutation of the symbols.
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P r o o f . Since scalar multiplication is trivial, we only need to show

fA(x ⊕ y) = fA(x) ⊕ fA(y) for x, y ∈ X . (2)

Let A ∈ A, it suffices to show the identity for fA. To do so, introduce

M := {i ∈ A : (xi = 1 ∧ yi = 0) ∨ (xi = 0 ∧ yi = 1)} ,

Mx := {i ∈ A : xi = 1} ,

My := {i ∈ A : yi = 1} .

Then fA(x ⊕ y) = |M |, fA(x) = |Mx|, and fA(y) = |My|. We find that M is the
symmetric difference of Mx and My:

M = Mx 4 My.

Since |Mx 4 My| = |Mx| + |My| − 2 |Mx ∩ My|, we have that in F2

|M | = |Mx| ⊕ |My| ,

and therefore (2) holds. We now show that fA is injective. To see this, assume that
fA(x) = fA(y). Since A contains all atoms {i} ⊆ [N ], we get for every i ∈ [N ]:
f{i}(x) = f{i}(y). This implies xi = yi and, hence, x = y. Since X considered as an
F2 vector space has dimension N , also fA(X ) has dimension N and therefore forms
an [A, N ]-linear code. ¤

Remark. To write down the generator matrix, one has to impose a numbering on
the elements in A. If the numbering is in such a way that Ai = {i} for 1 ≤ i ≤ N ,
then the generator matrix is in standard form.

Remark. An important property of a linear code is its distance, which is defined
as the minimal Hamming distance between different elements of the code. For the
hierarchical model of the hypergraph Ak,N , the distance of the code is given by

d =
k−1∑
l=0

(
N − 1

l

)
.

P r o o f . Let d(x, y) denote the Hamming distance of x, y ∈ X . If d(x, y) = 1, then
d(fAk

(x), fAk
(y)) equals the number of subsets of [N ] which contain a given element

and have cardinality at most k. ¤

In the following, we will elaborate on the opposite direction. Let 2N ≥ s ≥ N .
Assume we are given an [s,N ] linear code. Without loss of generality, we assume
that it has a generator matrix in standard form. We will construct a pre-hypergraph
A from the columns of the generator matrix. Since A is a set, while the columns
are a list, repetitions of columns will be lost. If one considers only non-repetitive
codes, then our construction is injective, and the codewords are given by the vertices
of FA.
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Let EN ∈ FN×N
2 denote the identity matrix in dimension N . Assume the genera-

tor matrix G = (EN ,H) ∈ FN×s
2 has no 2 identical columns. (This implies s ≤ 2N .)

Denote by {ei : i = 1, . . . , N} the canonical basis of FN
2 . Using the columns of H,

we define sets

Aj := {i ∈ [N ] : Hij = 1} , j = 1, . . . , s − N

and then, A := {{1} , . . . {N} , A1, . . . , As−N} .

Note that the elements of A are numbered in a natural way such that we can use A
as an index set for the columns of G = (Gi,A)i=1,...,N, A={1},...,{N},A1,...,As−N

.
To see that {fA(ei) : i = 1, . . . , N} is the set of rows of the generator matrix, we

evaluate fA(ei) = δ{i∈A} = Gi,A

which holds by definition of the Aj .
Summarizing, every binary linear code (in standard form) corresponds to a pre-

hypergraph. However, two codes that differ only in repetitions of columns in the
generator matrix will be mapped to the same pre-hypergraph. Then, if it is a
hypergraph, the linear code is the linear code of a hierarchical model.

5. CLASSIFICATION

As we have seen, the polytopes FA are full dimensional polytopes such that the
vertices form a linear code. In this last section, we classify all polytopes with this
property. Then we investigate which of them can be realized as polytopes of hierar-
chical models. For a convex polytope P , let V (P ) denote the vertex set of P . For
n ∈ N, put

Cn := [0, 1]n,

Wn := {0, 1}n = V (Cn).

Hence (Wn,⊕) is an Abelian group that is canonically isomorphic to (Fn
2 ,⊕). We

consider Wn as a subset of Rn and write “⊕” whenever we mean addition modulo 2,
while “+” means ordinary addition in Rn.

