
KYBERNET IK A — VOLUME 4 4 ( 2 0 0 8 ) , NU MB ER 5 , P AG E S 7 0 5 – 7 1 4

KERMACK–McKENDRICK EPIDEMICS VACCINATED

Jakub Staněk

This paper proposes a deterministic model for the spread of an epidemic. We extend
the classical Kermack–McKendrick model, so that a more general contact rate is chosen
and a vaccination added. The model is governed by a differential equation (DE) for the
time dynamics of the susceptibles, infectives and removals subpopulation.

We present some conditions on the existence and uniqueness of a solution to the non-
linear DE. The existence of limits and uniqueness of maximum of infected individuals are
also discussed.

In the final part, simulations, numerical results and comparisons of the different vacci-
nation strategies are presented.
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1. INTRODUCTION

Models that describe behaviour of highly infective diseases are frequently studied in
the recent literature (see [2, 3, 5, 9]). There are not so many models that would enable
to understand an optimal control of the infection by means of vaccination evaluate
it (see [4, 9]). This paper extends the classical Kermack–McKendrick differential
equation for epidemics (see [3, 5, 6, 7]) and suggests its control by a continuous
vaccination.

The presented model describes the behaviour of highly infective diseases (e. g.
flu) with short healing time (few days) and very short incubation time, which is
omitted in the model.

We consider a population that consists of N individuals and it is divided into
three subpopulations. The first one is called Susceptibles (the individuals who are
not infected, but who can be infected by the disease), its size at time t is denoted
by xt. The second one is made by Infectives (the infected individuals, who are able
to spread the disease), its size being denoted by yt. The Removals subpopulation
consists of individuals who were infected, but who are not able to spread the infection
further or get themselves infected again, because they are either isolated or cured
and became immune. It follows that its size zt equals to N − xt − yt at arbitrary
time t.
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The model is described by the following differential equations (see [8]):

dxt = −β(zt)yt [xt − ϑ(zt)]
+ dt, x0 > 0,

dyt = β(zt)yt [xt − ϑ(zt)]
+ dt− γytdt, y0 > 0, (R1)

dzt = γytdt, z0 = 0,

where β(zt) is a Susceptibles–Infectives contact rate that is time dependent through
zt, where γ is a recovery rate of the infection and, finally, ϑ(zt) is the size of vacci-
nated susceptibles subpopulation controlled by zt again.

We shall assume that β(z) : R → R+ is a nonincreasing continuous function,
γ > 0 and that ϑ(z) : R → R+ a nondecreasing continuous function. From the
assumptions, we know that xt + yt + zt = N = x0 + y0 for all t ≥ 0.

It means that the size of individuals newly infected during the time interval (t, t+
4) is approximately equal to the product yt[xt−ϑ(zt)]+β(zt)4, where yt[xt−ϑ(zt)]+

is the number of all possible contacts between infective and susceptible nonvaccinated
people (i. e. the number of all possible pairs) in time t, and β(zt) is a probability
that a randomly chosen susceptible nonvaccinated person is infected by a randomly
chosen infective person during the time interval (t, t + 1). Because the population
consists of people with different rate of immunity (e. g. children are more inclined
to diseases then adults) and people with weaker immunity fall ill more easily than
strong immune people, the rate of immunity of susceptibles grows with increasing
zt. Therefore, the Susceptibles–Infectives contact rate β is nonincreasing function
of Removals.

After the consultation with practitioners in medicine, the function of vaccinated
susceptibles ϑ is also considered to be a function of the removals, because the number
of the removals is usually known and also because it is an indicator of the extent
of the epidemic used in practice. Moreover, if we choose ϑ as an increasing linear
function of vaccinated individuals, then we vaccinate more people in the case when
we have more infected individuals, because the increment of Removals is proportional
to the number of infectives.

2. THEORETICAL RESULTS

In this section, we will speak about a solution to DEs. By the solution to DE we
mean the classical solution, i. e. we use the definition of solution as introduced in
[1], p. 67.

The following lemma follows from more general results, e. g. Corollary 16.10,
p. 219, in [1], but it could be unnoticed when using it for our case. Therefore we
show more intuitive proof without using any special theorems.

Lemma 2.1. If lt = (xt, yt, zt) is a solution to (R1), then lt ∈ [0, N ]3 for all t ≥ 0.
Moreover, xt is a nonincreasing function and zt is an increasing function.
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P r o o f . From (R1), we can get

yt = y0 exp
{∫ t

0

β(zs)[xs − ϑ(zs)]+ − γ ds,

}
, (1)

therefore yt > 0 for all t.

