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In applications of stochastic programming, optimization of the expected outcome need
not be an acceptable goal. This has been the reason for recent proposals aiming at con-
struction and optimization of more complicated nonlinear risk objectives.

We will survey various approaches to risk quantification and optimization mainly in the
framework of static and two-stage stochastic programs and comment on their properties.
It turns out that polyhedral risk functionals introduced in Eichorn and Römisch [17] have
many convenient features. We shall complement the existing results by an application
of contamination technique to stress testing or robustness analysis of stochastic programs
with polyhedral risk objectives with respect to the underlying probability distribution. The
ideas will be illuminated by numerical results for a bond portfolio management problem.
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1. INTRODUCTION

55 years ago, stochastic programming was introduced to deal with uncertain values
of coefficients which were observed in applications of mathematical programming.
These uncertainties were modeled as random and the assumption of complete knowl-
edge of the probability distribution of random parameters became a standard.

The classical stochastic programming (SP) models aim at hedging against conse-
quences of possible realizations of random parameters – scenarios – so that the final
expected outcome or position is the best possible.

The common SP model
min
x∈X

EP f(x, ω) (1)

is identified by the probability distribution P of random parameter ω with sample
space Ω, by the set X whose elements x are interpreted as decisions and by a random
objective f = f(x, ω), the loss or cost caused by decision x when scenario ω occurs.
EP is the expectation operator under P.

In most cases, it is sufficient to consider X and Ω as closed subsets of Euclidean
spaces. On the other hand, the structure of f may be quite complicated, e. g.
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for multistage problems. For convex X , a frequent assumption is that f is lower
semicontinuous and convex in x, i. e. f is a convex normal integrand.

Evidently, there are many choices of the “input” [P,X , f ] and stability, robustness
or worst-case analysis of the obtained optimal decision x∗ is needed. We will allow
only P to be subject to some variation, whereas X and f will be kept fixed; this
covers also the frequent case of incomplete knowledge of probability distribution.
We shall confine ourselves to the case when varying P does not depend on x, that is,
when the accepted decision does not influence the probability distribution P . (The
opposite case, when P in (1) may depend on decision x is also of importance and is
known as stochastic program with endogenous uncertainty ; also the case when X is
not fixed but may depend on P occurs in practice, e. g. in problems with probability
constraints.)

In the present paper we shall discuss stochastic programs with expectation cri-
terion replaced by a much general concept. This is connected with the current
tendency – to spell out explicitly the concern for hedging against risks connected
with the chosen (not necessarily optimal) decision x. However, the concept of risk is
hard to define. In practice, risk is frequently linked with the fact that the (random)
outcome of a decision is not known precisely, that it may deviate from the expec-
tation, etc. Here, the “outcome” may be the ex post observed value of the random
objective f(x∗, ω) in (1) for a chosen decision x∗ ∈ X . Another way of looking at
risk is related with an assessment of potential losses.

Similarly as the expected outcome criterion, also risk objectives/functionals will
be allowed to depend on the probability distribution P , but not on individual sce-
narios.

There are various types of risk. Their definitions depend on the context, on deci-
sion maker’s attitude and risk may posses many different attributes. To reflect risk
in stochastic decision models, it is necessary to quantify it. Explicit quantification of
risk appears in finance since 1952 in works of Markowitz, Roy and others. Another
classical possibility is to apply a suitable (dis)utility function to express the risk
attitude of the decision maker.

During the last decade, various functionals that describe risk, briefly risk, devi-
ation or acceptability functionals, were introduced and their properties studied; see
e. g. [20, 25, 26, 27, 31]. Their incorporating into the SP model makes the model
much harder to solve. The passage to risk objectives asks also for designing suit-
able stress tests, for comparisons of alternative choices of risk functionals and of
probability distributions and for further development of the related stability and
robustness analysis methods, e. g. [19, 28]. Applicability of various output analysis
techniques depends on the structure of the model, on the assumptions concerning
the probability distribution, on the available data and on hardware and software
facilities.

In applications, reasonable properties of risk functionals are requested. Mono-
tonicity with respect to the pointwise partial ordering of losses and subadditivity of
the risk functionals are evident requirements. Convexity allows to keep a relatively
friendly structure of the problem both for computational and theoretical purposes.
The polyhedral property, cf. CVaR introduced in [26], allows to rely on linear pro-
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gramming techniques for scenario-based stochastic linear programs with recourse
and with polyhedral risk functionals, see e. g. [17, 23] and Section 2.1.

For static formulations of stochastic programs such as (1), the outcome is a deci-
sion dependent one-dimensional random variable. This is, in general, no more true
in case of multistage stochastic programs. Modeling suitable multidimensional risk
functionals and analyzing their properties has become an active area of research, cf.
[25, 31].

