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ON DISTRIBUTIONS OF ORDER STATISTICS
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Performance of coherent reliability systems is strongly connected with distributions of
order statistics of failure times of components. A crucial assumption here is that the
distributions of possibly mutually dependent lifetimes of components are exchangeable
and jointly absolutely continuous. Assuming absolute continuity of marginals, we focus
on properties of respective copulas and characterize the marginal distribution functions
of order statistics that may correspond to absolute continuous and possibly exchangeable
copulas. One characterization is based on the vector of distribution functions of all order
statistics, and the other concerns the distribution of a single order statistic.

Keywords: coherent system, order statistic, copula, exchangeable distribution, absolute
continuous distribution, absolute continuous copula

AMS Subject Classification: 60E05, 62G30, 62H05, 62N05

1. INTRODUCTION

The paper has two main goals. One is to formulate the necessary and sufficient
conditions for a sequence of distribution functions to be a family of distribution
functions of order statistics corresponding to an absolutely continuous copula. The
other consists in characterizing a single distribution function as the distribution
function of a given order statistic corresponding to an absolutely continuous copula.
The motivation for dealing with this problem is closely connected with the ongoing
research in the area of coherent systems which are considered in reliability theory
and other branches of applied probability.

In the reliability theory, coherent systems are used for describing complex tech-
nical systems composed of simple elements whose working status affects the perfor-
mance of the system. For the comprehensive theory, we refer to books by Barlow
and Proschan [1, 2], and Lai and Xie [15]. Coherent systems were also considered in
other branches of applied probability, e. g. they represent pension plans for groups
of people at the same age or the prices of the synthetic CDOs (collateralized debt
obligations). The so called k-out-of-n systems play a central role in the theory.
The k-out-of-n coherent system is one that works iff do so at least k of its compo-
nents. In other words, if X1, . . . , Xn are the random lifetimes of the components and
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X1:n, . . . , Xn:n denote the respective order statistics, then the failure time of the k-
out-of-n system coincides with the kth greatest order statistic Xn+1−k:n. Samaniego
[22] determined a convenient representation for the distribution function of the fail-
ure time T of an arbitrary coherent system composed of n independent components
that have identically continuously distributed lifetimes X1, . . . , Xn with a common
distribution function F as a convex combination of distributions of order statistics

Pr(T ≤ x) =
n∑

i=1

pi Pr(Xi:n ≤ x) (1.1)

=
n∑

i=1

pi

n∑

j=i

(
n

j

)
F j(x)[1− F (x)]n−j , (1.2)

where
pi = Pr(T = Xi:n), i = 1, . . . , n. (1.3)

The vector p = (p1, . . . , pn) is called the Samaniego signature of the system. The
signature depends on the structure function of the system, but is independent of
the distribution function F of the components. Evidently, there is a finite number
of coherent systems of fixed size n, and so there is a finite number of Samaniego
signatures (p1, . . . , pn) of size n. Boland and Samaniego [4] introduced a convenient
notion of mixed systems with representation (1.1) and arbitrary mixture coefficients
pi ≥ 0, i = 1, . . . , n, summing up to one. The mixed system can be interpreted in
the following way: one of the k-out-of-n systems, k = 1, . . . , n, is randomly chosen,
and the probability of choosing the kth one is pn+1−k. In particular, every coherent
system can by represented as a mixture of k-out-of-n systems.

In many practical problems, the assumptions of independence of system compo-
nents is unrealistic, and is replaced by exchangeability. This means that the com-
ponents are actually identical, but their lifetimes are dependent, e. g., the failure
of a component causes an increased burden on the others and results in shortening
their lifetimes. Navarro and Rychlik [17] formally proved that the representations
(1.1) and (1.3) are also valid in the case of mutually dependent components with
exchangeable absolutely continuous joint distributions (such a possibility was earlier
noticed by Kochar et al. [14]). Clearly, in this case the representation of the order
statistics distributions presented in (1.2) should be replaced by more general for-
mulae depending on the joint distribution of X1, . . . , Xn. A further generalization
is due to Navarro et al. [18], where the assumption of continuity of the distribu-
tion is dropped. The representation (1.1) still holds, but the coefficients cannot be
interpreted by means of (1.3) in general.

In the paper we study the question of characterizing the marginal distributions
of order statistics which are based on dependent samples with absolutely continuous
exchangeable joint distributions, or more generally, with identical marginal distri-
butions. Following David and Nagaraja ([5], Section 5.3, p. 99), and Galambos [9],
we write the distribution function of the mth order statistic Xm:n from the sample
X1, . . . , Xn as

Pr(Xm:n ≤ x) =
n∑

j=m

(−1)j−m

(
j − 1
m− 1

) ∑

1≤i1<···<ij≤n

Pr(Xi1 ≤ x, . . . ,Xij ≤ x). (1.4)



Absolutely Continuous Copulas in Reliability Problems 759

If X1, . . . , Xn are exchangeable, (1.4) simplifies to

Pr(Xm:n ≤ x) =
n∑

j=m

(−1)j−m

(
j − 1
m− 1

)(
n

j

)
Pr(X1 ≤ x, . . . ,Xj ≤ x). (1.5)

Obviously both (1.4) and (1.5) can be represented by means of the joint distribution
function H, and so by means of the common marginal distribution F and the cop-
ula C, which describes all the dependencies among the variables. The distribution
function H of identically distributed random variables is absolutely continuous if
the common marginal distribution F is absolutely continuous and so is the respec-
tive copula C. The first condition is usually easy to verify and in many practical
situations can be simply assumed. Here we concentrate on the problem of absolute
continuity of copula C which in the case of identical marginals can be determined
by

H(x1, . . . , xn) = C(F (x1), . . . , F (xn)). (1.6)

For convenience, here and later on, we consider the copula as a cumulative distribu-
tion function defined on Rn and supported on the cube [0, 1]n with all the standard
uniform one-dimensional marginals. Representation (1.6), due to Sklar [23], and
many other properties of copula functions can be found in the monographs by Joe
[13] and Nelsen [19]. Note that in the identically distributed case with the continu-
ous marginal distribution function F , the order statistics from the copula C and the
original distribution function H are simply related. If U1, . . . , Un and X1, . . . , Xn

have the joint distribution functions C and H, respectively, then U1:n, . . . , Un:n and
F (X1:n), . . . , F (Xn:n) have identical distributions. Therefore we further analyze dis-
tributions of order statistics based on dependent standard uniform samples with a
common distribution being a copula.

