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DETERMINATION OF PHASE–SPACE
RECONSTRUCTION PARAMETERS
OF CHAOTIC TIME SERIES

Wei-Dong Cai, Yi-Qing Qin and Bing-Ru Yang

A new method called C–C–1 method is suggested, which can improve some drawbacks
of the original C–C method. Based on the theory of period N , a new quantity S(t) for
estimating the delay time window of a chaotic time series is given via direct computing a
time-series quantity S(m, N, r, t), from which the delay time window can be found. The
optimal delay time window is taken as the first period of the chaotic time series with a
local minimum of S(t). Only the first local minimum of the average of a quantity ∆S2(t) is
needed to ascertain the optimal delay time. The parameter of the C–C method – embedding
dimension m – is adjusted rationally. In the new method, the estimates of the optimal delay
time and the optimal delay time window are more appropriate. The robustness of the C–
C–1 method reaches 40%, whereas that of the C–C method is 30%.
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1. INTRODUCTION

Strange attractors embody the characteristics of chaotic systems. The evolvement
of any component in a chaotic system is determined by other components which
interacting each other, therefore the information of these correlated components is
underlying in the evolution process of the component [2]. Analyses to chaotic time
series are mostly based on the phase-space reconstruction. In [8, 10], Packard et al.
suggested that the phase-space can be restructured from observing the single delay
coordinate of the dynamical system, and the fundamental theorem of reconstruction,
introduced by Takens [10, 11] and extended more recently in [9], gives no restriction
on the time delay constant τ while for m states a sufficient (but not necessary)
condition is m ≥ 2d+1, where d is the fractal dimension of the underlying attractor,
and m is the phase-space dimension. The theorem of phase-space reconstruction is
as follows:

The method of delays can be used to embed a scalar time series {x(ti),
i = 1, 2, . . . , N} into an m-dimensional space X(ti) = (x(ti), x(ti + τ), . . . ,
x(ti +(m−1)τ)), i = 1, 2, . . . ,M , where τ is the delay time, m is the embedding
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dimension, M is the number of embedded points in the m-dimensional space, and
M = N − (m − 1)τ . Set {X(ti), i = 1, 2, . . . ,M} shows the tracks of the strange
attractor in the phase-space, and the chaotic evolvement of the dynamical system
can be studied in the reconstructed m-dimensional space. Research shows that the
reconstructed phase-space with appropriate m and τ has the same quality of diffeo-
morphism as the original dynamical system.

The selections of m and τ are rather important but difficult in the phase-space
reconstruction [7]. There are two main points of selecting m and τ , see e. g. [5, 12,
13, 14].

Point 1: The selections of m are independent of the selections of τ . The selections
of m and τ are based on 3 rules. The first one is the method of serial correlation,
such as autocorrelation function, mutual information, high-order correlation, and so
on; the second one is the method based on phase-space expansion, such as fill factor,
average displacement, SVF, and so on; the last one includes the method of multi-
ple autocorrelation function and the method of non-biased multiple autocorrelation
function.

Point 2: m and τ are correlated one another for the reason that real data sets
are finite and noisy. Tests show that the delay time window is τw = (m− 1)τd, and
it is the entire time spanned by the components of {X(ti)}, which is independent of
m instead. In this case, the delay time τd varies with the embedding dimension m.
τw is comparatively steady for a certain time series, and the irrelevant partnership
of m will affect the equivalence relationship between the reconstructed phase-space
and the former space. Thus, some combined computing methods come into being,
such as the C-C method [3], the time window length, the automated embedding and
the creep phenomenon, and so on.

Many researchers agree with Point 2 above. They consider that the process of
mutual information is rather cumbersome computationally, whereas the autocorre-
lation function only treats the linear dependence of the time series and it does not
treat the nonlinearity appropriately, but it may yield an incorrect value for the delay
time τd. The C–C method suggested is most popular, which gives the delay time
τd and delay time window τw simultaneously by applying the correlation integral.
Based on the statistical results, although the C–C method lacks theoretical support,
it runs well in practice and it shows some advantages, such as simple operation,
lower algorithm complexity, reliability for less data and better robustness, etc. It
has become a regular method for analyzing the time series [4].

