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The paper deals with a novel method of control system design which applies meromor-
phic transfer functions as models for retarded linear time delay systems. After introducing
an auxiliary state model a finite-spectrum observer is designed to close a stabilizing state
feedback. The observer finite spectrum is the key to implement a state feedback stabiliza-
tion scheme and to apply the affine parametrization in controller design. On the basis of
the so-called RQ-meromorphic functions an algebraic solution to the problem of time-delay
system stabilization and control is presented that practically provides a finite spectrum
assignment of the control loop.
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1. INTRODUCTION

The trend to open the algebraic design from the control systems described by rational
transfer functions to the linear systems with delays has attracted a large research
attention. The time-delay systems can be described by rational functions in two
variables s and eϑs [5], provided the delays are assumed as commensurate. How-
ever, the delays in real plants are real valued and then ratios of quasi-polynomials
or meromorphic functions are to be used as algebraic models [10]. In principle,
the algebraic approaches to controller design, e. g. the pole placement approach
or affine controller parametrization, may be adopted for this kind of infinite order
systems [17], however, with serious constraints. Most of these constraints are more
or less connected with the transcendental nature of the models, i. e. with the in-
finite spectrum of these models. As to the role of models, it is a specific feature
of plants with significant delays that an application of a kind of model or observer
becomes essential in stabilizing controller design [9]. A functional scheme of state
observers for time delay systems has been introduced by Trinh [13]. The state feed-
back control has been proposed by Kim and Park [4] and the meaning of a feedback
pre-compensation in linear time-delay systems has been shown by Picard et al. [12].
As examples of model based methods the finite spectrum assignment approach to
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controller design [16], or a meromorphic extension of internal model control design
[18, 20], can be mentioned. As regards the state feedback and the pole placement
these design approaches are severely limited by the fact that an infinite spectrum of
poles is amended by means of a relatively low number of control parameters, these
limitations have been qualified by Michiels and Roose [7]. The so-called continu-
ous pole placement in time delay systems has been presented by Michiels et al. [6],
Michiels and Vyhĺıdal [8]. The final result of a pole shifting is significantly limited by
the well-known effect that the desirable shift of the rightmost poles to the left may
be wasted with a tendency of the rest of the spectrum to a counter-movement to the
right. An efficient rootfinder is necessary to apply in checking the spectrum changes,
see Breda et al. [1] or Vyhĺıdal and Źıtek [14, 15]. In addition, the parametrization
based controller design is subject to significant limitations due to much larger va-
riety of quasi-polynomials and due to the causality requirements in the time delay
systems [17, 19].

The structure of the paper is as follows. In Section 2 a meromorpfic model of
a retarded time-delay system is introduced, its decomposition to a state model is
proposed in Section 3 and with the use of this auxiliary model a reduced-order
observer is designed in Section 4. The observer-based state feedback then serves
to stabilizing the system for which a final controller is designed by means of affine
parametrization procedure in Section 5. An application example and concluding
remarks are added in Sections 6 and 7.

2. MEROMORPHIC MODELS OF TIME–DELAY SYSTEMS

In extending the class of admissible functions from rational to meromorphic, the
natural requirements of causality and feasibility of both the plant and the controller
have to be respected in the ultimate control system implementation. To satisfy
these conditions in rational algebraic design, the plant and controller models are
constrained to proper rational functions. An equivalent restriction is to be intro-
duced for meromorphic functions as well. In order to avoid impulsive modes in
system’s responses the so-called internal stability condition is adopted. To apply
the algebraic approach to the feedback design of time-delay systems, it is neces-
sary to define an admissible class of these systems, particularly as to the delays.
The time-delay systems are supposed containing lumped delays only and with the
so-called retarded structure [2]. This class of systems is defined below.