In the present paper, we answer two questions. One is to give necessary and
sufficient conditions for a vector of distribution functions (G1, . . . , Gn) to be the
marginal distribution functions of consecutive order statistics based on dependent
standard uniform random variables which have a joint absolutely continuous dis-
tribution. The other is an analogous characterization of the marginal distribution
function of a single order statistic. It occurs that the same conditions characterize
the narrower class of absolutely continuous exchangeable copulas.

The theory of similar characterizations is most developed for the greatest order
statistics whose distribution function has the simple form

Pr(Un:n ≤ t) = δ(t) = C(t, . . . , t),

and is called the diagonal section of copula C. The characterization of all possible
diagonal sections of copulas can be found in Nelsen [19] (Subsection 3.2.6) for the case
n = 2. Various constructions of copulas with prescribed diagonals were presented
in literature (see, for example, Nelsen [19], Durante et al. [7, 8]), but most of them
are singular. Genest et al. [10] constructed absolutely continuous copulas whose
diagonal sections satisfy δ(t) = t at a finite number of points 0 < t < 1 at most.
Jaworski [12] showed that such a construction is possible iff the Lebesgue measure
of points where the relation holds is zero (the special case n = 2 was examined in
Durante and Jaworski [6]).
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Distribution functions of other order statistics Um:n, m < n, can be expressed by
means of copula in more complicated ways. Rychlik [20] presented characterizing
conditions on a vector of distribution functions for being the marginal distribution
functions of order statistics of dependent random variables with a given common
marginal distribution function F . Similar conditions for the distribution of a single
order statistic were presented in Rychlik [21]. These results are presented in The-
orems 1 and 3, respectively, of Section 2. Their proofs were constructive, and the
constructions led to singular distributions of the samples. In Theorems 2 and 4 of
Section 2 we describe some additional conditions which allow us to construct abso-
lutely continuous joint distributions with prescribed distributions of order statistics.
The respective characterizations of distributions are proved in Sections 4 and 5 which
is preceded by a section containing auxiliary results.

We finally note that there are also other examples of applications of copula ap-
proach to reliability theory, which are not directly connected with coherent systems,
see, e. g., Bassan and Spizzichino [3].

2. CHARACTERIZATION RESULTS

Suppose that standard uniform random variables U1, . . . , Un have a joint distribution
function C. Let U1:n ≤ · · · ≤ Un:n stand for the respective order statistics. The
distribution function of Um:n can be written as the linear combination of diagonal
sections of multidimensional marginals of C.

Gm(s) = Pr(Um:n ≤ s) =
n∑

j=m

(−1)j−m

(
j − 1
m− 1

) ∑

1≤i1<···<ij≤n

C(si1,...,ij ), (2.7)

m = 1, . . . , n, where si1,...,ij = (s1, . . . , sn) ∈ Rn are such that si = s for i =
i1, . . . , ij , and si = 1 otherwise (cf. (1.4)) i. e.

C(si1,...,ij ) = C(1, . . . , 1, s, . . . , s, 1, . . . ).

If U1, . . . , Un are exchangeable, then (2.7) have simpler forms

Gm(s) =
n∑

j=m

(−1)j−m

(
j − 1
m− 1

)(
n

j

)
C(s1,...,j), m = 1, . . . , n, (2.8)

(cf. (1.5)). We say that (2.7) (and (2.8) in the exchangeable case) are the distribution
functions of order statistics corresponding to copula C. Rychlik [20] characterized
the distributions G1, . . . , Gn as follows:

Theorem 1. (Rychlik [20], Lemma 1) Distribution functions G1, . . . , Gn are the
distribution functions of consecutive order statistics corresponding to a copula iff
they satisfy two conditions

Gk(s) ≥ Gk+1(s), 0 ≤ s ≤ 1, k = 1, . . . , n− 1, (2.9)
n∑

k=1

Gk(s) = ns, 0 ≤ s ≤ 1. (2.10)
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Here we prove the following.

Theorem 2. Distribution functions G1, . . . , Gn satisfying (2.9) and (2.10) are the
distribution functions of consecutive order statistics corresponding to an absolutely
continuous copula iff

µ(Σ) = 0, (2.11)

where µ denotes the Lebesgue measure on the real line and

Σ = { 0 < t < 1 : t = Gk(s) = Gk−1(s) for some 0 < s < 1
and some k = 2, . . . , n}. (2.12)

Now we proceed to characterizations based on single order statistics. In the general
case, Rychlik [21] characterized the distribution Gm as follows:

Theorem 3. (Rychlik [21], Theorem 1) A distribution function G is the distribu-
tion function of the mth order statistics, 1 ≤ m ≤ n, corresponding to a copula iff
the following two conditions hold

max
(

0,
ns−m + 1
n−m + 1

)
≤ G(s) ≤ min

(
1,

ns

m

)
, 0 ≤ s ≤ 1, (2.13)

0 ≤ G(t)−G(s) ≤ n(t− s), 0 ≤ s < t ≤ 1. (2.14)

A more subtle characterization in the absolutely continuous case is as follows.

Theorem 4. A distribution function G satisfying (2.13) and (2.14) is the distribu-
tion function of the mth order statistic, 1 ≤ m ≤ n, corresponding to an absolutely
continuous copula C iff

µ(Σ0
− ∪ Σ0

+) = 0 (2.15)
for

Σ0
− =

{ {
0 ≤ s ≤ 1 : G(s) = ns−m+1

n−m+1

}
, if m < n,

∅, if m = n,
(2.16)

Σ0
+ =

{
∅, if m = 1,{
0 ≤ s ≤ 1 : G(t) = ns

m

}
, if m > 1.

