EXTREME DISTRIBUTION FUNCTIONS OF COPULAS

Manuel Úbeda-Flores

In this paper we study some properties of the distribution function of the random variable $C(X, Y)$ when the copula of the random pair (X, Y) is M (respectively, W) - the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other - , and C is any copula. We also study the distribution functions of $M(X, Y)$ and $W(X, Y)$ given that the joint distribution function of the random variables X and Y is any copula.

Keywords: copula, diagonal section, distribution function, Lipschitz condition, opposite diagonal section, ordering, Spearman's footrule
AMS Subject Classification: 60E05, 62H05, 62E10

1. INTRODUCTION

Let H_{1} and H_{2} be two bivariate distribution functions with common continuous onedimensional margins F and G - the distribution functions considered are taken to be right-continuous. Let (X, Y) be a random pair - all the random variables considered are defined on the same probability space (Ω, \mathcal{F}, P) - whose joint distribution function is H_{2}, and let $\left\langle H_{1} \mid H_{2}\right\rangle(X, Y)$ denote the random variable $H_{1}(X, Y)$. The H_{2} distribution function of H_{1}, which we denote by $\left(H_{1} \mid H_{2}\right)$, is given by

$$
\begin{aligned}
\left(H_{1} \mid H_{2}\right)(t) & =\operatorname{Pr}\left[\left\langle H_{1} \mid H_{2}\right\rangle(X, Y) \leq t\right] \\
& =\mu_{H_{2}}\left(\left\{(x, y) \in \mathbb{R}^{2} \mid H_{1}(x, y) \leq t\right\}\right), \quad t \in[0,1]
\end{aligned}
$$

where $\mu_{H_{2}}$ denotes the measure on \mathbb{R}^{2} induced by $H_{2}[7,12]$. In this paper we study some properties of the distribution function of the random variable $H_{1}(X, Y)$ when each variable of the random pair (X, Y) is almost surely an increasing (respectively, decreasing) function of the other.

Since our methods involve the concept of a copula, we review this notion and some of its properties. A (bivariate) copula is the restriction to $[0,1]^{2}$ of a continuous (bivariate) distribution function whose margins are uniform on $[0,1]$. The importance of copulas stems largely from the observation that the joint distribution H of the random pair (X, Y) with respective margins F and G can be expressed by $H(x, y)=C(F(x), G(y))$, for all $(x, y) \in[-\infty, \infty]^{2}$, where C is a copula that is
uniquely determined on Range $F \times$ Range G (Sklar's Theorem) [17, 18]. Let Π denote the copula for independent random variables, i. e., $\Pi(u, v)=u v$ for all $(u, v) \in[0,1]^{2}$. For a complete survey on copulas, see [11].

By Sklar's Theorem, if C_{1} and C_{2} are two copulas and (U, V) is a pair of uniform $[0,1]$ random variables with copula C_{2}, and $\left\langle C_{1} \mid C_{2}\right\rangle(U, V)$ denotes the random variable $C_{1}(U, V)$ - written $\left\langle C_{1} \mid C_{2}\right\rangle$ when the meaning is clear -, then the C_{2} distribution function of C_{1} is given by

$$
\begin{aligned}
\left(C_{1} \mid C_{2}\right)(t) & =\operatorname{Pr}\left[\left\langle C_{1} \mid C_{2}\right\rangle(U, V) \leq t\right] \\
& =\mu_{C_{2}}\left(\left\{(u, v) \in[0,1]^{2} \mid C_{1}(u, v) \leq t\right\}\right), t \in[0,1]
\end{aligned}
$$

Every copula C of the random pair (X, Y) satisfies the following inequalities:

$$
\begin{aligned}
\max (u+v-1,0) & =W(u, v) \leq C(u, v) \leq M(u, v) \\
& =\min (u, v), \forall(u, v) \in[0,1]^{2}
\end{aligned}
$$

M (respectively, W) is the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other.