Definition 1. (RQ meromorphic function) A ratio G(s) of quasi-polynomials
G(s) = B(s)/A(s) is said to be a retarded quasi-polynomial (RQ) meromorphic func-
tion if

• A(s) is a retarded quasi-polynomial of the generic form

A(s) = sn +
n−1∑

i=0

h∑

j=1

aijs
i exp(−ϑijs) (1)

where the highest power sn represents a delayless term of the model and ϑij

are non-negative delays,
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• B(s) can be factorized as B(s) = B̄(s) exp(−sτ), where B̄(s) is a retarded and
stable quasi-polynomial

B̄(s) = bmsm +
m−1∑

i=0

h∑

j=1

bijs
i exp(−τijs) (2)

where τ and τij are non-negative delays,

• the fraction is strictly proper, i. e., it holds for the highest s-power sm in B(s),
that m ≤ (n− 1).

3. CONVERTING THE PLANT MODEL TO A STATE FORM

Consider an RQ meromorphic function G(s) introduced in Definition 1 as the trans-
fer function of a single-input-single-output (SISO) plant. With the aim to close a
memoryless feedback of the form u(t) = −Kx(t), x ∈ Rn we need to convert G(s)
into a state model of the generic Laplace transfer form

sx(s) = A(s)x(s) + B(s)u(s) (3)

y(s) = Cx(s), (4)

where x, u and y are state variable vector, single input and single output, respectively
[4]. Zero initial conditions are considered in (3) for both the output and state
variables. The following proposition points out that it is always possible to select
such a state variable vector x(s) that all G(s) parameters are located in the first
column of A(s).

Proposition 1. If an RQ meromorphic function G(s) = B(s)/A(s) is given by
quasi-polynomials A(s) and B(s) as in (1) and (2) respectively, it can be identified
with the nth order state model (3) where x is the state variable vector and where
the system matrices are of the form

A(s) =




−∑h
j=1 an−1,j exp(−ϑn−1,js), 1, · · · 0

−−−−−− − − −
−∑h

j=1 a1,j exp(−ϑ1,js), 0, · · · 1
−∑h

j=1 a0,j exp(−ϑ0,js), 0, · · · 0


 , (5)

B(s) = B̄(s) exp(−sτ) =




bm

−−−∑h
j=1 b1,j exp(−τ1,js)∑h
j=1 b0,j exp(−τ0,js)


 exp(−τs), (6)

C = [1, 0, . . . , 0], and where it holds that x1 ≡ y and all the delay elements in A(s)
are placed in the first column only. The state variables are introduced in the manner
given in the proof.
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P r o o f . The transfer function G(s) represents a linear time delay differential
equation which has the Laplace transform A(s)y(s) = B(s)u(s) when the case of
zero valued initial conditions is considered. In order to get the coefficients and
delays of A(s) fixed to the first column of A(s) the method of nested integrations is
applied to this equation – beginning with xn variable in the first integration

sxn(s) = −
h∑

j=1

a0,j exp(−ϑ0,j)x1(s) +
h∑

j=1

b0,j exp(−(τ0,j + τ)s)u(s), (7)

where the elements in the last row of A(s) and B(s) are obtained from. In the same
manner the next integration is performed and the second state variable is introduced

sxn−1(s) = xn(s)−
h∑

j=1

a1,j exp(−ϑ1,j)x1(s) +
h∑

j=1

b1,j exp(−(τ1,j + τ)s)u(s). (8)

Similarly further integrations are performed and the rest of n state variables is
introduced while all the summation elements with delay operators are placed in the
first column of A(s) only. Finishing with x1 ≡ y the set of equations (3) with the
matrices (5) and (6) is obtained. The state variable x1 always results as identical
with the output y. ¤

Matrix A(s) is in the observable Frobenius form and therefore system (3) is
spectrally observable [11] and the first column elements determine its characteristic
equation. It is also apparent that if either

∑h
j=1 b0j 6= 0 or

∑h
j=1 a0,j 6= 0 then the

obtained model given by the matrices (5), (6) is completely spectrally controllable
since due to the unit-element positions in the controllability condition

rank [sI −A(s),B(s)] = n (9)

just these non-zero elements can ensure the full rank [11]. As regards the intent to
close the state feedback, only the first state variable is available as the plant output,
x1 ≡ y, and for closing the state feedback u(t) = −Kx(t) the other state variables
can only be estimated by an observer. ¤