In the following, we develop an algorithm that determines – by induction for every
n ∈ N – all polytopes P ⊆ Rn with V (P ) ⊆ Wn satisfying the following conditions:

(I) (V (P ),⊕) is a subgroup of (Wn,⊕).

(II) P has dimension n.

Note that the number of vertices of such a polytope is a power of two. Of course,
the full n-dimensional cube P = Cn satisfies (I) and (II). To start the induction, we
remark that there are no further such polytopes in the cases n = 1 and n = 2. For
n = 3, the 3-dimensional regular simplex S with

V (S) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

satisfies (I) and (II), too.
More generally, by [17, Theorem 2.2], we have the following
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Proposition 11. For n ≥ 3, the following statements are equivalent:

1. (Wn,⊕) contains some subgroup U such that conv(U) is a regular simplex of
dimension n.

2. n + 1 is some power of 2.

In the case n = 3, the full 3-cube as well as the regular simplex mentioned above
are the only polytopes satisfying conditions (I) and (II). Note that also

{(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}

determines a subgroup of (W3,⊕); however, the convex closure has dimension 2.
For fixed n ≥ 2, define the bijections π0 : Rn×{0} → Rn and π1 : Rn×{1} → Rn

by
π0(x1, . . . , xn, 0) := (x1, . . . , xn),
π1(x1, . . . , xn, 1) := (x1, . . . , xn).

For 1 ≤ i ≤ n put
Hi := {(x1, . . . , xn) ∈ Rn : xi = 0} ,

H ′
i :=

{
(x1, . . . , xn) ∈ Rn : xi =

1
2

}
.

Moreover, let z :=
(

1
2 , . . . , 1

2

)
denote the center of the n-cube Cn.

To determine recursively all 0/1 polytopes P ⊆ Rn that fulfill (I) and (II), we
prove first the following

Proposition 12. Suppose that n≥2 and that P ⊆Rn is a 0/1 polytope satisfying (I)
and (II). Assume that (U,⊕) is a subgroup of (V,⊕) := (V (P ),⊕) with |V : U |=2.
Then the following statements are equivalent:

(i) The polytope Q ⊆ Rn+1, given by
V (Q) = π−1

0 (U) ∪ π−1
1 (V \ U), (3)

has dimension n + 1.

(ii) There does not exist some index i with 1 ≤ i ≤ n such that U ⊆ Hi. In other
words, none of the affine hyperplanes H ′

i separates conv(U) and conv(V \ U).

(iii) One has z ∈ conv(U) ∩ conv(V \ U).

(iv) One has conv(U) ∩ conv(V \ U) 6= ∅.

P r o o f . (i) → (ii):
Suppose that U ⊆ Hi holds for some i with 1 ≤ i ≤ n. Put

H̃ :=
{
(x1, . . . , xn, xn+1) ∈ Rn+1 : xn+1 = xi

}
.

Since P = conv(V ) has dimension n and since |V : U | = 2, we must have xi = 1
whenever (x1, . . . , xn) ∈ V \ U . This means that V (Q) – and hence also Q – is
contained in the n-dimensional hyperplane H̃, in contradiction to (i).
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(ii) → (iii):
For 1 ≤ i ≤ n, let αi : Fn

2 → F2 denote the linear map given by αi(x1 . . . , xn) := xi.
By assumption, αi¹U is surjective for 1 ≤ i ≤ n. Hence we have

|{u ∈ U : αi(u) = 0}| = |{u ∈ U : αi(u) = 1}| for 1 ≤ i ≤ n.

This means that z =
1
|U |

∑
u∈U

u ∈ conv(U),

where the sum is taken in Rn.
Now fix v1 ∈ V \ U . Since V \ U = {v1 ⊕ u : u ∈ U}, we get also

|{v ∈ V \ U : αi(v) = 0}| = |{v ∈ V \ U : αi(v) = 1}| for 1 ≤ i ≤ n,

and hence z =
1

|V \ U |
∑

v∈V \U

v ∈ conv(V \ U).

(iii) → (iv) is trivial.

(iv) → (i):
Consider the projection π : Rn+1 → Rn given by

π(x1, . . . , xn, xn+1) = (x1, . . . , xn).