In the sequel, we shall use the following notation: For any pair of random variables X and Y with respective distribution functions F and G, " $\leq_{s t}$ " denotes the stochastic inequality, i. e., $X \leq_{s t} Y$ if, and only if, $F \geq G$; and $X \stackrel{d}{=} Y$ denotes the equality in distribution.

Distribution functions of copulas are employed - among other purposes - to construct orderings on the set of copulas (see [12]). If C, C_{1} and C_{2} are copulas, two of those orderings are: (a) C_{1} is C-larger than C_{2} if $\left\langle C_{1} \mid C\right\rangle \geq_{s t}\left\langle C_{2} \mid C\right\rangle$; and (b) C_{1} is C-larger in measure than C_{2} if $\left\langle C \mid C_{1}\right\rangle \geq_{s t}\left\langle C \mid C_{2}\right\rangle$. As a consequence, two equivalences are given, namely: (c) C_{1} is C-equivalent to C_{2} (written $C_{1} \equiv_{C} C_{2}$) if $\left\langle C_{1} \mid C\right\rangle \stackrel{d}{=}\left\langle C_{2} \mid C\right\rangle$; and (d) C_{1} is C-equivalent in measure to C_{2} if $\left\langle C \mid C_{1}\right\rangle \stackrel{d}{=}\left\langle C \mid C_{2}\right\rangle$.

It is known that if F is a right-continuous distribution function such that $F\left(0^{-}\right)=$ 0 and $F(t) \geq t$ for all t in $[0,1]$, then there exists a copula C such that $(C \mid C)(t)=$ $F(t)$ for all t in $[0,1]$ (see $[13,16]$). We now wonder whether this result can be generalized (in some sense) to other distribution functions of copulas. To be exact: if C_{0} is a copula, and F is a distribution function such that $\left(M \mid C_{0}\right)(t) \leq F(t) \leq$ $\left(W \mid C_{0}\right)(t)$ for all t in $[0,1]$, does there exist a copula C such that $\left(C \mid C_{0}\right)(t)=F(t)$ for all t in $[0,1]$? The answer is affirmative when $C_{0}=M$. We will also provide some additional properties of the distributions $(C \mid M)$ and $(C \mid W)$ for any copula C.

2. THE M DISTRIBUTION FUNCTION OF A COPULA

The diagonal section δ_{C} of a copula C is the function given by $\delta_{C}(t)=C(t, t)$ for all t in $[0,1]$. A diagonal is a function $\delta:[0,1] \longrightarrow[0,1]$ which satisfies the following properties:
(i) $\delta(1)=1$,
(ii) $\delta(t) \leq t$ for all t in $[0,1]$,
(iii) $0 \leq \delta\left(t^{\prime}\right)-\delta(t) \leq 2\left(t^{\prime}-t\right)$ for all t, t^{\prime} in $[0,1]$ such that $t \leq t^{\prime}-$ i. e., δ is increasing and 2-Lipschitz.

The diagonal section of any copula is a diagonal; and for any diagonal δ, there always exist copulas whose diagonal section is δ [5] (see also [4, 14, 15]): for instance, the Bertino copula $B_{\delta}[6]$, which is given by

$$
\begin{aligned}
B_{\delta}(u, v) & =\min (u, v)-\min (s-\delta(s) \mid \min (u, v) \\
& \leq s \leq \max (u, v)), \quad(u, v) \in[0,1]^{2}
\end{aligned}
$$

The diagonal section δ_{C} of a copula C is the restriction to $[0,1]$ of the distribution function of $\max (U, V)$, whenever (U, V) is a random pair distributed as C. Let $\delta_{C}^{(-1)}$ denote the cadlag inverse of δ_{C}, i. e., $\delta_{C}^{(-1)}(t)=\sup \left\{u \in[0,1] \mid \delta_{C}(u) \leq t\right\}$ for t in $[0,1]$.