4. REDUCED–ORDER OBSERVER FOR STATE FEEDBACK DESIGN

Only the states x2, . . . , xn are not available for closing the state feedback u = −Kx.
To avoid the idle estimation of x1 ≡ y let the vector of unavailable states xE =
[x2, . . . , xn]T be separated from y by the partition x =

[
y, xT

E

]T and in the sequel,
the appropriate partitions of the system matrices are considered

A(s) =
[

Ayy(s) AyE

AEy(s) AEE

]
, (10)

B(s) =
[

Byy(s)
BE(s)

]
. (11)

The following reduced-order observer can then be applied to provide an estimate
x̂E of xE [3].
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Proposition 2. If for a system given as G(s) the state model (3) with system
matrices (5) and (6) is introduced the following model given by the L-transform
equations (in the case of zero initial conditions) can serve as (n− 1)-order observer
providing the estimate x̂E of xE

sv(s) = [AEE−HAyE ] x̂E(s)+[vE(s)−HBy(s)] u(s)+[AEy(s)−HAyy(s)] y(s) (12)

where x̂E = v + Hy and H = [h1, h2, . . . , hn−1]
T .

P r o o f . From the partition (8) it follows that the state model (3) can be split
into two equations

sy(s) = Ayy(s)y(s) + AyExE(s) + By(s)u(s) (13)
sxE(s) = AEy(s)y(s) + AEExE(s) + BE(s)u(s). (14)

Since the only state vector to be reconstructed is xE the observer is to be based
merely on equation (14) while (13) is taken as an additional relationship between u
and y as measured quantities and the estimate x̂E . This first equation is not satisfied
in observer operation and just the difference between its left and right side is used
as the observer error and the so-called innovation term is established by multiplying
it by (n− 1, 1) feedback gain matrix H as follows

sx̂E(s) = AEy(s)y(s) + AEEx̂E(s) + BE(s)u(s)

+H [sy(s)−Ayy(s)y(s)−AyEx̂E(s)−By(s)u(s)] .
(15)

Both u and y are considered as observer inputs, however, the undesired property
of this form– the derivative of y in (15) – can be overcome by introducing the observer
state vector v by the substitution v = x̂E −Hy. The observer differential equation
is then obtained in the form

sv(s) = [AEE −HAyE ] x̂E(s) + [BE(s)−HBy(s)] u(s)

+ [AEy(s)−HAyy(s)] y(s),
(16)

where x̂E = v + Hy, and the form (12) is obtained. ¤

The main merit of observer (12) is not only its lower order but primarily the
algebraic nature of the characteristic equation of (12) and its independence of the
parameters specifying the observed plant.

Lemma 2. (Observer characteristic equation) If the reduced-order observer is de-
signed according to the scheme given in (12) its characteristic equation does not
contain any delay factor, i. e. it is algebraic, with n − 1 roots only. Furthermore,
the observer matrix [AEE −HAyE ] is in observable canonical form and, moreover,
since only 1 and 0 are the elements of AEE and AyE , the observer characteristic
equation

det [sI −AEE + HAyE ] = 0 (17)
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is algebraic and does not depend on the G(s) parameters at all. The observer gain
coefficients hi, i = 1, . . . , n− 1 become the coefficients of the observer characteristic
equation.