Further, zt = z0 +
∫ t

0
γys ds, therefore we get zt as a nonnegative increasing

function as yt > 0.

The size of susceptibles xt is obviously a nonincreasing function.
If we denote by τv := inf{t ∈ R+ : xt ≤ ϑ(zt)} the first time, when susceptibles

are completely vaccinated, then

dxt = −β(zt)yt[xt − ϑ(zt)] dt (2)

for t ∈ [0, τv]. Moreover, as xt is nonincreasing and zt is increasing, we have for all
t > τv that xt ≤ ϑ(zt) and dxt = 0.

Solving equation (2) we get

xt =
[
x0 +

∫ t

0

β(zs)ϑ(zs)ys exp
{∫ s

0

β(zu)yu du

}
ds

]
exp

{
−

∫ t

0

β(zs)ys ds

}
≥ 0.

Since xt = xτv for all t ∈ (τv,∞), xt is nonnegative function.
We proved that any solution lt to (R1) maps [0,∞) into the first octant. As

xt ≥ 0, yt ≥ 0 and zt ≥ 0 for all t ≥ 0 and xt + yt + zt = N it follows that
lt ∈ [0, N ]3. ¤

Hence ϑ is nondecreasing and x(.) is nonincreasing, then using τv from the pre-
vious proof we can rewrite (R1) to the form

dxt = −β(zt)yt [xt − ϑ(zt)] dt, x0 > 0,

dyt = β(zt)yt [xt − ϑ(zt)] dt− γyt dt, y0 > 0, (R2)
dzt = γyt dt, z0 = 0,

for t ∈ [0, τv] and
dxt = 0,

dyt = −γyt dt, (R3)
dzt = γyt dt,

for t ∈ [τv,∞).

Lemma 2.2. Let β and ϑ be Lipschitz bounded functions. Then the equation
(R2) has a unique solution on the interval [0, τv].

P r o o f . Denote

f(x, y, z) = (−β(z)[x− ϑ(z)]y, β(z)[x− ϑ(z)]y − γy, γy)
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and
f̃(l) = f(x̃, ỹ, z̃),

where x̃ = (x ∨ −2N) ∧ 2N . Then, using Lemma 2.1 and the fact that the unique
solution to

dl = f̃(l), l0 = (x0, y0, z0)

is the unique solution to (R2) on the interval [0, τv], Lemma 2.2 follows from more
general theorem 7.6 in [1], p. 100. ¤

Define τY := arg max yt := {t ∈ [0,∞) : yt = maxs∈[0,∞) ys} the time of culmina-
tion of the epidemic (below we show that the time τY is unique).

The following theorem is our main result.

Theorem 2.3. Let β and ϑ satisfy the conditions of Lemma 2.2. Then

(i) the equation (R1) has a unique solution on the time interval [0,∞),

(ii) there exist limits of x, y, z at infinity, y∞ = 0. If τv = ∞ then z∞ is a solution
to the equation z = N −X(z), where

X(z) =

[
x0 +

∫ z

0

β(u)
γ

ϑ(u) exp

{∫ u

0
β(s) ds

γ

}
du

]
exp

{
−

∫ z

0
β(u) du

γ

}
.

(iii) the size of infectives subpopulation yt has a unique maximum yτY
.

If β(z0)[x0 − ϑ(z0)]− γ > 0, then β(zτY
)[xτY

− ϑ(zτY
)] = γ.

If β(z0)[x0 − ϑ(z0)]− γ ≤ 0, then τY = 0.

P r o o f .

(i) The existence and uniqueness of a solution to (R2) on the time interval [0, τv]
follows from Lemma 2.2. Therefore we need to prove its existence and unique-
ness on the time interval [τv,∞] in the case τv < ∞. Because the equation
(R3) with the initial conditions x(τv) = x̃(τv), y(τv) = ỹ(τv), z(τv) = z̃(τv),
where (x̃, ỹ, z̃) is a solution to (R2) on the time interval [0, τv], has a unique
solution, it follows that

x(t) = xτv ,

y(t) = yτv − e−γτv + e−γt,

z(t) = N − xτv − yτv + e−γτv − e−γt

holds.