(2.17)

Remark 1. We first point out that Theorems 1 to 4 characterize distributions of
order statistics corresponding to exchangeable copulas as well. It is clear that in
each case it is possible to construct an exchangeable copula for which correspond-
ing distributions of order statistics satisfy the characterization conditions. Indeed,
renumbering the random variables, we obtain a sequence with the same distribu-
tion of order statistics. Taking the uniform mixture of all n! rearrangements of the
elements of the random sequence, we preserve the distribution of order statistics,
and get an exchangeable joint distribution of the vector. Similar arguments can be
found, e. g. in Spizzichino [24], p. 184 and [25].



762 P. JAWORSKI AND T. RYCHLIK

Note that (2.14) implies that all the marginal distributions of order statistics are
absolutely continuous with the densities bounded by the sample size n even if the
joint distribution is singular. Condition (2.11) guarantees that all the order statis-
tics are different with probability one. Condition (2.15) says that the distribution
function of order statistics cannot coincide with the increasing parts of the bounds
in (2.13) on a set of positive measure. It can be shown that Gm(s) = ns+1−m

n+1−m (ns
m ,

respectively) implies that Gm(s) = · · · = Gn(s) (G1(s) = · · · = Gm(s), respec-
tively). If either of the relations holds on a set of positive measure, the respective
order statistics would necessarily be identical with a positive probability. Formal
justifications of these facts can be found in the proofs below.

3. AUXILIARY RESULTS

We first present two propositions that can be of independent interest.

We denote by Π the family of all permutations of the set {1, . . . , n}, and by π(j)
the jth coordinate of π.

Proposition 1. Suppose that distribution functions G1, . . . , Gn satisfy assumption
(2.10) and C∗ is a copula. Then

C(s1, . . . , sn) =
1
n!

∑

π∈Π

C∗(G1(sπ(1)), . . . , Gn(sπ(n))), (3.18)

is an exchangeable copula. Moreover, absolute continuity of C∗ implies the same
for C.

P r o o f . Each summand of (3.18) is a distribution function, and so is the convex
combination. Clearly, this is exchangeable. By (2.10), each Gi is supported on [0, 1],
and [0, 1]n is the support of (3.18) in consequence. We now show that its marginals
are uniform. To this end, we consider arguments such that 0 < si < 1 for some
i = 1, . . . , n, and sj = 1 for j 6= i. Then, by (2.10), we have

C(1, . . . , 1, si, 1, . . . , 1)

=
1
n!

n∑

j=1

∑

π(i)=j

C∗(G1(1), . . . , Gj−1(1), Gj(si), Gj+1(1), . . . , Gn(1))

=
1
n!

n∑

j=1

∑

π(i)=j

C∗(1, . . . , 1, Gj(si), 1, . . . , 1)

=
1
n!

n∑

j=1

(n− 1)!Gj(si) = si.

Assume finally that C∗ is absolutely continuous. By (2.14), which is a consequence
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of (2.10), the joint density function

∂C(s1, . . . , sn)
∂s1 . . . ∂sn

=
1
n!

∑

π∈Π

∂C∗(G1(sπ(1)), . . . , Gn(sπ(n)))
∂s1 . . . ∂sn

n∏

j=1

dG(sπ(j))
dsπ(j)

is well defined almost everywhere. ¤

The formula describing copula (3.18) is quite simple for n = 2. Taking into
account the fact that G1(s) + G2(s) = 2s, 0 ≤ s ≤ 1, we obtain:

Corollary 1. Suppose that distribution functions G, supported on [0, 1], satisfies
assumption (2.14) and C∗ is a copula. Then the function

C(s, t) =
1
2
(C∗(G(s), 2t−G(t)) + C∗(G(t), 2s−G(s))),

is an exchangeable copula. Moreover, absolute continuity of C∗ implies the same
for C.

Evidently distribution functions of the order statistics corresponding to copula
(3.18) may differ from G1, . . . , Gn. Below we show that by employing the copula
(3.18) we can describe however a construction which leads to a copula with the
desired vector of distribution functions of order statistics. We first introduce notions
of left-side- and right-side-continuous inverses of non-decreasing functions

g←(t) = inf{s : g(s) ≥ t},
g→(t) = sup{s : g(s) ≤ t}.

Note that for continuous g : [0, 1] onto→ [0, 1] both g← and g→ are right-side inverses
of g so that

g(g→(t)) = t = g(g←(t)), 0 ≤ t ≤ 1.

Proposition 2. Let distribution functions G1, . . . , Gn satisfy (2.9) and (2.10).
Suppose that a copula C0 is a distribution functions of a random vector V1, . . . , Vn,
and the respective order statistics V1:n, . . . , Vn:n have the joint distribution function

H(s1, . . . , sn) = C∗(H1(s1), . . . ,Hn(sn)),

where H1, . . . ,Hn stand for the respective marginals of order statistics and C∗ is
the copula describing the interdependencies among them. If

H←
1 (G1(t)) ≥ · · · ≥ H←

n (Gn(t)), 0 ≤ t ≤ 1, (3.19)

then G1, . . . , Gn are the distribution functions of order statistics corresponding to
the exchangeable copula (3.18). Moreover, if C0 is absolutely continuous, then so is
(3.18).
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P r o o f . Define monotone transformations of order statistics

Zi = G←
i (Hi(Vi:n)), i = 1, . . . , n,

which have marginal distribution functions Gi, i = 1, . . . , n, and copula C∗, identical
with that of V1:n, . . . , Vn:n (cf. Jaworski [11], Proposition 1). Let (U1, . . . , Un) be a
random permutation of (Z1, . . . , Zn). By definition, it has the common distribution
presented in (3.18). Relations (3.19) imply that Zi are almost surely ordered in the
ascending order, and Ui:n = Zi a.s., i = 1, . . . , n, by definition. This ends the proof
of the first claim. We finally observe that absolute continuity of V1, . . . , Vn provides
the same for V1:n, . . . , Vn:n and for its copula. The reference to the last claim of
Proposition 1 gives the final statement. ¤

Remark 2. We can also consider other constructions of copulas with desired
marginals of order statistics, that are alternative and simpler than (3.18). For in-
stance, we can use

Cπ(s1, . . . , sn) =
1
n

n∑

i=1

C∗(G1(sτ i(π(1))), . . . , Gn(sτ i(π(n)))) (3.20)

where τ is the translation operator defined by τ(s1, . . . , sn) = (s2, . . . , sn, s1), τ i is
its i-fold composition, and π ∈ Π is arbitrary. One can also take an arbitrary convex
combination of functions (3.20). The only requirement here is that for each pair
1 ≤ i, j ≤ n, coordinate si of the left-hand side of (3.20) should be the argument
of Gj at the right-hand side with the same probability 1/n. Usually, distribution
functions (3.20) are not exchangeable, but so is (3.18).

