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SEQUENTIAL MONITORING FOR CHANGE IN SCALE

Ondřej Chochola

We propose a sequential monitoring scheme for detecting a change in scale. We consider
a stable historical period of length m. The goal is to propose a test with asymptotically
small probability of false alarm and power 1 as the length of the historical period tends
to infinity. The asymptotic distribution under the null hypothesis and consistency under
the alternative hypothesis is derived. A small simulation study illustrates the finite sample
performance of the monitoring scheme.
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1. INTRODUCTION

The paper concerns the question of structural stability of a model. Such problems
occur in a number of applications, such as in economics and finance, statistical
quality control, medical care etc. Precisely speaking the paper is devoted to the
detection of a change in scale in a location model when the data arrive sequentially
and training (historical) data with no change are available.

We assume that the observations Yi follow the location model

Yi = µ + σi ei, 1 ≤ i < ∞, (1)

where µ is an unknown location parameter, {ei, 1 ≤ i < ∞} are independent identi-
cally distributed (i.i.d.) random errors satisfying further conditions specified below
and {σi, 1 ≤ i < ∞} are constants determining the variance of the observations
{Yi, 1 ≤ i < ∞}. Our goal is to monitor the change in variance of the observation,
i. e. the change in σi.

The observations Y1, . . . , Ym are assumed to represent the training data for which
the variance is constant, i. e.

σ2
1 = · · · = σ2

m = σ2
0 ,

where σ2
0 is unknown.

Our problem of detection of a change can be formulated as a sequential hypothesis
testing problem, where the null hypothesis corresponds to the model without any



716 O. CHOCHOLA

change:
H0 : σ2

i = σ2
0 , 1 ≤ i < ∞ (2)

against the alternative that the model changes in some unknown time point m+k∗:

H1 : there exists k∗ ≥ 1 such that

σ2
i = σ2

0 , 1 ≤ i < m + k∗, σ2
i = σ2

∗, m + k∗ ≤ i < ∞, σ2
0 6= σ2

∗.
(3)

The k∗, σ2
∗ and σ2

0 are unknown.
This represents the so called online monitoring and was originated in [3] where

two types of such monitoring procedures in the linear regression settings were stud-
ied. The first procedure was based on CUSUM type test statistics calculated from
recursive residuals and the second one was the fluctuation test based on differences
between estimates of the regression parameters. This test was generalized in [7]
to the so called generalized fluctuation test. Similarly to the cumulative sum of
residuals one can consider a moving sum. These MOSUM type test statistics were
suggested in [10]. All the three described monitoring procedures were compared
there through a simulation study which showed that the MOSUM type statistics
behave better when the change occurs later in the monitoring period. CUSUM type
statistics based on ordinary residuals and on recursive residuals are studied in [4]
and also in [6]. A practical side of this testing approach was described in [8], where
tests were conducted using the R package strucchange. This package was presented
in [9].

The method used in this paper is related to those introduced in [4] and in [6],
however it is adapted to the change in scale.

The rest of the paper is organized as follows: The test procedure is proposed
in Section 2, its asymptotic behaviour is given in Section 3. Simulation results are
reported in Section 4 and Section 5 contains the proofs.

2. TEST PROCEDURE

Our monitoring scheme is described through the stopping time τ(m), which is defined
as

τ(m) = inf{k ≥ 1 : Γ(m, k) ≥ cm}, (4)

where Γ(m, k) (so called detector) depends on observations up to time m+k, i. e. on
Y1, . . . , Ym+k. The infimum is defined with a standard understanding that inf ∅=∞.
Our test procedure rejects the null hypothesis and we stop observing as soon as
Γ(m, k) ≥ cm, otherwise we continue in observing. The detector Γ(m, k) and the
constant cm = cm(α) are chosen such that the following two conditions are satisfied:

lim
m→∞

Pr (τ(m) < ∞|H0) ≤ α, (5)

lim
m→∞

Pr (τ(m) < ∞|H1) = 1, (6)

where α ∈ (0, 1) is a prescribed number. The standard interpretation of α is in the
terms of hypothesis testing, i. e. α represents the level of a test. Then (5) requires
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the level of the test to be α asymptotically while the condition (6) corresponds to the
requirement that the probability of the type II error tends to 0 or, in other words,
the power tends to 1, as m →∞.