Joining these solutions, we get a unique solution to (R1) on the time interval
[0,∞). Indeed, if we denote

l̂t = (x̂t, ŷt, ẑt) = (x̃t, ỹt, z̃t) t ∈ [0, τv]

= (xt, yt, zt) t ∈ (τv,∞),
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then

x̂t = x̂0 −
∫ t

0

β(ẑs)ŷs[x̂s − ϑ(ẑs)]+ ds

ŷt = ŷ0 +
∫ t

0

β(ẑs)ŷs[x̂s − ϑ(ẑs)]+ − γŷs ds

ẑt =
∫ t

0

γŷs ds.

Therefore l̂ is a solution to (R1).

(ii) Functions x and z are monotone and bounded, therefore they have their limits
x∞, z∞ at infinity. Because yt = N − xt − zt for all t ∈ [0,∞), the existence
of the limits x∞ and z∞ implies the existence of the limit y∞. Since z∞ < ∞,
we get y∞ = 0. Indeed, if y∞ > 0, then there exists a time T ∈ [0,∞) and a
constant a > 0 such that yt ≥ a for all t > T . Therefore

z∞ =
∫ ∞

0

γys ds ≥
∫ T

0

γys ds +
∫ ∞

T

γa ds = ∞.

It means that y∞ = 0.

As zt is a continuous differentiable mapping of [0,∞) on [0, z∞] with positive
derivation, it has continuously differentiable inverse z−1

t , we can set
X(z) = x(z−1

t ) and (R2) implies

dX(z)
dz

=
dxt/dt

dzt/dt
=
−β(zt)Y (zt)[X(zt)− ϑ(zt)]

γY (zt)
, X(z0) = x0,

therefore

X(z) =

[
x0 +

∫ z

0

β(u)
γ

ϑ(u) exp

{∫ u

0
β(s) ds

γ

}
du

]
exp

{
−

∫ z

0
β(u) du

γ

}
.

(3)

Finally, let t → ∞ in z(t) = N − x(t) − y(t) to get the equation
z∞ = N − x∞ = N −X(z∞).

(iii) Because β(zt) and xt are nonincreasing functions of t and ϑ a nondecreasing
function of t, it follows that β(zt)[xt − ϑ(zt)] is nonincreasing. Hence
β(z0)[x0 − ϑ(z0)] − γ ≤ 0 implies dyt ≤ 0, and yt is nonincreasing. Thus,
τY = 0. If β(z0)[x0 − ϑ(z0)] − γ > 0, then yt is increasing in neighbourhood
of zero and because moreover y0 > y∞ = 0, we have 0 < τY < ∞. Hence
continuity and the existence of derivative of yt imply that y′τY

= 0, therefore
β(zτY )[xτY − ϑ(zτY )]− γ = 0.

Let β(zτY )[xτY − ϑ(zτY )] = γ. Denote T := inf{t ≥ 0 : β(zt)[xt − ϑ(zt)] = γ}.
From (R1) and yτY

≥ y0 > 0 it follows that xt is decreasing in T , and so there
is no other time t satisfying β(zt)[xt−ϑ(zt)] = γ. Therefore τY = T is unique.
In the case β(z0)[x0 − ϑ(z0)]− γ < 0, the uniqueness of τY is obvious. ¤
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Example 2.4. We shall scrutinize the equation z∞ = N − X(z∞) (see Theo-
rem 2.3 (ii)) and assume β to be a constant and ϑ(z) a general function, later on a
linear function.

We apply (3) to get

z∞ = N −
[
x0 +

∫ z∞

0

β

γ
ϑ(u) exp

{∫ u

0
β ds

γ

}]
exp

{
−

∫ z∞
0

β du

γ

}
. (5)

Denoting ρ = β/γ then (5) yields

z∞ = N − e−ρz∞

[
x0 + ρ

∫ z∞

0

ϑ(u)eρu du

]
. (6)

Choosing a linear vaccination, i. e. ϑ(z) = ϑ0 + ϑ1z, where ϑ0 ≥ 0 a ϑ1 ≥ 0, we
have

C1z∞ = C2 − C3e−ρz∞ , (7)

where
C1 = 1 + ϑ1,

C2 = N − ϑ0 + ϑ1/ρ,

C3 = x0 − ϑ0 + ϑ1/ρ.

The uniqueness of solution to equations (5) depends on the choice of functions
β(z), ϑ(z) and initial conditions. If we have more then one solution to the equation,
we have to decide, which of them is z∞.

To illustrate it, go back to the equation (7). What we know is that C1 > 0 and
C2 > C3 hold.

If C3 ≤ 0 then the number of vaccinated at t = 0 is larger than or equal to the
number of susceptibles, hence τv = 0 and the assumption of Theorem 2.3 (ii) is not
satisfied. In practice, this choice is not a very realistic one, mathematically it leads
to z∞ = y0 by (R3) and, of course, to y∞ = 0.