Remark 3. Suppose now that

C0(s1, . . . , sn) = min(s1, . . . , sn). (3.21)

Then V1 = · · · = Vn and V1:n = · · · = Vn:n have identical marginals H1(s) =
· · · = Hn(s) = s and copula (3.21). Condition (3.19) is naturally satisfied, and
Proposition 2 holds with

C(s1, . . . , sn) =
1
n!

∑

π∈Π

min(G1(sπ(1)), . . . , Gn(sπ(n))). (3.22)

Rychlik [20] used (3.20) with π = π0 = (1, . . . , n) and C∗ = min for proving Theo-
rem 1. The trouble here is that (3.20), (3.21) and (3.22) are not absolutely contin-
uous.

So we face the following problem: given a fixed sequence of distribution functions
G1, . . . , Gn satisfying (2.9), (2.10), and the additional assumption (2.11), we should
construct an absolutely continuous copula C0 such that the respective marginal
distribution functions of order statistics H1, . . . ,Hn satisfy (3.19). Note that the
following holds

H←
1 (t) ≤ · · · ≤ H←

n (t), 0 < t < 1.
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It means that all Hi, i = 1, . . . , n, should differ from the identity functions so little
that the compositions H←

1 (Gi(t)), i = 1, . . . , n, do not disturb the original ordering
(2.9) of functions Gi, i = 1, . . . , n.

Below in Lemma 1 we present some sufficient conditions guarantying that for
given G1, . . . , Gn functions H1, . . . ,Hn fulfill (3.19).

Lemma 1. For G1, . . . , Gn satisfying (2.9) and (2.10), define

ϕ1,i(t) =
3
4
t +

1
4
Gi+1(G→

i (t)),

ϕ2,i(t) =
3
4
t +

1
4
Gi(G←

i+1(t)), i = 1, . . . , n− 1,

and
Φ1(t) = min{ϕ←1,i(t) : i = 1, . . . , n− 1}, (3.23)
Φ2(t) = max{ϕ→2,i(t) : i = 1, . . . , n− 1}. (3.24)

Then Φ2(t) ≤ t ≤ Φ1(t), 0 ≤ t ≤ 1, and both the inequalities are sharp iff t 6∈ Σ.
Moreover, if H1, . . . ,Hn satisfy

Φ2(t) ≤ Hn(t) ≤ · · · ≤ H1(t) ≤ Φ1(t), 0 ≤ t ≤ 1, (3.25)

then (3.19) holds.

P r o o f . Let 0 ≤ t ≤ 1 be arbitrary. Note that

Gi+1(G→
i (t)) ≥ t ≥ Gi(G←

i+1(t)), (3.26)
ϕ1,i(t) ≥ t ≥ ϕ2,i(t), i = 1, . . . , n− 1, (3.27)

and
Φ2(t) ≤ t ≤ Φ1(t). (3.28)

If t 6∈ Σ, then all the inequalities in (3.26) to (3.28) are sharp. On the other hand,
t ∈ Σ implies that at least one of inequalities of (3.26) for some i = 1, . . . , n − 1
becomes the equality. In consequence, we have the same in (3.27) and (3.28).

It follows from (3.25) that for all i = 1, . . . , n− 1, we have

ϕ2,i(t) ≥ Φ←2 (t) ≥ H←
n (t) ≥ · · · ≥ H←

1 (t) ≥ Φ←1 (t) ≥ ϕ1,i(t),
and

H←
i (Gi(t))−H←

i+1(Gi+1(t)) ≥ ϕ1,i(Gi(t))− ϕ2,i(Gi+1(t))

=
3
4
Gi(t) +

1
4
Gi+1(G→

i (Gi(t)))−
3
4
Gi+1(t)−

1
4
Gi(G←

i+1(Gi+1(t)))

≥ 3
4
Gi(t) +

1
4
Gi+1(t)−

3
4
Gi+1(t)−

1
4
Gi(t)

=
1
2
(Gi(t)−Gi+1(t)) ≥ 0,

where the middle inequality follows from

G←
i+1(Gi+1(t)) ≤ t ≤ G→

i (Gi(t)).

This ends the proof of lemma. ¤
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4. PROOF OF THEOREM 2

Necessity proof. Let U1, . . . , Un be standard uniform random variables with the
distribution determined by an absolutely continuous copula. Let G1, . . . , Gn denote
the marginal distribution functions of order statistics U1:n, . . . , Un:n, respectively,
and Σ be defined in (2.12). Contrary to our claim, assume that µ(Σ) > 0. It follows
that at least one of the sets

Σk = {0 ≤ t ≤ 1 : t = Gk(s) = Gk−1(s) for some 0 ≤ s ≤ 1}, k = 2, . . . , n,

has a strictly positive Lebesgue measure. We prove that for each k

Pr(Uk:n = Uk−1:n) ≥ µ(Σk), (4.29)

which, together with the above, contradicts absolute continuity of the joint proba-
bility measure.

We first show that for any 0 ≤ s1 < s2 ≤ 1 the following holds

Pr(s1 < Uk−1:n ≤ Uk:n ≤ s2) ≥ µ([Gk(s1), Gk(s2)] ∩ Σk). (4.30)

If the intersection [Gk(s1), Gk(s2)] ∩ Σk consists of one point or is empty then its
measure is equal to zero, and the inequality is valid. Otherwise we can select the
smallest and the greatest numbers t1 < t2 satisfying

t1, t2 ∈ [Gk(s1), Gk(s2)] ∩ Σk ⊂ [t1, t2].