Suppose that the assertion is wrong; hence Q is contained in some n-dimensional
-homogeneous- hyperplane G ⊆ Rn+1. Since

π(V (Q)) = U ∪̇(V \ U) = V,

the polytope Q has the same dimension as P = conv(V ), that is n. Thus, the
restriction π¹G is a linear isomorphism from G onto Rn, and there exists some R-
linear map α : Rn → G satisfying

(α ◦ π)(w) = w for all w ∈ G.

By definition of V (Q), this means:

α(U) = π−1
0 (U),

α(V \ U) = π−1
1 (V \ U).

Hence, α(conv(U)) = conv(α(U)) and α(conv(V \U)) = conv(α(V \U)) are linearly
separated by the affine hyperplane

K :=
{

(x1, . . . , xn, xn+1) ∈ Rn+1 : xn+1 =
1
2

}
.

By (iv) this is impossible. ¤
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Example 13. We investigate the statement of Proposition 12 for polytopes corre-
sponding to a pre-hypergraph A. We start by considering the matrix which has as
its rows the vectors fA(x), where A = 2[N ] \{∅}. The rows are labeled by the binary
strings of length N , that is by X , while the columns are indexed by the non-empty
subsets of [N ]. Therefore the rows of this matrix are the coordinates of the vertices
of the simplex FN,N :

x {1} · · · {N} {1, 2} · · · {1, 2, 3} · · · [N ]

(00 . . . 0) 0 · · · 0 0 · · · 0 · · · 0
(00 . . . 1) 0 · · · 1 f{1,2}(x) · · · f{1,2,3}(x) · · · f[N ](x)

...
... · · ·

...
... · · ·

... · · ·
...

(11 . . . 1) 1 · · · 1 f{1,2}(x) · · · f{1,2,3}(x) · · · f[N ](x)

We note the following facts:

• The columns of this matrix are exactly the 2N − 1 non-zero binary strings of
length N .

• There are 2N − 1 subgroups U of index 2 of the N -cube, which correspond to
the columns of the matrix. To define them let a column A be fixed, then put
U := {x ∈ X : fA(x) = 0}. The maps fA : X → {0, 1} are exactly the 2N − 1
surjective homomorphisms having the nontrivial subgroups as their kernels.

• The vertices of every polytope FA are given by deleting columns from this
matrix that correspond to sets not in A.

• In particular, by restriction to the first N columns, we get the vertices of the
N -cube F1,N .

Now, assume that P is the N -cube. We choose a column of the matrix, correspond-
ing to a subgroup of index 2. There are two possibilities. If we choose a column
corresponding to an atom, then (ii) is wrong, the dimension does not grow when
adding this column to the coordinates (as we have doubled a coordinate). If, on the
other hand, we choose a column corresponding to a set A with cardinality two or
more, then we are in the situation of Proposition 12, since (ii) holds. The lift (3)
will be full dimensional, and its vertices are given by the submatrix with columns
{1} , . . . , {N} , A. Continuing from here, choosing another subgroup, the dimension
will grow if and only if it does not correspond to one of the sets {1} , . . . , {N} , A.
Iteratively, the choices narrow down and, finally, when all columns have been chosen,
the polytope Q is a simplex.

We will now formalize this procedure. For a fixed polytope P as in Proposition 12,
put

Ui := V (P ) ∩ Hi for 1 ≤ i ≤ n.

Clearly, conditions (I) and (II) imply that |V (P ) : Ui| = 2 holds whenever 1 ≤ i ≤ n.
Based on the equivalence of (i) and (ii) in Proposition 12, we are now able to

prove that the following algorithm yields recursively all 0/1 polytopes satisfying (I)
and (II).
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Algorithm 14.
Initialization for n = 1:

• P1 := {[0, 1]}.

Step n → n + 1: Based on Pn construct a new set Pn+1 consisting of all polytopes
Q such that there exists P ∈ Pn with

• Q = P × [0, 1] or

• Q ⊆ Rn+1 with
V (Q) = π−1

0 (U) ∪ π−1
1 (V (P ) \ U), (4)

where U runs through all subgroups of (V (P ),⊕) with |V (P ) : U | = 2 and
U 6= Ui for 1 ≤ i ≤ n.