If C3 > 0 then (7) possess two solutions, but only one positive. It follows that
(7) has a unique solution z∞ ∈ [0, N ].

Example 2.5. Consider again constants β, γ and a linear ϑ in a way that τv = ∞
and τY 6= 0. Theorem 2.3 (iii) yields

[xτY − ϑ(zτY )] =
γ

β
. (8)

Computing

X(z) =

[
x0 +

∫ z

0

β

γ
ϑ(u) exp

{∫ u

0
β ds

γ

}]
exp

{
−

∫ z

0
β du

γ

}

=
[
x0 +

β

γ

∫ z

0

(ϑ0 + ϑ1u)e
βu
γ

]
e−

βz
γ

=
(

ϑ0 −
ϑ1

ρ

)
+ ϑ1z +

(
x0 +

ϑ1

ρ
− ϑ0

)
e−ρz (9)
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by (3) and substituting X(z) into (8), we arrive at
(

ϑ0 −
ϑ1

ρ

)
+ ϑ1zτY

+
(

x0 +
ϑ1

ρ
− ϑ0

)
e−ρzτY − ϑ0 − ϑ1zτY

=
1
ρ
.

This implies

zτY
=

1
ρ

[
log

(
x0 +

ϑ1

ρ
− ϑ0

)
− log

(
1 + ϑ1

ρ

)]
. (10)

Finally, having on mind that N = x + y + z, we get

ymax = yτY
= N −X(zτY

)− zτY
, (11)

where zτY and X(zτY ) are given by (10) and (9), respectively.

3. NUMERICAL RESULTS

This part deals with several problems that arise when one is trying to get some usable
results concerning the time of culmination of the epidemics, the largest number of
those infected, the influence of vaccination and the comparison of various vaccination
strategies.

First, we consider a constant β > 0 and a linear vaccination, i. e. ϑ(z) = ϑ0+ϑ1z.
Having made this choice, we replace the differential equation (R1) by the equation

xn+1 = xn − β(zn)yn max{[xn − ϑ(zn)] , 0}∆, x0 = x0 > 0,

yn+1 = yn + (β(zn)yn max{[xn − ϑ(zn)] , 0} − γyn)∆, y0 = y0 > 0, (R4)
zn+1 = zn + γyn∆, z0 = 0,

where ∆ is a difference step.
We solved the equation (R4) with the number of steps 5000 and the difference

step ∆ = 0.016, because we observed that a choice of smaller step does not change
the results significantly. This corresponds to the time interval (0, 80). We decided
to use these values, because on this interval, the behavior of the epidemic can be
well graphically shown (see Figure 1 and Figure 2). We chose the initial conditions
x0 = 990, y0 = 10, what means that at the beginning, 1% of population suffers from
the disease, and we observed the behavior of the epidemic with several choices of
γ, β, ϑ0 and ϑ1. All computations and graphic results were made by software R.1

Figure 1 visualizes the differences in behavior of epidemic for different choices of β
with a permanent γ, when no vaccination is applied. Figure 2 shows the differences
in behavior of epidemic for different vaccinations.

Although in the first case (ϑ0 = 0 and ϑ1 = 1), we have vaccinated 443 individuals
by the time t = 80, while choosing ϑ0 = 300 and ϑ1 = 0, 2 we have vaccinated only
363 individual in the same time interval, the evolution of epidemic is less favourable
in the former case than in the latter one in the sense that the number of removals

1Version R 2.3.1 was used.
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Fig. 1. Behavior of epidemic with β = 0, 00025, γ = 0, 25 (left) and
β = 0, 0005, γ = 0, 25 (right). The solid line describes the size of susceptibles,

the dot-dashed line the size of infectives and the dashed line the size of removals.
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Fig. 2. Behavior of epidemic with β = 0, 0005, γ = 0, 25 and the vaccination either
ϑ0 = 0, ϑ1 = 1(left) or ϑ0 = 300, ϑ1 = 0, 2 (right). The solid line describes the size of

susceptibles, the dot-dashed line the size of infectives and the dashed line the size

of removals.

for the first choice is 443 in comparison with 317 for the second choice. Moreover,
the maximal size of infected individuals (35) is also in favor of the latter vaccination
compared with the former one (101).