P r o o f . Consider the observer error ∆xE = x̂E−xE and investigate its dynamics.
After subtracting (14) from (15) we obtain

s∆xE(s) = AEE∆xE(s)−H [AyEx̂E + By(s)u(s) + Ayy(s)y(s)− sy(s)] . (18)

Using the equation (13) to remove the derivative of y from (18) the following
homogenous state equation is obtained for the observer error dynamics

s∆xE(s) = [AEE −HAyE ]∆xE(s). (19)

Since the matrices AyE , AEE of the partition (10),(11) are of the following simple
form

AyE =
[

1, 0, · · · 0
]
, (20)

AEE =




0, 1, · · · 0
− − − −
0, 0, · · · 1
0, 0, · · · 0


 , (21)

it is obvious that the observer matrix [AEE −HAyE ] does not contain any delay
terms or plant parameters. Since the matrices AEE , AyE have only 1 and 0 elements,
the observer matrix is completely independent of G(s) parameters. In addition, due
to the simple form of matrix product HAyE (only one nonzero column) the following
polynomial form of observer characteristic equation results

det [sI −AEE + HAyE ] = sn−1 + h1s
n−2 + · · ·+ hn−2s + hn−1 = H(s) = 0 (22)

independent of G(s) parameters. ¤

The observer characteristic matrix is in Frobenius form and hence, independently
of the form of G(s), the observer (12) is always obtained in the observable canonical
form. Due to the form (22) independent of G(s), the zeros of H(s) as the observer
poles can be easily placed at the prescribed positions s = σi, i = 1, 2, . . . , n − 1 by
means of satisfying the identity

sn−1 + h1s
n−2 + · · ·+ hn−2s + hn−1 ≡ (s− σ1)(s− σ2) · · · (s− σn−1) (23)

for any s, i. e. by equating the coefficients of the powers si, i = 1, 2, . . . n − 1, on
both sides.

It is worth noting that due to the true value of y the state observer designed in
(12) provides the so-called innovation process η(t) = y(t)−Cx̂(t) identically equal
to zero, η(t) ≡ 0, and therefore the observer error does not affect any state feedback
closed from the error provided the observer (12) is used [3].

The observer (12) has been designed to implement the state feedback

u = −k1y − k2x̂2 − k3x̂3 ...− knx̂n = −K

[
y

x̂E

]
(24)
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where again x̂E denotes the vector of observer state estimates. After closing the
feedback (24) a system of order 2n − 1 is generated where the spectrum of the
observer remains separated from the rest of the system even though the reduced-
order observer is applied.

Theorem 1. (Separation property) Consider a time delay plant G(s) and its de-
composition to the state model (3), (5), (6). If the reduced-order state observer of
x̂E according to (12) is provided and the feedback (24) is closed, the characteristic
equation of the complete closed-loop system is given as a product of the following
two determinants

MCL(s) = det [sI −A(s) + BK] det [sI −AEE + HAyE ]

= H(s) det [sI −A(s) + BK] = 0
(25)

so that the well-known separation property holds in the proposed reduced-order
observer feedback structure. The eigenvalue spectrum of the observer (12) and the
spectrum of the state feedback system itself are independent of each other.

P r o o f . The separability of H(s) directly follows from equation (19). Having
closed the state feedback (24) around system (3) and using ∆xE to describe the
observer operation, the following state model of order 2n− 1 is obtained

s

[
x

∆xE

]
=

[
A(s)−B(s)K −B(s)KE

0 AEE −HAyE

] [
x

∆xE

]
(26)

where KE = [k2, k3, . . . , kn]. Since the determinant of the block triangular charac-
teristic matrix is given only by the product of diagonal blocks the property (25) is
proved. ¤

5. AFFINE PARAMETERIZATION BASED CONTROLLER DESIGN

With regard to the separability of the polynomial H(s) and the characteristic quasi-
polynomial det [sI −A(s) + B(s)K] = M(s), the poles of M(s) can be placed sep-
arately from those of H(s) as if the state feedback were closed directly from the true
state variables. But it is necessary to be aware of the limited potential in stabilizing
the time-delay system by the state feedback (24). Basically these limitations arise
from the infinite spectrum of time-delay systems contrasting with the number n of
feedback parameters. The stabilizability of the system by the state feedback depends
not only on the number of the right-half-plane (RHP) system poles but also on the
values of delays [6]. Just the retarded character of M(s) renders the set of possible
RHP system poles finite. Nevertheless, if the number of RHP poles is less than n
and if the delay values are in a limited range it is possible to find such a K that
stabilizes M(s). An approach to finding a stabilizing K will be given below.