We shall discuss various approaches to risk quantification in the framework of
static or two-stage stochastic programs. A two-stage stochastic linear program, SLP
is

min
x1∈X1

[
c>1 x1 + EPϕ1(x1, ω)

]
(2)

where for a given x1 ∈ X1 and scenario ω ∈ Ω, ϕ1(x1, ω) is the optimal value of the
second-stage program

minimizex2 c2(ω)>x2 subject to W (ω)x2 = h(ω)− T (ω)x1, x2 ≥ 0. (3)

Nonnegativity of the second-stage variables x2 can be replaced by the requirement
that x2 belong to a convex polyhedral cone X2. The common assumption is that X1

is nonempty, convex polyhedral and c1 is a deterministic vector.
For simplicity we will assume that all infima are attained and that all expectations

exist. Consult recent books [21] or [30] for more general cases.
Alternatively (see [30]), the two-stage stochastic linear program (2) – (3) can be

rewritten as
min

x1,x2(·)
EP [c>1 x1 + c2(ω)>x2(ω)] (4)

subject to x1 ∈ X1 and

W (ω)x2(ω) = h(ω)− T (ω)x1, x2(ω) ≥ 0 a.s. (5)

We will briefly introduce two-stage stochastic linear programs with polyhedral risk
functionals, cf. [17], at the place of the expectation in the objective function (4). The
results of [10, 12, 16] will be then extended to robustness analysis and stress testing
of polyhedral risk objectives and of their optimal values with respect to changes
of probability distribution P or, for scenario-based problems, to stress testing with
respect to out-of-sample scenarios. A bond portfolio management problem will serve
to illustrate some of ideas.

2. RISK FUNCTIONALS

Consider again the basic stochastic decision problem (1) in which the random out-
comes f(x, ω) are defined on X × Ω, with X ⊂ Rn, Ω ⊂ Rs nonempty, closed sets.
For each x ∈ X they are measurable on (Ω,B). The too large linear space of all
measurable functions is mostly replaced by some smaller linear subspace Z (e. g. by
Lp(Ω,B, P ), p ∈ [1,∞]).

Risk functional or risk measure is introduced as a proper function R which maps
the space Z of allowable outcomes to the extended reals. It means that R assigns a
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value R(z) to an uncertain outcome z = f(x, •) of decision x. The goal is to select
decision x which minimizes the risk R.

Risk functionals should posses some natural properties, cf. [20]. Let us recall
some of them.

Definition 1. For z1, z2 ∈ Z the pointwise partial ordering z1 ¹ z2 is defined by
z2(ω) ≥ z1(ω)∀ω ∈ Ω.

Definition 2. A mapping R : Z → R is called risk functional if it fulfills the
following conditions for all z, z1, z2 ∈ Z :

If z1 ¹ z2 then R(z1) ≤ R(z2); monotonicity wrt. pointwise ordering.
If m ∈ R, then R(z +m) = R(z) +m; translation equivariance.

Definition 3. Risk functionalR is called convex if it satisfies for arbitrary z1, z2∈Z
R(λz1 + (1− λ)z2) ≤ λR(z1) + (1− λ)R(z2) for all 0 ≤ λ ≤ 1

and is called homogeneous if R is a positively homogeneous function, i. e. R(λz) =
λR(z) for all z ∈ Z and λ ≥ 0.

When risk functional R is positively homogeneous, convexity is equivalent to
subadditivity : R(z1 + z2) ≤ R(z1) +R(z2) for arbitrary z1, z2 ∈ Z,

and in terminology of [3], R is called coherent risk functional or measure.

The concept of risk functional can be introduced without any reference to a
probability measure on (Ω,B) and for convex lower semicontinuous risk functionals,
a dual representation is possible and useful. With reference to [20, 25, 31] we will
not elaborate here on the general case of infinite dimensional probability spaces
Z = Lp(Ω,B, P ), p ∈ [1,+∞) and will focus mainly on the scenario-based problems:

For finite sample spaces, say Ω = {ω1, . . . , ωS}, the space Z is finite dimensional,
Z = RS . The probability distribution P is fully defined by probabilities ps of sce-
narios ωs ∀ s.

The above definitions imply that the classes of coherent and convex risk func-
tionals are closed with respect to convex linear combinations.

Proposition 1. Let Rk, k = 1, . . . ,K, be coherent (convex) risk functionals. Then
R =

∑
k αkRk with αk ≥ 0∀ k, ∑

k αk = 1 is also a coherent (convex) functional.

This simple observation is behind the spectral risk measures introduced in [1].