Aiming at improving some drawbacks of the C–C method, this paper suggests
an advanced method to determine the optimal delay time τd and the optimal delay
time window τw. It improves the computing process, parameter selections and the
determination rules of the C–C method. The selections of the optimal delay time
window τw are more reliable and stable, the determination of the optimal delay time
τd is more appropriate, and the robustness is higher than that of the C–C method.
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2. ANALYSIS OF THE C–C METHOD

2.1. Algorithm of the C–C method

Let the chaotic time series be x = {xi, i = 1, 2, . . . , N}, where m is the embedding
dimension, τd is the delay time, and denote X = {Xi}, where Xi are the points in
the m-dimensional space:

Xi = (xi, xi + τ, . . . , xi + (m− 1)τ)T , i = 1, 2, . . . ,M. (1)

Thus, the correlation integral for the embedded time series is [1]:

C(m,N, r, t) =
2

M(M − 1)

∑

1≤i<j≤M

θ(r − dij), r > 0 (2)

where m is the embedding dimension, N is the data number of the time series, r is
the search radius, t is the delay time, M = N − (m− 1)t is the number of embedded
points in the m-dimensional space, θ(x) is the Heaviside function: θ(x) = 0, if x <
0; θ(x) = 1, if x ≥ 0, and dij =‖ xj − xj ‖∞ denotes the sup-norm.

Correlation integral is a cumulative distribution function, which denotes the prob-
ability of distances between any pairs of points in the phase-space that are not greater
than r. The distance between a pair of points is denoted by the sup-norm of the
difference between the two vectors. Define the statistical quantity of the time series
by

S(m,N, r, t) = C(m,N, r, t)− Cm(1, N, r, t). (3)

The computing process of Eq. (3) is to subdivide the time series x = {xi} into t
disjoint time series averagely, where t is the reconstructive delay time, i. e.





x(1) = {x1, xt+1, . . . , xbN/tc−t+1}
x(2) = {x2, xt+2, . . . , xbN/tc−t+2}
. . .
x(t) = {xt, xt+t, . . . , xbN/tc}.

(4)

Here, define the average of the statistical quantity given by Eq. (3) as follows:

S1(m,N, r, t) =
1
t

t∑

s=1

[Cs(m, N, r, t)− Cm
s (1, N, r, t)]. (5)

As N →∞ , we can write

S1(m, r, t) =
1
t

t∑

s=1

[Cs(m, r, t)− Cm
s (1, r, t)]. (6)

For fixed m and t, S1(m, r, t) is identically equal to 0 for all r if x = {xi} is
independently and identically distributed (i.i.d.) and N → ∞. However, real data
sets are finite, and the data may be correlated with noise; so, in general, S1(m, r, t) 6=
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0. Thus, the locally optimal times may be either the zero crossings of S1(m, r, t) or
the times at which S1(m, r, t) shows the least variation in r, since this indicates a
nearly uniform distribution of points. Hence, we select several representative values
rj , and define the quantity

∆S1(m, t) = max{S1(m, ri, t)} −min{S1(m, ri, t)} (7)

which is a measure of the variation of S1(m, r, t) in r. The locally optimal times t
are then the zero crossings of S1(m, r, t) ∼ t and the minima of ∆S1(m, t) ∼ t. The
zero crossings of S1(m, r, t) ∼ t should be nearly the same for all m and r, and the
minima of S1(m, r, t) ∼ t should be nearly the same for all m (otherwise, the time is
not locally optimal). The delay time τd will correspond to the first of these locally
optimal times.

Appropriate choices for m, N and r may be found by examining the BDS statis-
tic. Generally, for N = 3000, m = 2, 3, 4, 5, t = 1, 2, . . . , 200, r = k × σ/2,
k = 1, 2, 3, 4, where σ = std (x) is the standard deviation of the time series. We
then define the following averages of the quantities given by Eqs. (6) and (7):

S1(t) =
1
16

4∑

m=1

4∑

i=1

S1(m, ri, t) (8)

∆S̄1(t) =
1
4

4∑

m=1

∆S1(m, t) (9)

and we look for the first zero crossing of S1(t) or the first local minimum of ∆S̄1(t)
to find the first locally optimal time for independence of the data, which gives the
delay time τd. The optimal time is the delay time t for which S̄1(t) and ∆S̄1(t) are
both closest to 0. If we assign equal importance to these two quantities, then we
may simply look for the minimum of the quantity

S1 cor(t) = ∆S̄1(t)+ | S̄1(t) | (10)

and this optimal time gives the delay time window τw.