The following result gives a (partial) answer to the question posed at the end of Section 1.

Theorem 1. Let F be a right-continuous distribution function such that $F\left(0^{-}\right)=$ $0, F(t) \geq t$ for all t in $[0,1]$, and $F^{\prime}(t) \geq 1 / 2$ for almost every t in $[0,1]$. Then there exists a copula C such that $(C \mid M)(t)=F(t)$ for all t in $[0,1]$.

Proof. We know that $\delta_{C}^{(-1)}$ is the restriction to the interval $[0,1]$ of a distribution function with support on $[0,1]$ and such that $(M \mid M)(t) \leq(C \mid M)(t) \leq(W \mid M)(t)$ for all t in $[0,1]$. Since

$$
(C \mid M)(t)=\delta_{C}^{(-1)}(t), \quad \forall t \in[0,1]
$$

(see [12]), and δ_{C} is 2-Lipschitz, we have that $\delta_{C}^{(-1)}$ must be a strictly increasing function (not necessarily continuous) whose derivative is greater or equal to $1 / 2$ for almost every point in $[0,1]$. Since the Bertino copula B_{δ} associated with δ satisfies $\left(B_{\delta} \mid M\right)(t)=\delta^{(-1)}(t)=F(t)$ for all t in [0,1] (see [12]), this completes the proof.

If C_{1} and C_{2} are two copulas, then we say that $C_{1} \equiv_{M} C_{2}$ if $\left(C_{1} \mid M\right)(t)=$ $\left(C_{2} \mid M\right)(t)$ for all t in $[0,1]$. The next example provides a class in this equivalence relation which contains more than one copula.

Example 1. Let C be the copula given by $C(u, v)=\max (0, u+v-1, \min (u, v-$ $1 / 2)),(u, v) \in[0,1]^{2} . C$ is a shuffle of Min [9], whose mass is spread uniformly on two line segments on $[0,1]^{2}$: one joining the points $(0,1 / 2)$ and $(1 / 2,1)$, and the second one joining the points $(1 / 2,1 / 2)$ and $(1,0)$. Then it is easy to verify that $(C \mid M)(t)=(W \mid M)(t)=(1+t) / 2$ for all t in $[0,1]$.

As a consequence of Theorem 1, we have the following

Corollary 2. Each equivalence class of the equivalence relation \equiv_{M} on the set of copulas contains a unique Bertino copula.

Consider Spearman's footrule coefficient [19], whose population version for a random pair (X, Y) with copula C, is given by

$$
\varphi_{C}=1-3 \int_{0}^{1} \int_{0}^{1}|u-v| \mathrm{d} C(u, v)
$$

(see [11]). In terms of the M distribution function of the copula C, this measure can be rewritten as

$$
\varphi_{C}=4-6 \int_{0}^{1}(C \mid M)(t) \mathrm{d} t
$$

(see [12]). Given two copulas C_{1} and $C_{2},\left\langle C_{1} \mid M\right\rangle \leq_{s t}\left\langle C_{2} \mid M\right\rangle$ implies that $\varphi_{C_{1}} \leq$ $\varphi_{C_{2}}$. However, the converse result is not true in general, as the following example shows.

Example 2. Let C be the shuffle of Min given by $C(u, v)=\min (u, v, \max (1 / 3, u+$ $v-2 / 3)),(u, v) \in[0,1]^{2}$. Its mass is spread uniformly on three line segments in $[0,1]^{2}$: one joining the points $(0,0)$ and $(1 / 3,1 / 3)$, another one joining the points $(1 / 3,2 / 3)$ and $(2 / 3,1 / 3)$, and the third one joining the points $(2 / 3,2 / 3)$ and $(1,1)$. Then we have $(\Pi \mid M)(t)=\sqrt{t}$ for all t in $[0,1]$, and $(C \mid M)(t)=2 / 3$ if $t \in[1 / 3,2 / 3]$ and $(C \mid M)(t)=t$ otherwise. Thus, $\varphi_{\Pi}=0<2 / 3=\varphi_{C}$, but $(\Pi \mid M)(1 / 3) \simeq 0.577<$ $0.67 \simeq(C \mid M)(1 / 3)$.