Given t1, t2, we take s1 ≤ s′1 < s′2 ≤ s2 such that

Gk(s′1) = Gk−1(s′1) = t1 < Gk(s′2) = Gk−1(s′2) = t2,

Then we obtain
Pr(s1 < Uk−1:n ≤ Uk:n ≤ s2) ≥ Pr(s′1 < Uk−1:n ≤ Uk:n ≤ s′2)

= Pr({Uk:n ≤ s′2} \ {Uk−1:n ≤ s′1} ≥ Gk(s′2)−Gk−1(s′1)
= t2 − t1 = µ([t1, t2]) ≥ µ([Gk(s1), Gk(s2)] ∩ Σk),

as desired.
Now we consider

Em =
2m∪

i=1

(
i− 1
2m

,
i

2m

]2

, m = 1, 2, . . . .

By (4.30), for all m we get

Pr((Uk−1:n, Uk:n) ∈ Em) =
2m∑

i=1

Pr
(

i− 1
2m

< Uk−1:n ≤ Uk:m ≤ i

2m

)

≥
2m∑

i=1

µ

([
Gk

(
i− 1
2m

)
, Gk

(
i

2m

)]
∩ Σk

)
≥ µ(Σk).

Since
lim

m→+∞
Pr((Uk−1:n, Uk:n) ∈ Em) = Pr(Uk−1:n = Uk:n),

relation (4.29) holds, and the statement is concluded. 2
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Sufficiency proof. We assume that distribution functions G1, . . . , Gn satisfy condi-
tions (2.9) to (2.11), and aim at constructing an absolutely continuous copula such
that G1, . . . , Gn are the distribution functions of order statistics corresponding to
the copula.

This part of the proof of Theorem 2 consists in constructing an absolutely contin-
uous copula with the corresponding distribution function H1, . . . ,Hn of consecutive
order statistics which satisfy assumption (3.25). For this purpose we recall the no-
tion of ordinal sum of copulas (cf. Nelsen [19], Section 3.2.2 for n = 2 and Mesiar
and Sempi [16] for n ≥ 2). The ordinal sum of copulas {Ci}N

i=1 (1 ≤ N ≤ +∞)
with respect to non-overlapping intervals {(ai, bi)}N

i=1 (0 ≤ ai < bi ≤ 1) is a function
defined by

C(s1, . . . , sn) =
N∑

i=1

(bi − ai)Ci

(
s1 − ai

bi − ai
, . . . ,

sn − ai

bi − ai

)

+ µ

(
[0, min(s1, . . . , sn)] \

N∪

i=1

[ai, bi]

)
. (4.31)

It can be shown that (4.31) is a copula. One can generate random variables V1, . . . , Vn

with the common distribution function (4.31) using the following procedure (which
can be easily adapted for a sampling). We first take a standard uniform variable V .
If V ∈ (ai, bi) for some 1 ≤ i ≤ N , then we generate n random variables V1, . . . , Vn

with the uniform marginal distributions on [ai, bi] and copula Ci. If V 6∈ ∪N
i=1(ai, bi),

we simply put V1 = · · ·Vn = V . Clearly ai ≤ V ≤ bi implies that ai ≤ Vj:n ≤ bi,
j = 1, . . . , n, and we have V1:n = · · · = Vn:n = V when V 6∈ ∪N

i=1(ai, bi). Therefore
the graphs of distribution functions H1, . . . ,Hn of the order statistics satisfy

{(s,Hj(s)) : 0 ≤ s ≤ 1} ⊂
N∪

i=1

[ai, bi]2 ∪ {(s, s) : 0 ≤ s ≤ 1}, j = 1, . . . , n.

If all the copulas Ci, 1 ≤ i ≤ N , are absolute continuous with respective density
functions ci, 1 ≤ i ≤ N , and

∑N
i=1(bi − ai) = 1, then (4.31) has the density

c(s1, . . . , sn) =

{
1

(bi−ai)n−1 ci

(
s1−ai

bi−ai
, . . . , sn−ai

bi−ai

)
, if sj ∈ (ai, bi), j = 1, . . . , n,

0, otherwise .

Now for G1, . . . , Gn satisfying (2.9) to (2.11) and functions (3.23) and (3.24), we
define

Z = {(t, x) : 0 ≤ t ≤ 1, Φ2(t) ≤ x ≤ Φ1(t)} ⊂ [0, 1]2.

Note that Φ2(t) < t < Φ1(t) iff t ∈ [0, 1] \ Σ which is an open set consisting of
at most countably many disjoint open intervals whose Lebesgue measures sum up
to one. We aim at constructing another at most countable family of disjoint open
intervals (ai, bi), 1 ≤ i ≤ N contained in [0, 1], with the same total measure and such
that

∪N
i=1[ai, bi]2 ⊂ Z. To this end we apply a recurrent procedure which at each
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step generates a finite number of intervals. We set first U0 = {(0, 1)} and V0 = ∅,
and given Un, Vn, n ≥ 0, we define

Un+1 =
{(

a,
a + b

2

)
,

(
a + b

2
, b

)
: (a, b) ∈ Un \ Vn

}
,

Vn+1 = {(a, b) ∈ Un+1 : [a, b]2 ⊂ Z}.

Let Wn, n ≥ 1, denote the sum of all disjoint open intervals contained in V1, . . . ,Vn.
Then

W = lim
n→∞

Wn =
N∪

i=1

(ai, bi), 1 ≤ N ≤ ∞,

is an at most countable sum of disjoint open intervals (ai, bi), is contained in [0, 1]\Σ,
has the same measure and

∪N
i=1[ai, bi]2 ⊂ Z, as desired.

It remains to take the ordinal sum of arbitrary sequence of absolutely continuous
copulas (we can simply take all the identical product copulas) with respect to the
family of intervals {(ai, bi)}N

i=1. The corresponding distribution functions of order
statistics H1, . . . ,Hn satisfy relation (3.25), and so (3.19) in consequence. Applying
the construction of Proposition 2, we obtain an absolutely continuous copula with
desired marginal distributions of order statistics. 2

5. PROOF OF THEOREM 4

Observe first that condition (2.15) is equivalent to saying that µ(Σ− ∪ Σ+) = 0,
where

Σ−=
{ {0≤ t≤1 : t = G(s) = ns−m+1

n−m+1 for some 0≤s≤1}, if m < n,

∅, if m = n,
(5.32)

Σ+ =s

{
∅, if m = 1,
{0≤ t≤1 : t = G(s) = ns

m for some 0≤s≤1}, if m > 1.
(5.33)

because µ(Σ−) = n
n−m+1µ(Σ0

−) and µ(Σ+) = n
mµ(Σ0

+). The former condition is
more natural, but below we consider the latter one, because this is directly connected
with condition (2.11) of Theorem 2 which is applied in the proof.