Table 1 summarizes the values obtained by solving equation (R4) for several
pairs of the coefficients ϑ0 and ϑ1. Here, we approximated x∞ and z∞ by x12500 and
z12500, respectively. The approximation should be a satisfactory one as already the
values y12500 are observed to be close to zero. To get the results, we produced 12500
steps with difference step ∆ = 0.016 (i. e. we observed the time interval (0, 200)),
choosing β and γ as before, i. e. β = 0.0005, γ = 0.25. The initial conditions were
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again x0 = 990 and y0 = 10. The table lists the final values of x, y and z, i. e.
the numbers of the susceptibles, infectives and removals at time t = 200, the total
number of vaccinated individuals by the time t = 200, the size of maxima of infected
individuals and the time of maxima.

Table 1.

ϑ0 ϑ1 x12500 z12500 y12500 Vaccinated max. y τY

0 0 199.5697 800.4303 5.3 e− 10 0 158.6046 17.552

0 0.2 313.1946 686.8054 5.1 e− 11 137.3611 141.9416 16.848

0 0.5 432.0209 567.9791 3.1 e− 12 283.9895 123.0361 15.984

0 1 557.2330 442.7670 9.8 e− 14 442.7670 101.3385 14.832

0 2 690.4325 309.5675 1.0 e− 15 619.1350 76.0882 13.200

100 0.2 430.9243 569.0757 2.2 e− 09 213.8151 99.6202 18.752

100 0.5 530.3573 469.6427 2.3 e− 10 334.8214 86.0446 17.648

100 1 634.6346 365.3654 1.4 e− 11 465.3654 70.7635 16.192

100 2 744.7960 255.2041 3.1 e− 13 610.4081 53.3868 14.112

300 0.2 681.4626 318.5374 1.2 e− 05 363.7075 34.9557 22.896

300 0.5 736.9506 263.0494 2.8 e− 06 431.5247 30.6612 20.704

300 1 794.3346 205.6654 4.1 e− 07 505.6654 26.0612 17.952

300 2 854.0339 145.9661 2.0 e− 08 591.9322 21.1174 14.304

Numerical results have confirmed our expectations that having determined to
provide a fixed number of vaccinations, an epidemic has a better evolution if choosing
a more robust pre-vaccination (bigger ϑ0) because it decreases both the number and
the global maximum of the infected individuals. Moreover, comparing 5th and 10th
row in Table 1, we can see that for the same running of epidemic (in the mean of
remained susceptibles), much less (almost one half) people need to be vaccinated in
the case of pre-vaccination.

In Table 2, there are values of z∞, that we receive as a solution to equation (7)
in Example 2.4. We choose again β = 0.0005, γ = 0.25, x0 = 990 and y0 = 10 and
the vaccination which enters Table 1. We solved the equation by using the divising
interval method, we look for a solution in the interval [0, 1000] and we require the
error to be less then 0.001.

Table 2.

ϑ1 = 0 ϑ1 = 0.2 ϑ1 = 0.5 ϑ1 = 1 ϑ1 = 2

ϑ0 = 0 800.2034 686.5820 567.7654 442.5726 309, 4061

ϑ0 = 100 568.9032 469.4815 365.2218 255.0868

ϑ0 = 300 318.4655 262.9839 205.6079 145.9184
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Comparing the values delivered by Table 1 with those delivered by Table 2, the
differences are observed to be less than 0.3.

The values of maxima of infected individuals received by the formula (11) in Ex-
ample 2.5 are presented by Table 3 choosing β, γ and the initial conditions as above.

Table 3.

ϑ1 = 0 ϑ1 = 0.2 ϑ1 = 0.5 ϑ1 = 1 ϑ1 = 2

ϑ0 = 0 158.4516 141.7980 122.90494 101.2239 75.9957

ϑ0 = 100 99.5348 85.9673 70.6963 53.3324

ϑ0 = 300 34.9380 30.6450 26.0467 21.1049

Comparing Table 1 and Table 3, the differences are seen to be less than 0.2. Hence,
we can conclude that (R4) provides approximations close enough to the theoretical
values.
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thanks to Professor Josef Štěpán for the professional help.

(Received June 27, 2008.)

REFERENC ES

[1] H. Amann: Ordinary Differential Equations: An Introduction to Nonlinear Analysis.
Walter de Gruyter, Berlin –New York 1990.

[2] N.T. J. Bailey: The Mathematical Theory of Epidemics. Hafner Publishing Company,
New York 1957.

[3] D. J. Daley and J. Gani: Epidemic Modelling: An Introduction. Cambridge University
Press, Cambridge 1999.

[4] P. Greenwood, L. F. Gordillo, A. S. Marion, and A. Martin-Löf: Bimodal Epidemic
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