Suppose that a feedback gain vector K has been found rendering the quasi-
polynomial M(s) stable. This state feedback option stabilizes the system inde-
pendently of the H(s) design but due to the mentioned infinite system spectrum
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Fig. 1. Overall scheme of the control system, y, w – controlled variable

and the set-point, u, d – control and disturbance variables.

the stabilization does not yet provide the system with desirable dynamic properties.
First of all, in spite of placing n poles, the majority of the infinitely many system
poles is placed in a way which is hardly predictable. Furthermore, in spite of the
H(s) separability, to some extent, the system response is obviously influenced by
the observer dynamics. Besides, the above stabilization feedback was not considered
as a control scheme so that the reference input and control error have not been
introduced so far. On the other hand, with regard to the achieved system stability
it is possible to apply the standard approach of affine parametrization with the aim
to add a control loop providing the system with prescribed dynamics. The complete
scheme is in Figure 1 and the whole system can be viewed as a single loop control
where the state feedback scheme developed above is considered as a pre-stabilized
plant to be controlled.

After closing the state feedback (24) by means of the observer (12) with a sta-
bilizing set of the gain parameters K = [k1, k2, . . . , kn] a stable transfer function
GF (s) between the control input u and the output y is obtained. Due to the use
of the observer (12) this GF (s) is relatively complicated, its order is 2n − 1. Nev-
ertheless if the observer and the state feedback design are performed so that the
observer eigenvalues are placed substantially farther to the left from those placed by
the state feedback design, their influence on the final system response becomes fairly
weak or even negligible. On the assumption that this is the case it is possible to
consider the state feedback model (given only by the characteristic quasi-polynomial
M(s) = det [sI −A(s) + B(s)K], i. e. neglecting the observer dynamics) as an ap-
proximation of the real state feedback performance. Having this in mind and aiming
at simplifying the controller design, let us introduce an approximate transfer function
GM (s), where GM (s) ∼= GF (s).

The transfer function GM (s) of the state feedback scheme neglecting the observer
dynamics is given by the quasi-polynomial ratio

GM (s) =
Cadj [sI −A(s) + B(s)K] B(s)

det [sI −A(s) + B(s)K]
=

Cadj [sI −A(s)]B(s)
det [sI −A(s) + B(s)K]

=
N(s)

M(K, s)
(27)

where the quasi-polynomial N(s) is independent of K due to the well-known matrix
equality adj [M + BK] B = adj [M ] B which holds for any (n, n) non-singular ma-
trix M and a pair of arbitrary (n, 1)) and (1, n) matrices B and K, respectively [3].
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Using this approximation of the actual state feedback performance, the following
affine parametrization approach can be applied in controller design.

Theorem 2. Consider the stabilized plant as an augmented meromorphic function

GM (s) =
B̃(s)

Ã(s)
, Ã(s) =

M(K, s)
F (s)

, B̃(s) =
N(s)
F (s)

, (28)

where F (s) is selected as stable polynomial of order n, such that:

• the functions Ã(s), B̃(s) are coprime RQ-meromorphic functions,

• the quasi-polynomial F (s)− 2N(s) is stable with F (0) ≥ 2N(0).

Then any RQ-meromorphic function

R(s) =
2M(K, s)

F (s)− 2N(s)
(29)

is a stabilizing anisochronic controller for GM (s), operating with time-shifted data.

P r o o f . The functions Ã(s), B̃(s) are coprime and stable RQ-meromorphic func-
tions. By analogy with the rational algebraic approach the ring of RQ-meromorphic
stable functions RMS can be considered [19] and Ã(s), B̃(s) ∈ RMS . If RQ-
meromorphic functions X0(s), Y0(s) ∈ RMS satisfying the Bézout equation

Ã(s)X0(s) + B̃(s)Y0(s) = 1 (30)

are found as an internally stabilizing controller Y0(s)/X0(s) for the plant GM (s)
then the set of all stabilizing controllers is given by the ratio