We can also consider a situation where the maximal monitoring period is pre-
scribed, i. e. the closed end procedure. Let N(m) be the length of such a period.
We define the stopping time as

τ(m, N(m)) = min
(
N(m) + 1, min{1 ≤ k ≤ N(m) : Γ(m, k) ≥ cm}

)
. (7)

Here we reject the null hypothesis and stop observing immediately as soon as there
exists k ≤ N(m) such that Γ(m, k) ≥ cm. Otherwise, i. e. when Γ(m, k) < cm for
all k = 1, . . . , N(m), the null hypothesis cannot be rejected. If

lim
m→∞

N(m)
m

= ∞ (8)

then the limit distribution of τ(m) and τ(m,N(m)) are the same. The analogue of
(5) is now

lim
m→∞

Pr
(
τ(m,N(m)) ≤ N(m)

∣∣∣H0

)
≤ α,

so N(m) can be interpreted as the asymptotic α-quantile of the stopping time
τ(m,N(m)). When we use α = 1/2 we get a median and due to (8) we require
it to be large compared to the length of the historical period. Therefore we have
an analogous requirement as in standard sequential analysis. There we are looking
for the minimal stopping time that has, under the null hypothesis, the ARL larger
than a given bound, i. e. E(τ |H0) ≥ c, c large enough. However the expectation
of the stopping time is not the most convenient criterium due to the asymmetry
of the distribution of τ . The idea of using median instead of expectation is more
appropriate but not so widespread.

3. ASSUMPTIONS AND MAIN RESULTS

We assume that the random errors {ei, 1 ≤ i < ∞} are

i.i.d. with E e1 = 0, var e1 = 1, var e2
1 = η2 < ∞, E |e1|4+δ < ∞ for some δ > 0.

(9)
We consider the detector Γ(m, k) in the form Γ(m, k) = |Q(m, k)|/g(m, k), where

Q(m, k) is a test statistic based on all observations up to time m + k and g(m, k) is
the so called boundary function.

The statistics Q(m, k) are defined as

Q(m, k) =
1

v̂m

{
m+k∑

i=m+1

(Yi − Ȳm)2 − k

m

m∑

i=1

(Yi − Ȳm)2
}

, k = 1, 2, . . .

where Ȳm = 1
m

∑m
i=1 Yi is an average observation in the historical period and

v̂2
m =

1
m

m∑

i=1

(Yi − Ȳm)4 −
[

1
m

m∑

i=1

(Yi − Ȳm)2
]2
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is an estimate of v̂2 = var (Yi−EYi)2 = η2 σ4
0 , 1 ≤ i < ∞ under the null hypothesis.

In other words the test statistic Q(m, k) is a standardized difference of variance
estimators from the historical and the monitoring period respectively. Therefore its
large values lead to the rejection of the null hypothesis.

The boundary function g(m, k) depends further on a constant γ, so we will write
explicitly g(m, k, γ). The function is defined as

g(m, k, γ) =
√

m

(
m + k

m

)(
k

m + k

)γ

. (10)

This boundary function was for the first time considered in [3]. The constant γ
(that is chosen from the interval [0, 1/2) ) plays a role of a tuning parameter that
modifies an ability of the test to detect better early or late changes in the following
way: γ = 0 is convenient when a late change is expected, while γ close to 1/2 is
appropriate when an early change is expected.

Another type of detector for a change in scale is proposed and studied in [1]. This
detector is based on recursive residuals. However, as the simulations indicate, the
performance of this procedure is worse than of the above mentioned one. Therefore
we do not report it here.

The question is how to determine the constant cm(α) to ensure that both (5) and
(6) hold. For that we can make use of an asymptotic behaviour of the detector which
is formulated in two following theorems, in the first one for the null hypothesis and
in the second one for the alternative.

Theorem 1. Assume that Y1, Y2, . . . follow the model (1), assumptions (9) are
satisfied and γ ∈ [0, 1

2 ). Then, under the null hypothesis (2),

lim
m→∞

Pr
(

sup
1≤k<∞

|Q(m, k)|
g(m, k, γ)

≤ c

)
= Pr

(
sup

0≤t≤1

|W (t)|
tγ

≤ c

)

for all c > 0, where {W (t), t ∈ [0, 1]} is a Wiener process.