2.2. Numerical examples of the C–C method

In these examples, we observe variable x from the chaotic Lorenz system by inte-
grating equations using function ode45 in MATLAB. The Lorenz system (11) is as
follows: 




dx/dt = −σx + σy

dy/dt = −xz + rx− y

dz/dt = xy − bz

(11)

where σ, r and b are constants. We solve this system of equations for [σ, r, b] =
[16.0, 4.0, 45.92], with initial conditions [x, y, z] = [−1, 0, 1], to generate a time series
of the variable x with interval of integration from 0 to 1000, step h = 0.01.
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The reconstruction results are the same as those given by Kim et al. in [3], tested
by 3000 points selected from 53001 to 56000 (Figure 1).
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Fig. 1. C–C method: analysis on variable x from the Lorenz system.

2.3. Drawbacks of the C–C method

While the numerical examples are carrying on, we also select 3000 points from dif-
ferent intervals to estimate the optimal delay time τd and the optimal delay time
window τw. The results are shown in Table 1.

Table 1. C–C method: results of the reconstructed

variable x from the Lorenz system.

Sample Interval m τd τw

10001–13000 21 10 191
20001–23000 15 10 132
30001–33000 20 10 184
40001–43000 11 11 104
50001–53000 14 11 137
60001–63000 14 11 137
70001–73000 9 11 84
80001–83000 17 10 152
90001–93000 11 11 101

There are at least 3 drawbacks in the C–C method.



562 W.D. CAI, Y.Q. QIN AND B.R. YANG

(1) Ideally the minimum of S1 cor(t) is the optimal delay time window τw, whereas
in the tests there are some local minimal points whose values are much close
to the minimum of S1 cor(t). They disturb the estimate of the minimum of
S1 cor(t). And even worse, the optimal delay time window τw is not the exact
minimum point, which may mislead the estimate of the optimal delay time
window τw. In Figure 2, the marked points are all likely to be the optimal
delay time window τw.
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Fig. 2. C–C method: results of the local minima and the minimum of S1 cor(t).

(2) In practice, the first zero crossing of S1(t) is unequal to the first local minimum
of ∆S1(t). But for the time series with period T , for t = kT, k = 1, 2, . . ., one
of the points is mostly not only the first zero crossing of S̄1(t) but also the
minimum of S1 cor(t); therefore, paradoxical conclusions can be drawn. We
suggest that it is not appropriate to take the first zero crossing of S̄1(t) as
the optimal delay time τd. We may consider taking the first local minimum of
∆S̄1(t) as the first locally optimal time τw.

(3) Strictly speaking, a chaotic system has no period. For low-dimensional chaotic
systems with period N , the mean orbital period T is the mean period gen-
erated by the oscillations of the chaotic attractor in the phase-space orbits.
The computing mode of Eq. (5) leads to the following result: if t = kT, k =
1, 2, . . . , then ∆S̄1(t) = 0, and ∆S̄1(t) shows high-frequency oscillations in-
creasingly along with the increase of t. When the value of the optimal delay
time τd is big enough, the high-frequency oscillations can even affect the esti-
mate of the first local minimum of ∆S̄1(t).

Aiming at improving the drawbacks of the C–C method, we suggest an improved
method of phase-space reconstruction, which is called C–C–1 method.
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3. THE IMPROVED METHOD: C–C–1 METHOD

3.1. Algorithm of the C–C–1 method

By comparing S(m,N, r, t) with S1(m,N, r, t) in Eq. (5), for fixed m, and n →∞,
S1(m,N, r, t) ∼ t shows high-frequency oscillations increasingly along with the in-
crease of t. In Eq. (3), on the same conditions, generally S(m,N, r, t) ∼ t has the
same oscillations characteristics as S1(m,N, r, t) ∼ t, whereas the high-frequency
oscillations of S1(m,N, r, t) ∼ t disappear.

Therefore, instead of subdividing the time series x = {xi} into t disjoint time
series, the C–C–1 method computes S(m, N, r, t) directly. Since chaotic time series
has intrinsic determinacy, and the direct algorithm is rather cumbersome computa-
tionally, in order to reduce the time complexity, the statistical quantity S(m,N, r, t)
given by Eq. (3) is computed with another average method. Being different from the
C–C method, a positive integer p is selected as a constant, which is independent of
the delay time t, to subdivide the reconstructed phase-space X = {X(ti)}; and ac-
cording to the calculation of S1(t) and ∆S̄1(t) in the C–C method, S̄2(t) and ∆S̄2(t)
are calculated.