R(s) =
Y0(s) + Ã(s)W (s)

X0(s)− B̃(s)W (s)
, (31)

where W (s) is a parametrizing stable and RQ-meromorphic function, W (s) ∈ RMS .
For the option Y0(s) = 1 the denominator function satisfying (30) is

X0(s) =
1− B̃(s)

Ã(s)
=

F (s)−N(s)
M(K, s)

(32)

and for W (s) = F (s)/M(K, s) the affine parametrization (31) results in the con-
troller (29). Since F (s) − 2N(s) is selected to be stable and F (s) is of the same
degree as the quasi-polynomial M(K, s), and since GM (s) is strictly proper, R(s) is
not only stable and proper meromorphic function but due to the delay-free term at
sn in F (s) it is retarded as well. ¤
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Complementary sensitivity function. Having applied controller (29) to the
stabilized plant GM (s) the complementary sensitivity function T (s) = y(s)/w(s) is
obtained in the form independent of M(K, s)

T (s) =
R(s)GM (s)

1 + R(s)GM (s)
=

2N(s)
F (s)

, (33)

where the characteristic equation of the feedback loop is given only by the choice of
F (s). Thus the pole location of this system is independent of M(K, s) and N(s)
and the system obtains the character of finite spectrum assignment.

Disturbance rejection. The conditioning polynomial F (s) is bounded by the
condition F (0) ≥ 2N(0). Apparently if F (0) > 2N(0) the controller R(s) is pro-
portional and leaves a steady state error. To avoid the steady state control error,
it is necessary to select F (s) such that F (0) = 2N(0), to provide the integrating
character of the controller action. Using this option the selection of F (s) is to be
modified as follows:

F (s)− 2N(s) = sf(s), (34)

where f(s) is required to be stable. The steady state value of the complementary
sensitivity function is then equal to one, T (0) = 2N(0)/F (0) = 1.

Remark. Let us recall that the controller formula (29) is based on the assump-
tion that the observer dynamics actually applied in the state feedback (24) can be
neglected and only the quasi-polynomials M(K, s) and N(s) constitute the model
GM (s). Therefore in applying (29) it is necessary to know the positions of the right-
most (dominant) zeros of the obtained stable M(K, s) in order to place the zeros of
H(s) sufficiently far to the left. The verification of the M(K, s) spectrum can be
performed by means of the tool described in [14, 15]. A possible way of adjusting
the state feedback parameters K is proposed below.

State feedback gain assessment. The design of controller (29) is conditioned by
having found such a state feedback gain vector K that makes the quasi-polynomial
M(K, s) = det [sI −A(s) + B(s)K] stable. However, to find such a K may be-
come a hard problem even if the number of RHP eigenvalues of A(s) is not higher
than n and the length of delays is not beyond the scope of the state feedback (24)
potentials. Although it is quite easy to place n zeros of M(K, s) at prescribed po-
sitions, the problem is to identify these positions with the dominant eigenvalues of
the system. These n placed zeros may stabilize the feedback system only if they
become the rightmost eigenvalues of this system.

Let the following n zeros be prescribed for M(K, s) : s = ri, Re (ri) < 0, i =
1, . . . , n. Since the dimensions of B(s) and K are (n, 1), (1, n), respectively, the
quasi-polynomial M(K, s) is linear with respect to ki, i = 1, . . . , n, and therefore it
can be considered in the form

M(K, s) = M0(s) +
n∑

j=1

∂M(K, s)
∂ki

ki, (35)
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where M0(s) = A(s) = det [sI −A(s)]. Apparently, in order to identify s = ri, i =
1, . . . , n, with the zeros of M(s) the appropriate parameters ki, i = 1, . . . , n are
obtained as the roots of the following equation set

M0(rj) +
n∑

j=1

[
∂M(K, s)

∂ki

]

s=rj

ki = 0, j = 1, 2, . . . , n. (36)

With regard to the problem of infinite spectrum the set of gain coefficients K
obtained as the solution to (36) carries out a specimen of M(K, s) containing the
prescribed s = ri, i = 1, . . . , n in its spectrum. However, this K does not give any
guarantee that the prescribed eigenvalues will have the dominant meaning in system
dynamics. That is why any solution to (36) has to be checked whether some of the
other eigenvalues do not lie to the right from the prescribed s = ri, i = 1, . . . , n. If
this is the case the attempt is discarded and a new option of root prescription is to
be performed. Only such a solution where the prescribed eigenvalues fall among the
rightmost ones can be accepted as valid.