Theorem 2. Assume that Y1, Y2, . . . follow the model (1), assumptions (9) are
satisfied and γ ∈ [0, 1/2). Then, under the alternative hypothesis (3),

sup
1≤k<∞

|Q(m, k)|
g(m, k, γ)

P−→∞, m →∞.

Proofs of both theorems are postponed to Section 5. Under the assumption
(8), as will be seen from the proofs, both theorems hold also for the stopping time
τ(m,N(m)) i. e. when the supremum is taken over 1 . . . N(m), so we can also use
the second interpretation described above.

Theorem 1 accounts for the range of constant γ, since for γ ≥ 1/2 the random
process W (t)/tγ converges to infinity as t → 0+ almost surely. As [5] indicates
γ = 1/2 can be also used in the boundary function but it leads to a different
asymptotic distribution of the detector and therefore we will consider only γ ∈ [0, 1

2 ).
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The limit distribution can be used for approximation of the critical values
cm(α, γ), i. e. the values that fulfil

Pr
(

sup
1≤k<∞

|Q(m, k)|
g(m, k, γ)

≥ cm(α, γ)
)

= α.

Due to Theorem 1 the values cm(α, γ) can be approximated by c(α, γ), for which

Pr
(

sup
0≤t≤1

|W (t)|
tγ

≥ c(α, γ)
)

= α.

However an explicit formula for the distribution function of this functional of a
Wiener process is known only when γ = 0. Otherwise we have to use simulations so
details are provided in the next section.

Theorem 2 ensures that the requirement (6) is fulfilled i. e. that the true change
will be detected with probability tending to 1 as m →∞.

4. SIMULATIONS

In this section we report the results of a small simulation study we performed in order
to check the finite sample performance of the monitoring procedure considered in
the previous section. The simulations were performed using the R software.
We used these values of parameters:

• Length of the historical period m = 100, 500, 1000,
• Distribution of the errors under the null hypothesis: N(0, 1), Laplace with zero

mean and unit variance, i. e. σ2
0 = 1,

• Level α = 0.05, 0.1,

• Tuning constant γ = 0, 0.25, 0.45, 0.49,
• True time of the change k∗ = 5, 500,m/2,m, 2m,
• Variance after the change σ2

∗ = 1.5, 2, 4, 9.

Different lengths of the historical period are important due to the approximation
based on asymptotics. We will be also able to compare the performance for normal
data and the data with heavier tails and see an influence of the tuning constant
according to the true time of change. The results for both levels are analogous so we
will report just results for the 10% level. More detailed results can be found in [1].

4.1. Null hypothesis

First we check the behaviour under the null hypothesis of no change. For each
combination of parameters 20 m variables following the model were generated 10 000
times and in r-multiple of m (r = 1

4 , 1, 5, 9, 19) it was checked whether the detector
exceeded the critical value. These values were determined from the asymptotic
distribution derived in Theorem 1, i. e. as values c(α, γ), such that

Pr
(

sup
0≤t≤1

|W (t)|/tγ ≥ c(α, γ)
)

= α
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holds. Unfortunately the explicit form for the distribution of |W (t)|/tγ is known
only for γ = 0 and therefore the critical values have to be simulated. They are
reported in [4] (Table 1).

Empirical sizes of the monitoring procedure are reported in Table 1 and in Fig-
ure 1. First we focus on the normal data. For γ = 0 or 0.25 the required level is kept
except for the shortest historical period and the increase of rejections is gradual in
time. Whereas for γ close to 1/2 the level is exceeded even for m = 1000. This is
caused by a slow convergence of our detector to the limit distribution. The majority
of rejections occurs here at the beginning of the monitoring. A prolongation of the
training period visibly reduces the probability of false alarm although the monitoring
period remains a multiple of m.

Table 1. Empirical sizes for 10% level, i. e. the percentage of processes
stopped until m.r, when the asymptotic critical values are used.