The " M-larger" ordering has several applications. For example, if $\left(U_{i}, V_{i}\right)$ are two uniform $[0,1]$ random variables with copula $C_{i}, i=1,2$, then C_{1} is M-larger than C_{2} if, and only if, the order statistics of U_{1} and V_{1} are stochastically "inside" the interval determined by the order statistics of U_{2} and V_{2} [12]. The next result shows the relationship between the M-larger and the M-larger in measure orderings. To this end, we first note that, for any pair (U, V) of random variables with associated copula C, the C distribution function of M is given by

$$
\begin{aligned}
(M \mid C)(t) & =\operatorname{Pr}[\min (U, V) \leq t]=\operatorname{Pr}[U \leq t]+\operatorname{Pr}[U>t, V \leq t] \\
& =t+\int_{t}^{1} \operatorname{Pr}[V \leq t \mid U=u] \mathrm{d} u=t+\int_{t}^{1} \frac{\partial C}{\partial u}(u, t) \mathrm{d} u \\
& =t+t-C(t, t)=2 t-\delta_{C}(t)
\end{aligned}
$$

for every t in $[0,1]$.
Proposition 3. Let C_{1} and C_{2} be two copulas. Then $\left\langle M \mid C_{1}\right\rangle \leq_{s t}\left\langle M \mid C_{2}\right\rangle$ if, and only if, $\left\langle C_{1} \mid M\right\rangle \leq_{s t}\left\langle C_{2} \mid M\right\rangle$.

Proof. Let $\delta_{C_{1}}$ and $\delta_{C_{2}}$ be the respective diagonal sections of C_{1} and C_{2}. Then C_{1} is M-larger in measure than C_{2} if, and only if, $2 t-\delta_{C_{1}}(t) \leq 2 t-\delta_{C_{2}}(t)$ for all t
in $[0,1]$, i. e., $\delta_{C_{2}} \leq \delta_{C_{1}}$, which is equivalent to $\delta_{C_{1}}^{(-1)} \leq \delta_{C_{2}}^{(-1)}$, that is, $\left(C_{1} \mid M\right)(t) \leq$ $\left(C_{2} \mid M\right)(t)$ for all t in $[0,1]$.

As a consequence of Proposition 3, the M-equivalence in measure coincides with the M-equivalence. We now show that the equality $\langle M \mid C\rangle \stackrel{d}{=}\langle C \mid M\rangle$ only holds when $C=M$.

Proposition 4. Let C be a copula. Then $\langle M \mid C\rangle \stackrel{d}{=}\langle C \mid M\rangle$ if, and only if, $C=M$.
Proof. Suppose $\langle M \mid C\rangle \stackrel{d}{=}\langle C \mid M\rangle$, i. e., $2 t-\delta_{C}(t)=\delta_{C}^{(-1)}(t)$ for all t in $[0,1]$. Thus, $\delta_{C}^{(-1)}(t)=\sup \left\{u \in[0,1] \mid \delta_{C}(u) \leq t\right\} \leq 2 t$ for all t in $[0,1]$, which implies that $\delta_{C}(t) \geq t / 2$ for all t in $[0,1]$. Hence, $2 t-\delta_{C}^{(-1)}(t) \geq t / 2$ for all t in $[0,1]$, i. e., $\delta_{C}^{(-1)}(t) \leq 3 t / 2$ for all t in $[0,1]$, which implies that $\delta_{C}(t) \geq 2 t / 3$ for all t in $[0,1]$. After n iterations, we have that $\delta_{C}(t) \geq n t /(n+1)$ for all t in $[0,1]$. Therefore, if n tends to infinity, we have that $\delta_{C}(t) \geq t$, and hence, $\delta_{C}(t)=t$ for all t in $[0,1]$. Thus, we obtain that $C=M$; otherwise, if there exists a point (u, v) in $[0,1]^{2}$ such that $C(u, v)<M(u, v)$ with $u \leq v$ (the case $u \geq v$ is similar), then $C(u, u) \leq C(u, v)<M(u, v)=u$, that is, there exists u in $[0,1]$ such that $\delta_{C}(u)<u$, which is absurd. The converse is trivial, completing the proof.