Actually, obtaining an acceptable placement of n eigenvalues requires a series
of attempts with various options of prescribed rj . To facilitate this approach, it
is easier to take the case of a repeated root of M(K, s) for prescribing rj . Using
this option the M(K, s) derivatives ∂jM/∂sj = M (j)(s), j = 1, . . . , n − 1 are to be
applied and instead of (36) the following set of conditions is solved

M
(j)
0 (−β) +

n∑

j=1

[
∂M (j)(K, s)

∂ki

]

s=−β

ki = 0, j = 1, 2, . . . , n (37)

where −β is the multiple root. An increasing series of various β is then to be tried
to find maximum value of this parameter still placing the repeated root on the
rightmost position in the appropriate spectrum of M(K, s).

Alternatively, the method of continuous pole placement can be used to design the
state feedback [6].

6. APPLICATION EXAMPLE

The feedback delay is a typical phenomenon encountered also in control performed
in man-manoeuvred activities. So let us demonstrate the presented method on a
non-traditional example of this kind.

The roller skater sketched in Figure 2 is to keep himself as close as possible to the
top of a swaying bow by means of controlling a servomotor driving the slope of the
bow and in this way influencing the skater’s movement. Let the skater’s deviation
from the desired position be expressed by the angle ψ (between the skater and the
bow symmetry axis) while the slope angle of the bow is ϕ and the servomotor force
is P . If the skater’s acceleration is influenced only by the slope angle ψ + ϕ and the
effect of friction is negligible the movement is described by the transfer function

G(s) =
ψ(s)
ϕ(s)

=
λ exp(−s(τ + ϑ))
s4 − µs2 exp(−sϑ)

(38)
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Fig. 2. The roller skater on the controlled swaying bow.

where µ, λ are constant coefficients and τ, ϑ are delays of the skater’s and servomotor
response. Let us consider the following model parameters µ = 1, λ = 0.2, τ = 0.3 s,
ϑ = 0.1s. The decomposition of the given model into the state space form (3) leads
to the following set of equations

x1 = ψ, ẋ1 = x2, ẋ2 = x3 + µx1(t− ϑ), ẋ3 = x4, ẋ4 = λP (t− τ − ϑ) (39)

which are partitioned according to (10), (11) as follows

AEE =




0 1 0
0 0 1
0 0 0


 , (40)

AEy(s) =




µ exp(−sϑ)
0
0


 , (41)

AyE(s) =
[

1, 0, 0
]
, (42)

Ayy = 0, By = 0 (43)

BE(s) =
[

0, 0, λ exp(−s(τ + ϑ))
]T

. (44)

After introducing the observer gain as vector H = [h1, h2, h3]
T the reduced

order observer is then designed as in (12), and then its characteristic polynomial is
as follows

H(s) = det [sI −AEE + HAyE ] = s3 + h1s
2 + h2s + h3. (45)

It is simple to place the zeros of this polynomial, e. g. by prescribing a triple
root −σ, so that H(s) = (s + σ)3 and the following gain coefficients result h1 =
3σ, h2 = 3σ2, h3 = σ3. For example the value σ = 3s−1 renders the observer quick
enough in removing the estimation error. The stabilizing state feedback is given by
the four gains ki, i = 1, . . . , 4 and let four desirable poles s = ri, i = 1, . . . , 4 be
prescribed. If the multiple root s = −β for i = 1, . . . , 4 is prescribed the appropriate
gain coefficients are obtained by the help of solving H(ri) = 0, i = 1, . . . , 4. After
prescribing r1,2,3,4 = −β = −0.6 the following state feedback gain coefficients are
obtained from (37): k1 = 8.247, k2 = 7.812, k3 = 8.084, k4 = 7.380. In this case we
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Fig. 3. Left – spectrum of the system (38), right – spectrum of the feedback system.