Necessity proof. Suppose that G1, . . . , Gn are the distribution functions of order
statistics corresponding to an absolutely continuous copula and Gm = G. If m < n
and t = G(s) = ns+1−m

n+1−m ∈ Σ−, then, using notation (2.16) and (5.32), and applying
conditions (2.9) and (2.10), we obtain

ns =
n∑

i=1

Gi(s) ≤ m− 1 + (n + 1−m)Gm(s) = ns,

which implies
t = Gm(s) = · · · = Gn(s) =

ns + 1−m

n + 1−m
,
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and so t ∈ Σ. Similarly, for m > 1 and t = G(s) = ns
m ∈ Σ+ relations

ns =
n∑

i=1

Gi(s) ≥ mGm(s) = ns,

yield
t = G1(s) = · · · = Gm(s) =

ns + 1−m

n + 1−m
∈ Σ.

Relation µ(Σ−∪Σ+) > 0 implies µ(Σ) > 0, and by Theorem 2 contradicts continuity
of the joint distribution. 2

Sufficiency proof. Suppose that G satisfying (2.13) and (2.14) is such that the sets
Σ− and Σ+ defined in (5.32) and (5.33) have measures zero. Here we construct
a sequence of functions G1, . . . , Gn satisfying (2.9), (2.10) and Gm = G, and such
that the respective set Σ, defined in (2.12) coincides with Σ− ∪ Σ+. If its Lebesgue
measure were zero, it would enable us to determine an absolute continuous copula
with assigned distribution functions of order statistics G1, . . . , Gn by use of the
method presented in Theorem 2. The construction is based on two following lemmas.

Lemma 2. If m > 1, then there exists a continuous function A : [0, n − 1] →
[0, m− 1] such that

(i) A is zero on [m− 1, n− 1],

(ii) functions x 7→ x−A(x) and x 7→ x + A(x) are non-decreasing,

(iii) for all s ∈ [0, 1]

ns−G(s)−A(ns−G(s)) ≥ (m− 1)G(s), (5.34)

(iv) the equality holds in (5.34) iff G(s) ∈ Σ+.

Lemma 3. If m < n, then there exists a continuous function B : [0, n − 1] →
[0, n−m] such that

(i) B is zero on [0,m− 1],

(ii) functions x 7→ x−B(x) and x 7→ x + B(x) are non-decreasing,

(iii) for all s ∈ [0, 1]

ns−G(s) + B(ns−G(s))− (m− 1) ≤ (n−m)G(s), (5.35)

(iv) the equality holds in (5.35) iff G(s) ∈ Σ−.

P r o o f o f L emma 2. If Σ+ = [0, 1] then we simply put A = 0. Therefore
we further assume that Σ+ is a proper subset of [0, 1]. We consider an auxiliary
function G+ : [0, 1] 7→ [0, 1] defined as

G+(s) = min
(

1,
ns−G(s)

m− 1

)
.
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Due to (2.14), it is non-negative and non-decreasing. By (2.13), we have

G+(s) = min
(

1,
m

m− 1
ns

m
− 1

m− 1
G(s)

)

≥ min
(

1,
m

m− 1
G(s)− 1

m− 1
G(s)

)
= G(s),

and the equality holds iff G(s) ∈ Σ+ ∪ {1}. Hence the graph of G+ is located above
the graph of G, and Σ+ ∪{1} is the projection of the intersection of the graphs onto
the ordinate axis. Note that 0 ∈ Σ+, and 1 ∈ Σ+ iff G(m

n ) = 1.
Below we transform the graphs changing the scales in both the axes by means of

the continuous mapping Φ+ : [0, 1]2 7→ [0, n− 1]× [0,m− 1] defined as

Φ+(s, t) = (ns−G(s), (m− 1)t).

The image of the graph of G+,

Φ+(Graph G+) = {(ns−G(s), min(ns−G(s),m− 1)) : s ∈ [0, 1]}
= {(x, x) : x ∈ [0,m− 1]} ∪ {(x,m− 1) : x ∈ [m− 1, n− 1]},

coincides with the graph of the function x 7→ min(x,m− 1), 0 ≤ x ≤ n− 1, and

Φ+(Graph G) = {(ns−G(s), (m− 1)G(s)) : s ∈ [0, 1]}.
Therefore

Φ+(Graph G) ∩ Φ+(Graph G+) = Φ+(Graph G ∩Graph G+)

=
{

(x, x) :
x

m− 1
∈ Σ+

}
∪ {(ns− 1,m− 1) : G(s) = 1}.

If t ∈ (0, 1)\Σ+ then ((m−1)t, (m−1)t)∈Φ+(Graph G+) lies above Φ+(GraphG).
Since Φ+(GraphG) is closed, there exists 0 < ε+

t < min(t, 1−t) such that the square
[(m − 1)(t − ε+

t ), (m − 1)(t + ε+
t )]2 does not intersect the image of the graph of G

either. The family of all the intervals {(t−ε+
t , t+ε+

t )}, t ∈ (0, 1)\Σ+, is a covering of
the open set (0, 1)\Σ+. We can select a countable subcovering {(t+i −ε+

i , t+i +ε+
i )},

i = 1, 2, . . . (where ε+
i = ε+

ti
for convenience) such that

∞∪

i=1

(t+i − ε+
i , t+i + ε+

i ) = (0, 1) \ Σ+,

∞∪

i=1

[t+i − ε+
i , t+i + ε+

i ]2 ∩ Φ+(Graph G) = ∅.

In contrast to the construction of Section 3, some intervals from the countable sub-
covering overlap so that the whole set (0, 1) \ Σ+ is actually covered.