Let C_{1} and C_{2} be two copulas. We say that C_{1} is df-larger than C_{2} if $\left\langle C_{1} \mid C_{1}\right\rangle \geq_{s t}$ $\left\langle C_{2} \mid C_{2}\right\rangle[2,12,13]$. The following example shows that the df-larger and the M-larger orderings are not comparable.

Example 3.

(a) Consider the copulas Π and the shuffle of Min given by $C(u, v)=$ $=\min (u, v, \max (0, u-0.3, v-0.612, u+v-0.912)),(u, v) \in[0,1]^{2}$, whose mass is spread on three line segments in $[0,1]^{2}$: one joining the points $(0,0.612)$ and $(0.3,0.912)$, the second one joining the points $(0.3,0)$ and $(0.912,0.612)$, and the third one joining the points $(0.912,0.912)$ and $(1,1)$. For every t in $[0,1]$, we have $(\Pi \mid \Pi)(t)=t-t \ln t,(\Pi \mid M)(t)=\sqrt{t},(C \mid C)(t)=\max (t, \min (2 t, t+$ $0.3,0.912)$), and $(C \mid M)(t)=\max (t, \min (t+0.3,(t+0.912) / 2))$ for all t in $[0,1]$. Then, it is easy to check that $\langle\Pi \mid \Pi\rangle \leq_{s t}\langle C \mid C\rangle$; however, we have $(\Pi \mid M)(0)=$ $0<0.3=(C \mid M)(0)$ and $(\Pi \mid M)(0.912) \simeq 0.955>0.912=(C \mid M)(0.912)$.
(b) Consider now the copulas Π and $A=(M+W) / 2$ - recall that the convex linear combination of two copulas is again a copula. The mass distribution of A is spread uniformly on two line segments in $[0,1]^{2}$: one connecting the points $(0,0)$ to $(1,1)$, and the second one connecting $(0,1)$ to $(1,0)$. Then, for every t in $[0,1]$, we have $(A \mid A)(t)=\min (3 t,(2+t) / 3)$ and $(A \mid M)(t)=$ $\min (2 t,(2 t+1) / 3)$. Thus, it is easy to verify that $\langle\Pi \mid M\rangle \leq_{s t}\langle A \mid M\rangle$; but $(\Pi \mid \Pi)(0.25) \simeq 0.5966<0.75=(A \mid A)(0.25)$ and $(\Pi \mid \Pi)(0.75) \simeq 0.9658>$ $0.9167=(A \mid A)(0.75)$.

3. THE W DISTRIBUTION FUNCTION OF A COPULA

The opposite diagonal section ω_{C} of a copula C is the function given by $\omega_{C}(t)=$ $C(t, 1-t)$ for all t in $[0,1]$. An opposite diagonal is a function $\omega:[0,1] \longrightarrow[0,1]$ which satisfies the following properties:
(i) $\omega(1)=0$,
(ii) $\omega(t) \leq \min (t, 1-t)$ for all t in $[0,1]$,
(iii) $\omega\left(t^{\prime}\right)-\omega(t) \leq t^{\prime}-t$ for all t, t^{\prime} in $[0,1]$ such that $t \leq t^{\prime}-$ i. e., ω is 1 -Lipschitz.