Both with detailed view of the rightmost roots.

also see that β = 0.2σ, which means that the observer is able to provide effectively
fast estimation in the state feedback.

The meromorphic transfer function GM (s) = N(s)/M(K, s) of the system stabi-
lized via state feedback is given by (27) and its denominator now results as follows

M(K, s) = s4−m0(s)s2+
[
k4s

3+k3s
2+(k2−k4m0(s))+k1−k3m0(s)

]
N(s) (46)

where m0(s) = µ exp(−sϑ) and N(s) = λ exp(−s(τ + ϑ)). Since the relative order
of GM (s) is n − m = 4, a fourth-order conditioning factor F (s) is to be selected.
One of the options satisfying the requirement that 2N(0) = F (0) can be selected as
follows

F (s) = 2λ
[
1 +

s

α

]4

. (47)

Then the following controller function (29) results

R(s) =
s4 −m0(s)s2 +

[
k4s

3 + k3s
2 + (k2 − k4m0(s))s + k1 − k3m0(s)

]
N(s)

λ(1 + s/α)4 −N(s)
(48)

having at least one pole at s = 0, since R−1(0) = 0. With this anisochronic controller
the complementary sensitivity function of the complete control system is as simple
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Fig. 4. Set-point responses of the whole feedback system.

as follows

T (s) =
R(s)GM (s)

1 + R(s)GM (s)
=

exp(−s(τ + ϑ))
(1 + s/α)4

(49)

provided that the plant model fits well the real plant.
Let us recall that when placing the poles of the feedback system at the new

positions, we have to take into consideration the infinite spectra of both original
and feedback systems. In Figure 3 left, we can see the spectrum of the original
system (38). Beside four dominant roots (one unstable, one stable and double root
at zero), there is an asymptotically exponential infinite chain of roots. However, the
rightmost root of this chain is far to the left from the mentioned dominant roots
and thus the modes corresponding to the chain have negligible effect on the system
dynamics.

As can be seen in Figure 3 right, after closing the state feedback with the coeffi-
cients ki, i = 1, . . . , 4, the system is provided with the prescribed roots r1,2,3,4 = −β
and the system spectrum changes considerably. In virtue of the pole placement a
new chain of roots appears in the original system spectrum, lying quite close to the
imaginary axis of complex plane. However, since it holds for the rightmost root c1

of this chain that Re (c1) < Re (r1,2,3,4), the prescribed roots are the rightmost dom-
inant roots of the feedback system. Obviously the triple root σ1,2,3 of the reduced
order observer turns out to be only a finite part of the whole feedback system spec-
trum. The set-point response and disturbance rejection of the whole control system
are shown in Figure 4 for α = 1. The disturbance d is considered as an additional
force acting on the skater, see Figure 1.

7. CONCLUDING REMARKS

The presented combination of the reduced-order observer and the pole placement
synthesis with the affine parametrization approach to controller design proves effec-
tive to provide for a feasible time-delay plant stabilization and control. Although
this combination may seem rather involved, it is necessary to take into considera-
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tion the infinite order of the problem. The proposed finite spectrum observer helps
closing the stabilizing state feedback and considering its dynamics separate from the
rest of the state feedback system spectrum. The final meromorphic parametrization
results in a straightforward description of stabilizing controllers for the open-loop
unstable linear time-delay plants. The controller performance formula (29) facili-
tates the design of anisochronic controllers that compensate for the delays in the
plant despite the state feedback is designed only by means of proportional gains.
The farther are the observer eigenvalues to the left from dominant eigenvalues of
the feedback loop the better provides the final implementation of controller design
the control loop practically with a given finite spectrum. The restriction to the RQ
meromorphic functions limits the design to retarded time-delay systems only.
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