Numbers of tests show that S2 cor(t) have some clear peak values with qualita-
tively chaotic period N , and all of the points that bring these clear peak values are
the local minima of S1 cor(t). Thus, a new determinative rule of the optimal delay
time window τw is given: to estimate the optimal delay time window τw, the C–C
method looks for the minimum of S1 cor(t), whereas the C–C–1 method combines the
clear peak values of S2 cor(t) with the chaotic period N and with the local minima
of S1 cor(t). By looking for the first local minimum peak value of S1 cor(t)−S2 cor(t)
with the clear quality of chaotic period N , we estimate the optimal delay time win-
dow τw; and aiming at the results with no clear quality of chaotic period N , we select
the minimum of S1 cor(t)− S2 cor(t) to estimate the optimal delay time window τw.

Furthermore, the C–C method looks for the first zero crossing of S̄1(t) or the
first local minimum of ∆S1(t) as the first optimal delay time τd, while the C–C–1
method just looks for the first local minimum of ∆S̄2(t) as the first optimal delay
time τd.

The algorithm of the C–C–1 method is summarized as follows:

The phase-space reconstruction is the first step. Then, a positive integer p is
selected as a constant, which is independent of the delay time t, to subdivide the
reconstructed phase-space X = {X(ti)}:





X(1) = {X1, Xp+1, . . . , XbN/pc−p+1}
X(2) = {X2, Xp+2, . . . , XbN/pc−p+2}
. . .
X(p) = {Xp, Xp+p, . . . , XbN/pc}

(12)
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x(1) = {X1(1), X1(2), . . . , X1(m), Xp+1(1), Xp+1(2), . . . , Xp+1(m), . . .}
x(2) = {X2(1), X2(2), . . . , X2(m), Xp+2(1), Xp+2(2), . . . , Xp+2(m), . . .}
. . .
x(p) = {Xp(1), Xp(2), . . . , Xp(m), Xp+p(1), Xp+p(2), . . . , Xp+p(m), . . .}.

(13)

We define the average of the statistical quantity given by Eq. (3) as follows:

S2(m, r, t) =
1
p

p∑

s=1

Cs(m, r, t)−
[
1
p
Cs(1, r, t)

]m

(14)

where p is an adjustable parameter to balance the precision and speed of calculation.
The definitions of ∆S2(m, t), S̄2(t), ∆S̄2(t) and S2 cor(t) are all the same as Eqs. (7),
(8), (9) and (10).

For p = 1, Eq. (14) is equal to Eq. (3), so the results of S2(m, r, t) have the
highest precision, but the algorithm has the highest time complexity. For p > 1,
the algorithm has the lower time complexity. Tests show that although the new
algorithm still has a few errors (the same situation as that in the C–C method),
these errors do not disturb the estimates of the local minima.

Furthermore, we just look for the first local minimum of ∆S̄2(t) as the first
optimal delay time τd. Considering S1 cor(t) and S2 cor(t) roundly, if we assign equal
importance to these two quantities, and define a new quantity

Scor(t) = S1 cor(t)− S2 cor(t) (15)
then we may simply look for the first local minimum peak value of the quantity
Scor(t) with the clear quality of chaotic period N . This optimal time gives the
optimal delay time window τw; but if the results are not with clear quality of chaotic
period N , the minimum of Scor(t) gives the optimal delay time window τw.

3.2. Numerical examples of the C–C–1 method

As tests, we apply the C–C–1 method to the Lorenz system. Large numbers of
simulations prove that the adjustments to the ranges of the embedding dimension m
can help to obtain a more appropriate optimal delay time τd. Let m = 2, 3, . . . , 7, p =
60, and other conditions be the same as the C–C method.

Figures 3, 4, and 5 show some contrastive results between the C–C method and
the C–C–1 method (where 3000 points are selected from 60001 to 63000).

Analyzing Figures 3, 4, and 5 shows that high-frequency oscillations are still
increasing along with the increase of t but they are improved significently, and more
importantly, the local maxima with the chaotic period N can be found from the
graph of the phase-space reconstruction (Figure 4).

In Figure 4, when t = 46, 92, 138, 184, the clear maximum peak values of S2 cor(t)
with the quality of chaotic period N are given. Comparing with Figure 3, these
values are all local minima of S1 cor(t). Thus, an important conclusion is drawn: in
the C–C–1 method, the optimal delay time window τw is estimated by the first local
minimum peak value of Scor(t), with a clear quality of chaotic period N .
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Fig. 3. C–C method: analysis on variable x from the Lorenz system (m = 2, 3, . . . , 7).
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Fig. 4. C–C–1 method: analysis on variable x from the Lorenz system

(m = 2, 3, . . . , 7, p = 60).