N(0, 1) Laplace
γ m\r 1/4 1 5 9 19 1/4 1 5 9 19

0 100 0.21 3.76 11.93 13.52 14.91 1.91 8.38 17.90 20.10 21.49
500 0.02 1.95 7.38 8.81 10.18 0.36 3.47 9.55 11.26 12.31
1000 0.02 1.43 7.48 9.03 10.46 0.10 2.37 8.13 9.62 10.70

0.25 100 3.42 8.64 14.56 15.71 16.43 6.70 13.61 20.39 21.60 22.64
500 1.07 4.50 9.09 10.02 10.51 3.37 7.60 12.91 14.13 14.60
1000 0.77 4.11 8.54 9.39 9.78 2.20 5.91 10.70 11.62 12.40

0.45 100 9.78 13.48 16.77 17.14 17.35 12.10 17.87 21.60 22.23 22.82
500 7.68 10.26 12.23 12.35 12.64 11.41 14.28 16.30 16.73 17.18
1000 7.73 10.06 11.81 12.08 12.43 10.96 13.55 16.20 16.61 16.86

0.49 100 10.29 13.19 15.08 15.50 15.71 12.46 16.33 19.22 19.72 20.03
500 9.74 11.19 12.13 12.26 12.42 12.43 14.70 16.21 16.48 16.57
1000 9.21 10.74 11.87 11.98 12.09 12.04 13.55 14.50 14.70 14.74

For the Laplace distribution the situation is not satisfactory. It is clear that the
asymptotic critical values are too low. Therefore the critical values cm(α, γ) based
on the length of the historical period m are needed. These were obtained from the
same simulations as quantiles of maximum of our detector. They are reported in
Table 2.

Table 2. Simulated critical values cm(0.1, γ) are reported in columns with m,
the column with ∞ contains asymptotic critical values c(0.1, γ).

N(0, 1) Laplace

γ\m 100 500 1000 ∞ 100 500 1000 ∞
0 2.17 1.95 1.94 1.95 2.67 2.06 1.97 1.95
0.25 2.41 2.15 2.11 2.11 3.06 2.33 2.19 2.11
0.45 2.98 2.69 2.68 2.54 3.83 3.05 2.89 2.54
0.49 3.24 2.98 2.94 2.83 4.06 3.35 3.19 2.83
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Fig. 1. Empirical sizes for 10% level (N100 denotes normal errors with m = 100 etc.),

when the asymptotic critical values are used.

4.2. Alternative hypothesis

Now we focus on the performance under various alternatives represented by
the time of change k∗ and the amount of change σ2

∗. For each combination of
parameters 5 000 variables following the model were generated. It means that e. g.
for m = 100 the length of monitoring period equals 4 900. The first time when the
detector exceeded the critical value was saved. If this did not happen, the length of
monitoring period was used. Results are based on 2 500 replications.

First we will discuss the simulations with normally distributed errors. As in-
dicated above, the asymptotic critical values can almost ensure the required level.
Therefore we present results of the monitoring when these values were used.

Characteristics of the stopping time τ are given in Table 3. The detection delay
then equals τ − k∗. Two points of change are reported using the proper value of
γ as will be discussed later. Naturally we can see improvement in detection delay
with a growing amount of change. However from a certain amount the benefit is
not so large. Also the prolongation of the training period has a positive effect on
detection delay. Particularly an increase of m from 100 to 500 results in significant
drop in detection delay (especially for small changes). Additional prolongation is
not so influential, only the extremes are further restricted, that results in decrease
in the mean.

Sometimes the change was not detected (the maximum of τ is equal to the length
of the monitoring period 5 000−m). This concerns the shortest training period and
small amounts of change. Here we can also see that the distribution of the stopping
time is asymmetric. On the other hand procedures with longer training period are
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Table 3. Influence of m and σ2
∗ on the stopping time τ .

k∗ = 5, γ = 0.45 k∗ = 500, γ = 0.25

\m 100 500 1000 100 500 1000

1st Qu. 25 36 36 676 665 668
σ2
∗ = 1.5 Median 72 73 76 1034 783 761

Mean 859 106 98 1716 819 779
3rd Qu. 330 134 135 2231 944 875
Max. 4900 1569 643 4900 3825 1880

1st Qu. 13 15 16 576 574 578
σ2
∗ = 2 Median 27 27 29 691 620 619

Mean 47 34 35 712 615 620
3rd Qu. 50 45 48 849 676 660
Max. 4900 209 206 4900 986 933

1st Qu. 8 8 8 526 525 525
σ2
∗ = 4 Median 10 11 12 554 539 537

Mean 12 12 13 508 531 534
3rd Qu. 15 15 16 587 556 550
Max. 69 45 55 799 628 625

1st Qu. 6 6 6 509 509 509
σ2
∗ = 9 Median 7 7 8 519 514 514

Mean 8 8 8 466 505 511
3rd Qu. 9 9 9 530 521 520
Max. 25 24 27 589 559 552

able to detect even small changes with reasonable delay.