Remark. Note that in the case Q = P × [0, 1], the number of vertices is doubled,
while in the other cases the number of vertices of Q equals the number of vertices of
P . Furthermore, it is interesting to see that the two possible operations commute
in the following sense. Starting from some cube Wn, lifting it to Wn+1 and then
choosing a subgroup U to apply the lift (4) gives the same polytope as choosing
the subgroup π(U) from Wn and then taking the prism over the lifted polytope,
where π : Rn+1 → Rn is the canonical projection. Therefore, all polytopes that are
constructed by the algorithm can be thought of as lifted cubes Wn.

The classification will be complete with:

Theorem 15. For all n ∈ N, the set Pn in Algorithm 14 consists of all n-dimensional
0/1 polytopes that satisfy conditions (I) and (II).

P r o o f . First we show that all polytopes Q ∈ Pn+1 satisfy conditions (I) and (II),
with n replaced by n + 1. This is clear in the case of the prism Q = P × [0, 1].

If Q satisfies (4), then clearly (V (Q),⊕) is a subgroup of (Wn+1,⊕), because U is
a subgroup of (V (P ),⊕) with |V (P ) : U | = 2. Moreover, (ii) → (i) in Proposition 12
implies that Q has dimension n+1, because U 6= Ui for 1 ≤ i ≤ n. Hence, Q satisfies
conditions (I) and (II).

Vice versa, assume that Q ⊆ Rn+1 fulfills (I) and (II). Consider again the projec-
tion π : Rn+1 → Rn onto the first n coordinates, and put P := π(Q). Since Q has
dimension n + 1, P has dimension n. If π¹V (Q) is not injective, then Q is the prism
P × [0, 1], because (V (Q),⊕) is a subgroup of (Wn+1,⊕). If π¹V (Q) is injective, put

U := {(x1, . . . , xn) ∈ V (P )|(x1, . . . , xn, 0) ∈ Q} .

Then (U,⊕) is a subgroup of (V (P ),⊕) with |V (P ) : U | = 2, because Q has dimen-
sion n + 1. Moreover, equation (4) holds for U as just defined. Finally, Proposition
12, (i) → (ii) shows that U 6= Ui for 1 ≤ i ≤ n. Hence, our algorithm includes the
determination of Q. ¤

As a first application of Theorem 15 we can count the number of n-dimensional
polytopes that satisfy conditions (I) and (II). Let cn := |Pn|. For 1 ≤ k ≤ n, let
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cn(k) denote the number of all 0/1 polytopes P ⊆ Rn with |V (P )| = 2k that satisfy
(I) and (II). Then one has obviously

cn =
n∑

k=1

cn(k). (5)

We have cn(k) = 0 for 2k ≤ n, because a polytope with at most n vertices cannot
have dimension n. Furthermore, we have clearly cn(n) = 1 for all n ∈ N.

As mentioned already in Example 13, a 0/1 polytope that satisfies (I), (II), and
|V (P )| = 2k has among its vertices exactly 2k − 1 subgroups of index 2. Hence by
ignoring the groups Ui = V (P ) ∩ Hi for 1 ≤ i ≤ n, we get

Corollary. For k ≤ n < 2k one has

cn+1(k) = cn(k − 1) + cn(k)(2k − n − 1).

The first few values are given in Table 3.

Table 3. The number of n-dimensional 0/1 polytopes
with 2k vertices that form a group.

n \ k 1 2 3 4 5 6 7 8 cn

1 1 1
2 0 1 1
3 0 1 1 2
4 0 0 5 1 6
5 0 0 15 16 1 32
6 0 0 30 175 42 1 248
7 0 0 30 1605 1225 99 1 2960
8 0 0 0 12870 31005 6769 219 1 50864

It is easy to compute this number also for larger values of n. For instance

c28 = 718897730072178204358180468879825453986397667929112558174208,

c100 ≈ 2.77 · 10644.