The opposite diagonal section of any copula is an opposite diagonal; and for any opposite diagonal ω, there exist copulas whose opposite diagonal section is ω : for instance, the copula J_{ω} given by

$$
J_{\omega}(u, v)=\max \left(0, u+v-1, \frac{u+v-1+\omega(u)+\omega(1-v)}{2}\right)
$$

for all (u, v) in $[0,1]^{2}$ (see [3]).
The following result provides a probabilistic interpretation of the opposite diagonal section of a copula (in the sequel, we will denote the distribution function of a random variable X either by $\operatorname{df}(X)$ or a letter such as $F)$.

Proposition 5. Let (U, V) be a pair of random variables with associated copula C. Then

$$
\omega_{C}(t)=\frac{1}{2} \cdot(\operatorname{Pr}[\min (U, 1-V) \leq t<\max (U, 1-V)])
$$

Proof. The copula C^{\prime} associated with the random pair $(U, 1-V)$ is given by $C^{\prime}(u, v)=u-C(u, 1-v)$ for every (u, v) in $[0,1]^{2}$ (see [11]). Then we have that

$$
\begin{aligned}
\operatorname{df}(\min (U, 1-V))(t) & =\operatorname{Pr}[\min (U, 1-V) \leq t] \\
& =\operatorname{Pr}[U \leq t]+\operatorname{Pr}[1-V \leq t]-\operatorname{Pr}[U \leq t, 1-V \leq t] \\
& =t+t-C^{\prime}(t, t)=t+C(t, 1-t)=t+\omega_{C}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{df}(\max (U, 1-V))(t) & =\operatorname{Pr}[\max (U, 1-V) \leq t]=\operatorname{Pr}[U \leq t, 1-V \leq t] \\
& =C^{\prime}(t, t)=t-C(t, 1-t)=t-\omega_{C}(t)
\end{aligned}
$$

whence the result easily follows.
Let (U, V) be a random pair with copula C. The W distribution function of C is given by

$$
\begin{aligned}
(C \mid W)(t) & =\operatorname{Pr}[C(U, V) \leq t]=\operatorname{Pr}[C(U, 1-U) \leq t]=\operatorname{Pr}\left[\omega_{C}(U) \leq t\right] \\
& =\lambda\left(\left\{u \in[0,1] \mid \omega_{C}(u) \leq t\right\}\right)
\end{aligned}
$$

where λ denotes the Lebesgue measure in \mathbb{R}.
Distribution functions of copulas are also employed in constructing new measures of association. Thus, for instance, given a copula C, it seems reasonable to obtain a measure χ_{C} - in the same sense than Spearman's footrule coefficient φ_{C} - based on the W distribution function of C, and given by the linear expression

$$
\chi_{C}=a \int_{0}^{1}(C \mid W)(t) \mathrm{d} t+b
$$

where a and b are two real numbers. If we consider $\chi_{W}=-1$ and $\chi_{\Pi}=0$ for this measure - for the Spearman's footrule coefficient we have $\varphi_{M}=1, \varphi_{\Pi}=0$, and $\varphi_{W}=-1 / 2-$, since $(\Pi \mid W)(t)=1-\sqrt{\max (0,1-4 t)}$ and $(M \mid W)(t)=\min (2 t, 1)$ for all t in $[0,1]$, then we obtain

$$
\chi_{C}=5-6 \int_{0}^{1}(C \mid W)(t) \mathrm{d} t
$$

The coefficient χ_{C} can be also written as

$$
\chi_{C}=6 \int_{0}^{1} C(t, 1-t) \mathrm{d} t-1=3 \int_{0}^{1} \int_{0}^{1}|1-u-v| \mathrm{d} C(u, v)-1 .
$$

This coefficient - which first appeared in this last form in [1] - satisfies $\chi_{M}=1 / 2$. Observe also that the population version γ_{C} of the known Gini's rank correlation coefficient $[8,10,11]$ of a copula C can be written as $\gamma_{C}=2\left(\varphi_{C}+\chi_{C}\right) / 3$.