Kernel density estimates of the stopping time are shown in Figures 2 and 3. The
former one contains densities for different amount of change. With a growing amount
of change one can see a shift of a mass of the distribution closer to the true time
of change. Also the asymmetry is visible. The latter figure contains densities for
different training periods. Small change was chosen since the difference there is the
largest. One can see a quite similar shape of densities for m = 500 and m = 1000,
which is different from that for m = 100, as was already indicated in Table 3. The
above described results hold for an early as well as a late change.

Influence of the true time of change on the detection delay is shown in Table 4.
Unlike the previous tables, where the values were detection times, here they represent
already the detection delays. For an early change the medians of delay are quite the
same for all training periods, however substantial improvement with a prolongation
of the historical period can be observed in mean value, especially for a small change.
For k∗ = 500 is this improvement visible also in medians. However the total delay is
much larger than that for an early change. This is a typical behaviour of procedures
based on cumulative sums. This also relates to the last part of the table, where
k∗ is a constant multiple of m and therefore takes value from 200 up to 2000.
Longer training period normally brings shorter delay however this is here beaten
by a substantially later time of change.
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Fig. 2. Kernel density estimates of τ for different amounts of change.

Left picture is for k∗ = 5, right one for k∗ = 1000, m = 1000 for both.
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Fig. 3. Kernel density estimates of τ for different training periods.

Left picture is for k∗ = 5 and σ2
∗ = 1.5, right one for k∗ = 500 and σ2

∗ = 2.

An influence of the tuning constant γ is illustrated in Table 5. For an early
change (k∗ = 5) the best results are obtained for γ = 0.45 or γ = 0.49 as was
already mentioned. For a moderate change k∗ ∼ m the best results are obtained
by γ = 0.25 closely followed by γ = 0, whereas for a later change the situation is
reversed. For a very late change (k∗ = 500 a m = 100) γ = 0 clearly prevails. The
above described pattern is more distinct for a small change.

Kernel density estimates of the stopping time for different γ’s are shown in Fig-
ure 4. Smaller change was chosen to better indicate the pattern mentioned earlier.

Now we turn to the performance of the procedure for data with heavier tails,
represented here by Laplace distribution.

We will not present the results obtained by asymptotic critical values since the
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Table 4. Median and mean of detection delay.

median mean

m \ σ2
∗ 1,5 2 4 1,5 2 4

100 50 18 5 636 33 6
k∗ = 5 500 55 19 6 83 25 7
γ = 0.45 1000 59 21 6 78 26 7

100 534 191 54 1216 212 38
k∗ = 500 500 283 120 39 319 115 31
γ = 0.25 1000 261 119 37 279 120 34

100 260 96 28 803 123 24
k∗ = 2m 500 441 196 62 501 191 46
γ = 0 1000 590 274 86 601 259 59

Table 5. Influence of γ on the stopping time τ according to k∗.

m = 500, σ2
∗ = 4 m = 100, σ2

∗ = 1.5

k∗ \γ 0 0.25 0.45 0.49 0 0.25 0.45 0.49 k∗

1st Qu. 22 11 8 7 53 32 20 20
Median 28 15 11 10 94 67 55 64

5 Mean 29 17 12 11 454 470 641 838 5
3rd Qu. 35 21 15 14 210 176 197 300
Max. 83 54 45 45 4900 4900 4900 4900

1st Qu. 272 267 265 266 177 165 162 177
Median 282 277 275 277 274 268 317 385

250 Mean 284 276 258 256 804 867 1206 1481 100
3rd Qu. 294 288 288 289 548 582 1009 2228
Max. 353 345 345 348 4900 4900 4900 4900