Finally, using the Corollary we can show that, among the full dimensional 0/1 poly-
topes with 2k vertices the convex hulls of linear codes are exceptional. For 1 ≤ k ≤ n,
let dn(k) denote the number of all 0/1 polytopes with 2k vertices satisfying only
condition (II). Hence, the number dn of all 0/1 polytopes of dimension n trivially
satisfies

dn ≥
n∑

k=1

dn(k). (6)

Moreover, we get

Proposition 16. (i) For 4 ≤ n < 2k < 2n, one has

dn(k) ≥ 2k(2n − 2k)cn(k) > n2n−1cn(k). (7)

(ii) We have lim
n→∞

cn

dn
= 0.
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P r o o f .
(i) Suppose that U is a proper subgroup of (Wn,⊕) with dim(conv(U)) = n and

|U | = 2k.

If U ′ is another subgroup of (Wn,⊕) with |U ′| = |U |, then we have

|U ∩ U ′| ≤ 2k−1 < 2n−1

and, hence,
|U \ U ′| ≥ 2k−1 >

n

2
≥ 2.

This means
|U \ U ′| ≥ 3. (8)

There are 2k(2n−2k) subsets V of Wn with |V | = 2k and |V \ U | = |U \ V | = 1;
namely, these are all sets of the form

V = (U \ {u0}) ∪ {v0} with u0 ∈ U, v0 ∈ Wn \ U. (9)

For V as in (9), we get dim(conv(V )) = n, because otherwise, U \{u0} would be
contained in a -unique- hyperplane H with v0 ∈ H, a contradiction to v0 /∈ U .
Together with (8), we obtain the first inequality in (7). The second one is
trivial in view of 2k ≤ 2n−1.

(ii) By (5), (6), and (7) we get for n ≥ 4:

cn

dn
≤ 2

cn − 1
dn − 1

≤ 2

(
n−1∑
k=1

cn(k)

) (
n−1∑
k=1

dn(k)

)−1

≤ 2(n2n−1)−1 =
22−n

n
.

This proves the second statement. ¤

As a concluding remark, we study the question of constructing a statistical model
from a given polytope. Assume P ⊆ Rn satisfies (I) and (II), when does it come from
a hierarchical model? To begin with, observe that the number m of vertices of P is
a power of 2, since it must divide the number of vertices of the cube Wn. We write
m = 2N . By Theorem 15, we know that P can be constructed using the algorithm.
It is constructed from the N -cube by applying several steps of the second type in
Algorithm 14. Therefore, every such polytope corresponds to a subset of columns
{1} , . . . , {N} , AN+1, . . . , As in the matrix of coordinates, or equivalently to a pre-
hypergraph. However, this pre-hypergraph is not unique. If we are given only a
list of vertices, then there are several possibilities to choose a generator matrix in
standard form. As an example consider the polytope F2,3:
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x {1} {2} {3} {1, 2} {1, 3} {2, 3}
(0, 0, 0) 0 0 0 0 0 0
(0, 0, 1) 0 0 1 0 1 1
(0, 1, 0) 0 1 0 1 0 1
(0, 1, 1) 0 1 1 1 1 0
(1, 0, 0) 1 0 0 1 1 0
(1, 0, 1) 1 0 1 1 0 1
(1, 1, 0) 1 1 0 0 1 1
(1, 1, 1) 1 1 1 0 0 0

In fact every 3 by 3 submatrix which is, after permuting rows and columns, the iden-
tity matrix gives a generator matrix in standard form. Obviously, there are several
such choices. Here, for instance we can choose the canonical basis corresponding to
the atoms:

x {1} {2} {3} {1, 2} {1, 3} {2, 3}
(1, 0, 0) 1 0 0 1 1 0
(0, 1, 0) 0 1 0 1 0 1
(0, 0, 1) 0 0 1 0 1 1

On the other hand, we can also reorder the columns and choose

x {3} {1, 2} {1, 3} {1} {2} {2, 3}
(1, 1, 1) 1 0 0 1 1 0
(0, 1, 0) 0 1 0 0 1 1
(1, 1, 0) 0 0 1 1 1 1

When the generator matrix is chosen, one can apply the method given in Sec-
tion 4 to construct a pre-hypergraph. For our first generator matrix we get back
the hypergraph we started with, for the second choice we read of the pre-hypergraph

A′ := {{1′} , {2′} , {3′} , {1′, 3′} , {1′, 2′, 3′} , {2′, 3′}} ,

where we have introduced new units {1′, 2′, 3′} corresponding to the first three
columns. This shows the ambiguity due to the choice of a particular generator
matrix if only the code is given.
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