The results of different test intervals of the Lorenz system in the C–C–1 method
are shown in Table 2.

Table 2 shows that the estimates of the optimal delay time τd in the C–C–1
method are the same as that in the C–C method, whereas the estimates of the
optimal delay time window τw in the C–C–1 method – stable values – are different
from that in the C–C method. Therefore, by the formula τw = (m−1)τd, the results
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Fig. 5. C–C–1 method: results of local minimal peak values of Scor(t)

(m = 2, 3, . . . , 7, p = 60).

of the optimal embedding dimension m become more robust, and are most close to
the well-known optimal embedding dimension m calculated by the theoretical value
of the fractal dimension, d = 2.06 of the Lorenz system [6]. The complexity of
the prediction and the analysis on the chaotic time series based on the phase-space
reconstruction is lower than before.

Table 2. Results of the reconstructed variable x

from the Lorenz system (m = 2, 3, . . . , 7, p = 60).

Sample C–C method C–C–1 method
Interval m τd τw m τd τw

10001–13000 14 12 148 5 12 46
20001–23000 10 12 99 6 11 46
30001–33000 17 12 184 6 11 46
40001–43000 12 12 122 5 12 46
50001–53000 14 12 151 5 12 46
60001–63000 17 12 188 5 12 46
70001–73000 15 12 167 5 12 46
80001–83000 14 12 152 5 12 46
90001–93000 10 12 101 5 12 46

In order to test the universality of the C–C–1 method, we also applied it to the
Duffing chaotic system:





dx/dt = y
dy/dt = −δy − αx(1 + x2) + f cos z
dz/dt = ω

(16)

where δ, α, f and ω are constants. We solve this system of equations for [δ, α, f, ω] =
[0.05, 0.5, 7.5, 1], with initial conditions [x, y, z] = [−1, 0, 1], and integrate equations
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by function ode45 in MATLAB, to generate a time series of the variable x with
interval of integration from 0 to 5000, step h = 0.05.

In testing the Duffing system, we select 3000 points from 50001 to 53000. For
m = 2, 3, . . . , 7, p = 60, and in order to show the characteristic of the chaotic period
N , we let t = 1, 2, . . . , 300.

The reconstructed results of x from the Duffing system in the C–C method and
the C–C–1 method are shown in Figures 6, 7, and 8. The local minimum peak
values with the chaotic period N are also given in the graph of the phase-space
reconstruction.
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Fig. 6. C–C method: analysis on variable x from the Duffing system (m = 2, 3, . . . , 7).

Analyses show that the C–C–1 method has broader universality and a more appro-
priate optimal delay time window τw, and the optimal delay time τd can be obtained.

4. NOISE EFFECTS

To study the effects of noise on the C–C–1 method, we add Gaussian noise to the
Lorenz time series. Specifically, we examine the time series yi = xi + ησεi, where xi

is the noise-free Lorenz time series, σ is its standard deviation, εi is a Gaussian i.i.d.
random variable with zero mean and a standard deviation of 1, and η is the strength
of the noise. Noise levels of 10%, 20%, . . . , and 60% (with η = 0.1, 0.2, . . . , 0.6)
are added to the Lorenz time series, and the C–C–1 method is performed for each
of these noise levels. According to the error standard given in [3], we observe that
the estimates of the optimal delay time τd and the optimal delay time window τw

remain unchanged for η = 0.1, 0.2, 0.3, 0.4, but not for η = 0.5, 0.6. The results show
that the robustness of the C–C–1 method reaches 40%, whereas that of the C–C
method is 30%.
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Fig. 7. C–C–1 method: analysis on variable x from the Duffing system

(m = 2, 3, . . . , 7, p = 60).
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Fig. 8. C–C–1 method: results of local minimal peak values of Scor(t)

(m = 2, 3, . . . , 7, p = 60).