1st Qu. 528 524 523 525 304 298 306 332
Median 542 539 540 543 460 468 564 686

500 Mean 542 529 495 491 1003 1080 1443 1712 200
3rd Qu. 558 554 556 560 852 928 1693 3838
Max. 626 623 626 640 4900 4900 4900 4900

1st Qu. 1039 1037 1039 1045 674 676 724 807
Median 1062 1059 1065 1072 990 1034 1254 1536

1000 Mean 1046 1022 966 970 1609 1716 2058 2350 500
3rd Qu. 1086 1084 1092 1099 1909 2231 4058 4900
Max. 1196 1196 1199 1236 4900 4900 4900 4900

procedure does not keep the required level even for the long training period (cf.
Table 1). Therefore we use the simulated critical values for given length of training
period cm(0.1, γ). Results follow the same pattern as those for normally distributed
errors so we will not go into details. The comparison of both errors is given in
Table 6. The results for normal errors are also obtained using the simulated critical
values cm(0.1, γ). We report only the results for an early change, for a late change
are analogous.
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Fig. 4. Kernel density estimates of τ for different γ when m = 500 and σ2
∗ = 2.

Left picture is for k∗ = 5, right one for k∗ = 1000.

Table 6. Influence of the random errors. γ = 0.45 is used.

Laplace normal

\σ2
∗ 1.5 2 4 9 1.5 2 4 9

m = 100 1st Qu. 106 29 11 8 33 15 8 6
Median 4900 87 19 10 95 30 11 8

k∗ = 5 Mean 2832 1081 36 12 1043 61 13 8
3rd Qu. 4900 529 34 15 505 56 16 9
Max. 4900 4900 4900 67 4900 4900 93 26

m = 500 1st Qu. 76 27 11 7 31 15 8 6
Median 216 61 18 10 67 26 11 8

k∗ = 5 Mean 703 97 22 11 98 33 12 8
3rd Qu. 576 115 29 14 124 44 15 10
Max. 4500 4500 108 39 3744 239 47 27

m = 1000 1st Qu. 65 28 11 7 35 16 8 7
Median 171 58 17 10 72 27 11 8

k∗ = 5 Mean 316 78 21 11 92 33 13 8
3rd Qu. 361 105 28 14 125 45 15 9
Max. 4000 658 102 40 630 215 53 25

The monitoring procedure gives worse results for the Laplace distribution. In case
of a short training period and small amounts of change is the worsening significant.
For some combinations even more than a quarter of monitoring does not detect the
change. In case of longer training period or bigger change the difference is not so
large, however it is still clearly visible.

Above described worsening is in line with our expectation since our monitoring
procedure uses sample variance as an estimator of the observations’ variance. This
is appropriate for data not deviating too much from normality, however for data
with heavier tails it does not give a reliable estimate. Some robust estimator should
be used instead.
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5. PROOFS

The proof of Theorem 1 is divided into several lemmas. If not otherwise stated the
convergence is for m →∞.

Lemma 1. Let the assumptions of Theorem 1 be satisfied. Then

v̂2
m

P−→ v2 = η2 σ4
0 .

P r o o f . The lemma is an easy consequence of law of large numbers (LLN). ¤

Lemma 2. Let the assumptions of Theorem 1 be satisfied. Then

sup
1≤k<∞

˛̨
˛
Pm+k

i=m+1(Yi − Ȳm)2 − k
m

Pm
i=1(Yi − Ȳm)2 −

h
σ2

0

Pm+k
i=m+1 e2

i − σ2
0

k
m

Pm
i=1 e2

i

i˛̨
˛

√
m(1 + k

m
)( k

m+k
)γ

P−→ 0.

P r o o f . Due to stability in the historical period and the null hypothesis the
numerator can be rewritten as

{
m+k∑

i=m+1

(Yi − Ȳm)2 − k

m

m∑

i=1

(Yi − Ȳm)2 −
[
σ2

0

m+k∑

i=m+1

e2
i − σ2

0

k

m

m∑

i=1

e2
i

]}

=

{
σ2

0

m+k∑

i=m+1

(ei − ēm)2 − k

m
σ2

0

m∑

i=1

(ei − ēm)2 −
[
σ2

0

m+k∑

i=m+1

e2
i − σ2

0

k

m

m∑

i=1

e2
i

]}

= 2σ2
0 ēm

{
k

m

m∑

i=1

ei −
m+k∑

i=m+1

ei

}
.