Set

Ai(x) =





1
2 [x− (m− 1)(t+i − ε+

i )], if (m− 1)(t+i − ε+
i ) ≤ x ≤ (m− 1)t+i ,

1
2 [−x + (m− 1)(t+i + ε+

i )], if (m− 1)t+i ≤ x ≤ (m− 1)(t+i + ε+
i ),

0, otherwise.
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for i = 1, 2, . . . , and

A(x) =
∞∑

i=1

1
2i

Ai(x), 0 ≤ x ≤ n− 1.

Since all Ai are bounded, non-negative and continuous, the sum converges uniformly
and A is non-negative continuous. By definition, A vanishes on [m − 1, n − 1].
Moreover, since for each i both x 7→ x−Ai(x) and x 7→ x+Ai(x) are non-decreasing,
so are the functions

x 7→ x±A(x) =
∞∑

i=1

1
2i

(x±Ai(x)).

It remains to prove that inequality (5.34) becomes the equality if G(s) ∈ Σ+,
and is sharp otherwise. If 1 > t = G(s) = ns−G(s)

m−1 ∈ Σ+, then A((m − 1)t) =
A(ns−G(s)) = 0, by definition, and so

ns−G(s)−A(ns−G(s))
m− 1

= G(s). (5.36)

If t = G(m
n ) = 1 ∈ Σ+, then s = m

n and ns − G(s) = m − 1, A(ns − G(s)) =
A(m − 1) = 0. Therefore both the sides of (5.36) amount to 1. This proves the
former claim.

Suppose now that G(s) < t = ns−G(s)
m−1 ∈ (0, 1) \Σ+ =

∪∞
i=1(t

+
i − ε+

i , t+i + ε+
i ). If

t 6∈ (t+i − ε+
i , t+i + ε+

i ), then Ai((m− 1)t) = 0 and

ns−G(s)−Ai(ns−G(s))
m− 1

=
ns−G(s)

m− 1
> G(s). (5.37)

If t ∈ (t+i − ε+
i , t+i + ε+

i ), then

ns−G(ns)−Ai(ns−G(s)) = (m− 1)t−Ai((m− 1)t)
≥ (m− 1)(t+i − ε+

i )−Ai((m− 1)(t+i − ε+
i ))

= (m− 1)(t+i − ε+
i ) > (m− 1)G(s), (5.38)

because x 7→ x + Ai(x) is non-decreasing and the lower edge of the square
[(m − 1)(t+i − ε+

i ), (m − 1)(t+i + ε+
i )]2 lies above point (ns − G(s), (m − 1)G(s))

belonging to Φ+(Graph G). Therefore

ns−G(s)−A(ns−G(s))
m− 1

−G(s)

=
1

m− 1

∞∑

i=1

1
2i

[ns−G(s)−Ai(ns−G(s))− (m− 1)G(s)] > 0,

because, owing to (5.37) and (5.38), every term of the sum is positive. If either
Σ+ 63 t = ns−G(s)

m−1 = 1 > G(s) or t = ns−G(s)
m−1 > 1 ≥ G(s), then (m − 1)t =

ns−G(s) ≥ m− 1, A(ns−G(s)) = 0 and

ns−G(s)−A(ns−G(s))
m− 1

=
ns−G(s)

m− 1
> G(s).

This ends the proof of the lemma. 2
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P r o o f o f L emma 3 is similar to the previous one. If Σ− = [0, 1], we set
B = 0. Otherwise we define the distribution function

G−(s) = max
(

0,
ns−G(s)− (m− 1)

n−m

)
.

Due to (2.13),

G−(s) = max
(

0,
n−m + 1

n−m

ns−m + 1
n−m + 1

− 1
n−m

G(s)
)

≤ max
(

0,
n−m + 1

n−m
G(s)− 1

n−m
G(s)

)
= G(s),

and the equality holds iff G(s) ∈ Σ−∪{0}. In other words, the graph of G lies above
that of G−, and they touch each other when G(s) ∈ Σ− ∪ {0}. Here 1 ∈ Σ−, and
0 ∈ Σ− iff G(m−1

n ) = 0.
Consider the continuous transformation Φ− : [0, 1]2 7→ [0, n− 1]× [m− 1, n− 1]

defined by
Φ−(s, t) = (ns−G(s), (n−m)t + (m− 1)).

Then

Φ−(Graph G−) = {(ns−G(s), max(m− 1, ns−G(s)) : s ∈ [0, 1]}

is identical with the graph of function x 7→ max(m − 1, x), 0 ≤ x ≤ n − 1, and lies
below

Φ−(Graph G) = {(ns−G(s), (n−m)G(s) + m− 1) : s ∈ [0, 1]}.

If t ∈ (0, 1) \ Σ− then ((n − m)t + (m − 1), (n − m)t + (m − 1)) lies below
Φ−(Graph G), and for some 0 < ε−t < min(t, 1 − t) the square [(n − m)(t − ε−t ) +
(m−1), (n−m)(t+ε−t )+(m−1)]2 is beneath Φ−(GraphG) as well. We replace the
covering {(t− ε−t , t + ε−t )}, t ∈ (0, 1) \Σ−, of (0, 1) \Σ− by a countable subcovering
{(t−i − ε−i , t−i + ε−i )}, i = 1, 2, . . . , such that

∞∪

i=1

[t−i − ε−i , t−i + ε−i ]2 ∩ Φ−(Graph G) = ∅,

and define

Bi(x) =





1
2 [x− (n−m)(x−i − ε−i )− (m− 1)],

if (n−m)(t−i − ε−i ) + (m− 1) ≤ x ≤ (n−m)t−i + (m− 1),
1
2 [−x + (n−m)(t−i + ε−i ) + (m− 1)],

if (n−m)t−i + (m− 1) ≤ x ≤ (n−m)(t−i + ε−i ) + (m− 1),
0, otherwise.

i = 1, 2, . . ., and

B(x) =
∞∑

i=1

1
2i

Bi(x), 0 ≤ x ≤ n− 1.

We easily check that B is non-negative, continuous, equal to zero on [0, m− 1], and
such that functions x 7→ x±B(x) are non-decreasing.
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If either 0 < t = G(s) = ns−G(s)−(m−1)
n−m ∈ Σ− or t = G(m−1

n ) = 0 ∈ Σ−, then
B((n−m)t + (m− 1)) = B(ns−G(s)) = 0, and

ns−G(s) + B(ns−G(s))− (m− 1)
n−m

=
ns−G(s)− (m− 1)

n−m
= G(s).