5. CONCLUSIONS

The C–C–1 method is an improvement of the C–C method. It designs one mode to
subdivide the time series by a parameter p, which is independent of the embedding
time t. The results of the process clearly show the quality of chaotic period N
of the chaotic time series. Furthermore, a new Scor(t) quantity to estimate the
optimal delay time window τw of the chaotic time series is given. As a new rule
of estimating the optimal delay time window τw, the C–C–1 method looks for the
first local minimum of the quantity Scor(t) and this optimal time should be the
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first period of the chaotic time series. On the other hand, we point out that in
the C–C method the rule of determining the optimal delay time τd by choosing the
zero crossings of S̄1(t) may lead to an incorrect value. The C–C–1 method looks for
the first local minimum of ∆S̄2(t), which gives the optimal delay time τd. In the
computing process, the parameter of the C–C method – embedding dimension m –
is adjusted rationally in order to obtain more appropriate estimates of the optimal
delay time τd. Tests show that the C–C–1 method can give more reliable and stable
estimates of the optimal delay time window τw and the optimal delay time τd. We
also demonstrate the robustness of this method in the presence of noise. The noise
levels reach 40%, which is about 10% higher than that of the C–C method.

ACKNOWLEDGEMENT

This research was partially supported by the National Nature Science Foundation of China
(grant No. 60675030), the Science and Technology Project of Education Office of Shandong
Province of China (project No. J06G01), and the Science and Research Foundation Project
of University of Ji’nan of China (project No.Y0614).

(Received September 30, 2007.)

REFERENC ES

[1] P. Grassberger and I. Procaccia: Measure the strangeness of strange attractors. Phys-
ica D 9 (1983), 189–208.

[2] R. S. Huang: Chaos and Application. Wuhan University Press, Wuhan 2000.
[3] H. S. Kim, R. Eykholt, and J.D. Salas: Nonlinear dynamics, delay times, and embed-

ding windows. Physica D 127 (1999), 48–60.
[4] J. H. Lu, J.A. Lu, and S. H. Chen: Analysis and Application of Chaotic Time Series.

Wuhan University Press, Wuhan 2002.
[5] X.Q. Lu, B.Cao, and M. Zeng et al. An algorithm of selecting delay time in the mutual

information method. Chinese J. Comput. Physics 23 (2006), 184–188.
[6] H.G. Ma, X. H. Li, and G.H. Wang: Selection of embedding dimension and delay time

in phase space reconstruction. J. Xi’an Jiaotong University 38 (2004), 335–338.
[7] M. Small and C. K. Tse: Optimal embedding parameters: A modeling paradigm.

Physica D: Nonlinear Phenomena 194 (2004), 283–296.
[8] N.H. Packard, J. P. Crutchfield, J.D. Farmer et al. Geometry from a time series. Phys.

Rev. Lett. 45 (1980), 712–716.
[9] T. Sauer, J. A. Yorke, and M. Casdagli: Embedology. J. Statist. Phys. 65 (1991),

579–616.
[10] F. Takens: Detecting Strange Attractors in Turbulence. Dynamical Systems and Tur-

bulence. (Lecture Notes in Mathematics 898.) Springer-Verlag, Berlin 1981, pp. 366–
381.

[11] F. Takens: On the Numerical Determination of the Dimension of an Attractor. Dynam-
ical System and Turbulence. (Lecture Notes in Mathematics 1125.) Springer-Verlag,
Berlin 1985, pp. 99–106.

[12] Y. Wang and W. Xu: The methods and performance of phase space reconstruction
for the time series in Lorenz system. J. Vibration Engrg. 19 (2006), 277–282.

[13] C.B. Xiu, X.D. Liu, and Y.H. Zhang: Selection of embedding dimension and delay
time in the phase space reconstruction. Trans. Beijing Institute of Technology 23
(2003), 219–224.



570 W.D. CAI, Y.Q. QIN AND B.R. YANG

[14] Y. Zhang and C. L. Ren: The methods to confirm the dimension of re-constructed
phase space. J. National University of Defense Technology 27 (2005), 101–105.

Wei-Dong Cai, School of Information Science and Engineering, University of Ji’nan,

Ji’nan 250022 and School of Information Engineering, University of Science and Tech-

nology Beijing, Beijing 100083. China.

e-mail: caiwd.jn@gmail.com

Yi-Qing Qin, Computer School, Beijing Information Science & Technology University,

Beijing 100085, China and School of Information Engineering, University of Science

and Technology Beijing, Beijing 100083. China.

e-mail: qyq email@sina.com

Bing-Ru Yang, School of Information Engineering, University of Science and Technology

Beijing, Beijing 100083. China.

e-mail: bryang kd@yahoo.com.cn