Unlike the relationship between the M-larger and the M-larger in measure orderings, there is no analogue to Proposition 3 for the W-larger and the W-larger in measure orderings, as the next example shows. The example also provides a class in the equivalence relation \equiv_{W} - recall that if C_{1} and C_{2} are two copulas, then $C_{1} \equiv{ }_{W} C_{2}$ if $\left(C_{1} \mid W\right)(t)=\left(C_{2} \mid W\right)(t)$ for all t in $[0,1]$ - which contains more than one copula. First note that, if (U, V) is a random pair with copula C, then the C distribution function of W is given by

$$
\begin{aligned}
(W \mid C)(t) & =\operatorname{Pr}[U+V-1 \leq t]=\operatorname{Pr}[U \leq t]+\operatorname{Pr}[U>t, V \leq 1+t-U] \\
& =t+\int_{t}^{1} \operatorname{Pr}[V \leq 1+t-u \mid U=u] \mathrm{d} u \\
& =t+\int_{t}^{1} \frac{\partial C}{\partial u}(u, 1+t-u) \mathrm{d} u
\end{aligned}
$$

for every t in $[0,1]$.
Example 4. Let C be the shuffle of Min given by $C(u, v)=\min (u, v, \max (1 / 2, u+$ $v-1)),(u, v) \in[0,1]^{2}$. Its mass is spread uniformly on two line segments in $[0,1]^{2}$: one joining the points $(0,0)$ and $(1 / 2,1 / 2)$, and the second one joining the points $(1 / 2,1)$ and $(1,1 / 2)$. Then it is easy to verify that $(C \mid W)(t)=(M \mid W)(t)=$ $\min (2 t, 1)$ for all t in $[0,1]$. But, on the other hand, we have $(W \mid C)(t)=1 / 2$ if $t \in[0,1 / 2)$ and $(W \mid C)(t)=1$ if $t \in[1 / 2,1]$, and $(W \mid M)(t)=(1+t) / 2$.

Hence, $(W \mid C)(1 / 4)=1 / 2<5 / 8=(W \mid M)(1 / 4)$ and $(W \mid C)(3 / 4)=1>7 / 8=$ $(W \mid M)(3 / 4)$.

To see the "utility" of the C distribution function of W, where C is the copula of the random pair (U, V), we provide the following result, which describes the relationship between this distribution function and the distribution function of the random variable $U+V$. In what follows, we will use some notation. Let f be a real function defined on $[a, b]$ (or on a dense subset of $[a, b]$, including a and b) having only removable or jump discontinuities. Then $\ell^{+} f$ and $\ell^{-} f$ are the functions defined on $[a, b]$ via $\ell^{+} f(x)=f\left(x^{+}\right)$and $\ell^{-} f(x)=f\left(x^{-}\right)$, where $f\left(x^{+}\right)$(respectively, $f\left(x^{-}\right)$) denotes the limit - if it exists - by the right (respectively, left) of f in x. Let \hat{C} denote the survival copula of C, i. e., $\hat{C}(u, v)=u+v-1+C(1-u, 1-v)$ for every $(u, v) \in[0,1]^{2}($ see $[11])$.

Proposition 6. Let (U, V) be a pair of random variables with associated copula C. Then we have

$$
\operatorname{df}(U+V)(t)= \begin{cases}\ell^{+}(1-(W \mid \hat{C})(1-t)), & \text { if } t \in[0,1] \\ (W \mid C)(t-1), & \text { if } t \in[1,2]\end{cases}
$$