Suppose that G(s) > t = ns−G(s)−(m−1)
n−m ∈ (0, 1) \ Σ−. If t 6∈ (t−i − ε−i , t−i + ε−i ),

then Bi((n−m)t + (m− 1)) = Bi(ns−G(s)) = 0, and

ns−G(s) + Bi(ns−G(s))− (m− 1)
n−m

< G(s).

If t ∈ (t−i − ε−i , t−i + ε−i ), then

ns−G(ns) + Bi(ns−G(s)) = (n−m)t + (m− 1) + Bi((n−m)t + (m− 1))
≤ (n−m)(t+i − ε+

i ) + (m− 1) + Bi((n−m)(t+i − ε+
i ) + (m− 1))

= (n−m)(t+i − ε+
i ) + (m− 1) < (n−m)G(s) + (m− 1),

because the upper edge of the square [(n − m)(t−i − ε−i ) + (m − 1), (n − m)(t−i +
ε−i ) + (m − 1)]2 lies beneath (ns − G(s), (n −m)G(s) + (m − 1)) ∈ Φ−(Graph G).
Hence

G(s)− ns−G(s) + B(ns−G(s))− (m− 1)
n−m

=
1

n−m

∞∑

i=1

1
2i
{(n−m)G(s)− [ns−G(s) + Bi(ns−G(s))− (m− 1)]} > 0.

Finally, if either Σ− 63 t = ns−G(s)−(m−1)
n−m = 0 < G(s) or t = ns−G(s)−(m−1)

n−m < 0 ≤
G(s), then (n−m)t + (m− 1) = ns−G(s) ≤ m− 1, B(ns−G(s)) = 0 and

ns−G(s) + B(ns−G(s))− (m− 1)
n−m

=
ns−G(s)− (m− 1)

n−m
< G(s). 2

We proceed to the last part of the proof of Theorem 4. To this end, we apply
the functions defined in Lemmas 2 and 3 for determining the sequence of continuous
functions

G∗
k(s) = min

(
1,

ns−G(s) + akA(ns−G(s))
m− 1

)
, k = 1, . . . ,m− 1,(5.39)

G∗
m(s) = G(s),

G∗
k(s) = max

(
0,

ns−G(s) + bkB(ns−G(s))− (m− 1)
n−m

)
,

k = m + 1, . . . , n, (5.40)

where
ak =

{
m−2k
m−2 , if m > 2,

0, if m = 2,

bk =
{

n−m+1−2k
n−m−1 , if m < n− 1,

0, if m = n− 1,
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are decreasing sequences ranging between 1 and −1, and summing up to 0.
Therefore

1 ≥ G∗
1(s) ≥ · · · ≥ G∗

m−1(s) = min
(

1,
ns−G(s)−A(ns−G(s))

m− 1

)

≥ G(s) ≥ max
(

0,
ns−G(s) + A(ns−G(s))− (m− 1)

n−m

)

= G∗
m+1 ≥ · · · ≥ G∗

n(s) ≥ 0, (5.41)

where the inequalities in the second line follow from Lemmas 2(iii) and 3(iii). Since
the function s 7→ ns − G(s) is continuous and non-decreasing, and due to Lemmas
2(ii) and 3(ii),

ns−G(s) + akA(ns−G(s)) = (1− |ak|)(ns−G(s))
+ |ak|(ns−G(s) + sgn(ak)A(ns−G(s))),

ns−G(s) + bkB(ns−G(s)) = (1− |bk|)(ns−G(s))
+ |bk|(ns−G(s) + sgn(bk)B(ns−G(s))),

are non-decreasing for all ak and bk as well. This implies the same property for
(5.39) and (5.40). If ns0 −G(s0) = m− 1 for some 0 ≤ s0 ≤ 1, then

G∗
k(s0) =

ns0 −G(s0) + akA(ns0 −G(s0))
m− 1

= 1, k = 1, . . . ,m− 1,

G∗
k(s0) =

ns0 −G(s0) + bkB(ns0 −G(s0))− (m− 1)
n−m

= 0, k = m + 1, . . . , n.

Accordingly, for all s ≤ s0 yields

G∗
k(s) =

ns−G(s) + akA(ns−G(s))
m− 1

, k = 1, . . . ,m− 1,

G∗
k(s) = 0, k = m + 1, . . . , n,

and in consequence n∑

k=1

G∗
k(s) = ns. (5.42)

Similarly, relations

G∗
k(s) = 1, k = 1, . . . ,m− 1,

G∗
k(s) =

ns−G(s) + bkB(ns−G(s))− (m− 1)
n−m

, k = m + 1, . . . , n.

when s ≥ s0, give the same claim then. Since moreover all G∗
k, k = 1, . . . , n, are

continuous non-decreasing and have values in the unit interval, they are distribution
functions. Relations (5.41) and (5.42) show that they are distribution functions of
order statistics corresponding to a copula.

Note finally that G(s) = Gm(s) 6∈ Σ− ∪ Σ+ implies A(ns − G(s)) > 0, B(ns −
G(s)) > 0, and so G∗

1(s) > · · · > G∗
n(s), and ultimately G(s) 6∈ Σ. When G(s) ∈ Σ+

(Σ−, respectively), then G∗
1(s) = · · · = G∗

m(s) = G(s) (G(s) = G∗
m(s) = · · · =

G∗
n(s), respectively), and so G(s) ∈ Σ. Assumption µ(Σ− ∪ Σ+) = 0 guarantees

existence of an absolutely continuous copula corresponding to G∗
1, . . . , G

∗
n. 2
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Remark 4. Rychlik [21] proved Theorem 3 using (5.39) and (5.40) with A(s) =
B(s) = 0. Then

G∗
1(s) = · · · = G∗

m−1(s) = G+(s) ≥ G(s) ≥ G−(s) = G∗
m+1(s) = · · · = G∗

n(s)

satisfy conditions of Theorem 1. However, they also imply

U1:n = · · · = Um−1:n ≤ Um:n ≤ Um+1:n = · · · = Un:n

almost surely, which contradicts continuity of the parent joint distribution.
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e-mail: trychlik@impan.gov.pl