We can split the supremum as follows

sup
1≤k<∞

|ēm
k
m

∑m
i=1 ei − ēm

∑m+k
i=m+1 ei|

g(m, k, γ)

≤ sup
1≤k<∞

|ēm
k
m

∑m
i=1 ei|

g(m, k, γ)
+ sup

1≤k<∞

|ēm

∑m+k
i=m+1 ei|

g(m, k, γ)
, (11)

and investigate both terms separately.

For k ≤ m the boundary function fulfils

g(m, k, γ) =
√

m

(
1 +

k

m

)(
k

m + k

)γ

= m−1/2(m + k)1−γkγ > m1/2−γkγ

Since
∑m

i=1 ei = OP (m1/2) the first term on r.h.s. of (11) is then

max
1≤k≤m

|ēm
k
m

∑m
i=1 ei|

g(m, k, γ)
= OP (1) max

1≤k≤m

k
m

m1/2−γkγ
= OP (1) max

1≤k≤m

k1−γ

m1−γ
m−1/2 P→ 0.
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Using the Hájek–Rényi inequality (cf. [2]) for the second term on r.h.s. of (11) we
have

Pr

(
max

1≤k≤m

|∑m+k
i=m+1 ei|

g(m, k, γ)
≥ A

)
≤ Pr

(
max

1≤k≤m

|∑m+k
i=m+1 ei|

kγ
≥ Am1/2−γ

)

≤
(
Am1/2−γ

)−2 m+m∑

i=m+1

Ee2
i

i2γ
= A−2m2γ−1O(m1−2γ) ∼ A−2,

where ∼ denotes the asymptotic behaviour i. e. an ∼ bn ⇔ an = O(bn) & bn =
O(an). The approximation

∑2m
i=m+1 i−2γ ∼

∫ 2m

m+1
z−2γdz = O(m1−2γ) was used.

Since A can be chosen arbitrary large this part is bounded in probability. Therefore
since ēm = OP (m−1/2) we have

max
1≤k≤m

|ēm

∑m+k
i=m+1 ei|

g(m, k, γ)
P→ 0.

For k ≥ m the boundary function fulfils

g(m, k, γ) =
√

m

(
1 +

k

m

)(
k

m + k

)γ

= m−1/2(m + k)1−γkγ > m−1/2k.

Hence for the first term on r.h.s. of (11) we have

sup
k≥m

|ēm
k
m

∑m
i=1 ei|

g(m, k, γ)
= OP (1) sup

k≥m

k
m

m−1/2k
= OP (1) sup

k≥m

1
m1/2

P→ 0.

For the second term we use again the Hájek–Rényi inequality

Pr

(
max

m≤k≤n

|∑m+k
i=m+1 ei|

g(m, k, γ)
≥ A

)
≤ Pr

(
max

m≤k≤n

|∑m+k
i=m+1 ei|

m−1/2k
≥ A

)

≤
(
Am−1/2

)−2 m+n∑

i=m+1

1
i2

= A−2m O(m−1) ∼ A−2,

uniformly in n. Therefore again we have

sup
k≥m

|ēm

∑m+k
i=m+1 ei|

g(m, k, γ)
P→ 0,

which was the last part needed to complete the proof. ¤

Lemma 3. Let the assumptions of Theorem 1 be satisfied. Then there for each m
exist two independent Wiener processes {W1,m(t), 0≤ t<∞} a {W2,m(t), 0≤ t<∞}
such that

sup
1≤k<∞

∣∣∣
∑m+k

i=m+1 εi − k
m

∑m
i=1 εi − η

(
W1,m(k)− k

mW2,m(m)
)∣∣∣

√
m

(
1 + k

m

) (
k

m+k

)γ
P−→ 0,
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where εi = e2
i − E e2

i = e2
i − 1 and η2 = var εi = var e2

i .

P r o o f . It follows from Lemma 5.3 in [4]. ¤

Lemma 4. Let {W1,m(t), 0 ≤ t < ∞} and {W2,m(t), 0 ≤ t < ∞} be two inde-
pendent Wiener processes and {W (t), 0 ≤ t < ∞} denote a Wiener process as well.
Then we have

sup
1≤k<∞

∣∣W1,m(k)− k
mW2,m(m)

∣∣
√

m
(
1 + k

m

) (
k

m+k

)γ
D−→ sup

0≤t≤1

|W (t)|
tγ

.