Proof. Let $t \in[0,1]$. Then we have

$$
\begin{aligned}
\operatorname{df}(U+V)(t) & =\mu_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid u+v \leq t\right\}\right) \\
& =\mu_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid(1-u)+(1-v)-1 \geq 1-t\right\}\right) \\
& =\mu_{C}\left(\left\{\left(1-u^{\prime}, 1-v^{\prime}\right) \in[0,1]^{2} \mid u^{\prime}+v^{\prime}-1 \geq 1-t\right\}\right) \\
& =\mu_{\hat{C}}\left(\left\{\left(u^{\prime}, v^{\prime}\right) \in[0,1]^{2} \mid u^{\prime}+v^{\prime}-1 \geq 1-t\right\}\right) \\
& =\mu_{\hat{C}}\left(\left\{\left(u^{\prime}, v^{\prime}\right) \in[0,1]^{2} \mid W\left(u^{\prime}, v^{\prime}\right) \geq 1-t\right\}\right) \\
& =1-\mu_{\hat{C}}\left(\left\{\left(u^{\prime}, v^{\prime}\right) \in[0,1]^{2} \mid W\left(u^{\prime}, v^{\prime}\right)<1-t\right\}\right) \\
& =1-\ell^{-}((W \mid \hat{C})(1-t)) \\
& =\ell^{+}(1-(W \mid \hat{C})(1-t))
\end{aligned}
$$

where we have done the transformations $u^{\prime}=1-u, v^{\prime}=1-v$. On the other hand, for every $t \in[1,2]$, we have

$$
\begin{aligned}
(W \mid C)(t) & =\mu_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid u+v-1 \leq t\right\}\right) \\
& =\mu_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid u+v \leq t+1\right\}\right) \\
& =\operatorname{df}(U+V)(t+1)
\end{aligned}
$$

which completes the proof.

ACKNOWLEDGEMENT

This work was supported by the Ministerio de Educación y Ciencia (Spain) and FEDER, under research project MTM2006-12218.

REFERENCES

[1] J. Behboodian, A. Dolati, and M. Úbeda-Flores: Measures of association based on average quadrant dependence. J. Probab. Statist. Sci. 3 (2005), 161-173.
[2] P. Capérà, A.-L. Fougères, and C. Genest: A stochastic ordering based on a decomposition of Kendall's tau. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81-86.
[3] B. De Baets, H. De Meyer, and M. Úbeda-Flores: Constructing copulas with given diagonal and opposite diagonal sections, to appear.
[4] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Copulas with given diagonal sections: novel constructions and applications. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397-410.
[5] G.A. Fredricks and R. B. Nelsen: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129-136.
[6] G. A. Fredricks and R. B. Nelsen: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81-91.
[7] C. Genest and L.-P. Rivest: On the multivariate probability integral transformation. Statist. Probab. Lett. 53 (2001), 391-399.
[8] C. Gini: L'Ammontare e la composizione della ricchezza delle nazione. Bocca Torino 1914.
[9] P. Mikusiński, H. Sherwood, and M. D. Taylor: Shuffles of Min. Stochastica 13 (1992), 61-74.
[10] R. B. Nelsen: Concordance and Gini's measure of association. J. Nonparametric Statist. 9 (1998), 227-238.
[11] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.
[12] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Ubeda-Flores: Distribution functions of copulas: a class of bivariate probability integral transforms. Statist. Probab. Lett. 54 (2001), 277-282.
[13] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Úbeda-Flores: Kendall distribution functions. Statist. Probab. Lett. 65 (2003), 263-268.
[14] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Úbeda-Flores: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348-358.
[15] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Úbeda-Flores: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econ. 42 (2008), 473-483.
[16] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and M. Úbeda-Flores: Kendall distribution functions and associative copulas. Fuzzy Sets and Systems 160 (2009), 52-57.
[17] A. Sklar: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.
[18] A. Sklar: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449-460.
[19] C. Spearman: 'Footrule' for measuring correlation. British J. Psychology 2 (1906), 89-108.

Manuel Úbeda-Flores, Departamento de Estadística y Matemática Aplicada, Universidad de Almería, Carretera de Sacramento s / n, 04120 La Cañada de San Urbano, Almería. Spain.
e-mail: mubeda@ual.es