P r o o f . The proof can be found in [4] (beginning of the proof of Theorem 2.1).¤

P r o o f o f Th e o r em 1. Using the previous lemmas we can write

sup
1≤k<∞

|Q(m, k)|
g(m, k, γ)

=
1

v̂m
sup

1≤k<∞

∣∣∣
∑m+k

i=m+1(Yi − Ȳm)2 − k
m

∑m
i=1(Yi − Ȳm)2

∣∣∣
g(m, k, γ)

1=
1

v̂m
sup

1≤k<∞

∣∣∣σ2
0

∑m+k
i=m+1 e2

i − σ2
0

k
m

∑m
i=1 e2

i

∣∣∣
g(m, k, γ)

+ oP (1)

=
σ2

0

v̂m
sup

1≤k<∞

∣∣∣
∑m+k

i=m+1 εi − k
m

∑m
i=1 εi

∣∣∣
g(m, k, γ)

+ oP (1)

2=
σ2

0η

v̂m
sup

1≤k<∞

∣∣W1,m(k)− k
mW2,m(m)

∣∣
g(m, k, γ)

+ oP (1)

D−→ sup
0≤t≤1

|W (t)|
tγ

.

Equality 1 follows from Lemma 2, equality 2 from Lemma 3 and the last convergence
is a consequence of Lemmas 4 and 1. ¤

P r o o f o f Th e o r em 2. It is sufficient to find a certain k̃ such that the detector
diverges in probability i. e.

|Q(m, k̃)|
g(m, k̃, γ)

P−→∞.

We will show that the previous holds for k̃ = k∗ − 1 + max (m, k∗).
We denote the parts of the test statistics before and after the change of variance as

Q(m, k̃) = A1,m + A2,m

:=
m+k∗−1∑

i=m+1

(Yi − Ȳm)2 − k∗ − 1
m

m∑

i=1

(Yi − Ȳm)2

+
m+k̃∑

i=m+k∗

(Yi − Ȳm)2 − k̃ − k∗ + 1
m

m∑

i=1

(Yi − Ȳm)2.
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By Theorem 1 we know that A1,m (the part before the change) divided by g(m, k∗−1,
γ) is bounded in probability. Since g(m, k, γ) is monotonically increasing in k, this
also holds for g(m, k̃, γ) instead of g(m, k∗ − 1, γ).
We concentrate therefore on A2,m

m+k̃∑

i=m+k∗

(Yi − Ȳm)2 − max (m, k∗)
m

m∑

i=1

(Yi − Ȳm)2

=
m+k̃∑

i=m+k∗

σ2
∗e

2
i−σ2

0

max (m, k∗)
m

m∑

i=1

e2
i−2σ0ēm


σ∗

m+k̃∑

i=m+k∗

ei − σ0
max (m, k∗)

m

m∑

i=1

ei


 .

The third term as a linear combination of ei divided by g(m, k̃, γ) is again bounded
in probability. The first two terms yield

σ2
∗

m+k̃∑

i=m+k∗

e2
i − σ2

0

max (m, k∗)
m

m∑

i=1

e2
i

= σ2
∗

m+k̃∑

i=m+k∗

(e2
i − 1)− σ2

0

max (m, k∗)
m

m∑

i=1

(e2
i − 1) + σ2

∗max (m, k∗)− σ2
0 max (m, k∗).

(12)
Since

∑m+k̃
i=m+k∗(e

2
i − 1) = OP

(
(m + k̃)1/2

)
, the first two terms in (12) divided by

g(m, k̃, γ) are again bounded in probability. Since

max (m, k∗)
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ ≥ m√
m

max (m, k∗)
m + k∗ + max (m, k∗)

≥ m

3
√

m
→∞

and σ2
0 6= σ2

∗, the theorem is proved. ¤
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[5] L. Horváth, P. Kokoszka, and J. Steinebach: On sequential detection of parameter
changes in linear regression. Statist. Probab. Lett. 77 (2007), 885–895.
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