Comment. In parallel, deviation (risk) functionals, cf. [27], were designed for
applications to problems involving risk of uncertainty in the random position in the
sense of its nonconstancy. Particular examples are variance and standard deviation,
mean-absolute deviation and their one-side versions. The idea is to design a general
class of functionals which (except for symmetry) obey axioms taken from properties
of standard deviation, and relate them to risk functionals [27] under suitable addi-
tional conditions. Risk and deviation functionals can be then studied simultaneously
within the framework of acceptability functionals as done e. g. in [25].



Risk Objectives in Two-Stage SP Models 231

2.1. Polyhedral risk functionals

Contrary to expectation-type objectives, risk functionals need not be linear in the
probability distribution P and their introduction means that complexity of the re-
sulting risk minimizing problems increases essentially over complexity of the initial
expectation-type stochastic program (1). Consequently, many known results will no
more be valid. That’s why [17] introduce a class of convex polyhedral risk function-
als. Briefly, a polyhedral risk functional is defined as the optimal value of a certain
stochastic linear program with fixed recourse; the only random coefficients appear
on the right-hand sides.

Definition 4. (Eichorn and Römisch [17]) A risk functional R on Lp(Ω,B, P ), p ∈
[1,+∞), is called polyhedral if there exist k1, k2 ∈ IN, d1, w1 ∈ Rk1 , d2, w2 ∈ Rk2 , a
nonempty polyhedral set Y1 ⊆ Rk1 , and a polyhedral cone Y2 ⊆ Rk2 such that

R(z, P ) = inf{d>1 y1 + EP d>2 y2(ω)} (6)

subject to
y1 ∈ Y1, y2 ∈ Lp(Ω,B, P ), y2(ω) ∈ Y2 a.s. (7)

w>1 y1 + w>2 y2(ω) = z(ω) a.s. (8)

for every z ∈ Lp(Ω,B, P ).

It is easy to show that the above definition includes as a special case the Condi-
tional Value at Risk (cf. [26])

CVaRα(z, P ) = min
v

{
v +

1
1− αEP [z(ω)− v]+

}
; (9)

set in (6) – (8) Y1 = R, Y2 = R2
+, d1 = 1, d>2 = ( 1

1−α , 0), w1 = 1, w>2 = (1,−1).

Various important properties can be proved for convex polyhedral risk functionals
at the place of the objective function in (1), cf. [17, 19], namely:

• Optimization of scenario-based two-stage stochastic programs with convex
polyhedral risk objectives reduces to solution of linear programs.

• Generalization to multidimensional / multistage polyhedral risk functionals is
possible.

• There are promising applications, e. g. [18] or Chapter 6 of [25].

• One may exploit various qualitative and quantitative sensitivity results with
respect to changes of the probability distribution P that were derived for two-
stage stochastic programs of the form (6) – (8).

As we shall demonstrate in the next Section, for polyhedral risk functionals and
for their minimal values, also stress tests with respect to changes of the probability
distribution P, e. g. with respect to out-of-sample scenarios, can be developed. To
do so we shall firstly summarize the results valid for the one-period case and deal
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with two-stage stochastic programs with polyhedral risk objective. Recall that the
random objectives, e. g. f(x, ω) in (1), are interpreted as losses connected with the
first-stage decision if realization ω occurs.

According to Definition 4, one-period, static polyhedral risk functional R(z, P )
is the optimal value of a two-stage expectation-type stochastic program which in
turn can be rewritten with a fixed set Y1 of the first-stage decision variables y1. The
objective function (6) is convex in z and linear in the probability distribution P.

The random objective c>1 x1 + c2(ω)>x2(ω) of the two-stage program, see (4),
enters the constraint (8) in Definition 4 of the polyhedral risk functional R(z, P )
at the place of argument z(ω). We minimize then R(c>1 x1 + c2(ω)>x2(ω), P ) with
respect to x1 ∈ X1 and the second-stage constraints (5) instead of minimizing the
expectation EP (c>1 x1 + c2(ω)>x2(ω)).

It turns out that the optimal value of the resulting two-stage stochastic program
with a polyhedral risk objective is equal to the optimal value of the following extended
two-stage stochastic linear program

minimize {d>1 y1 + EP d>2 y2(ω)} (10)
subject to y1 ∈ Y1, y2 ∈ Lp(Ω,B, P ), y2(ω) ∈ Y2 a.s. (11)

x1 ∈ X1, x2 ∈ Lp(Ω,B, P ), W (ω)x2(ω) = h(ω)− T (ω)x1, x2(ω) ≥ 0 a.s. (12)

w>1 y1 + w>2 y2(ω) = c>1 x1 + c2(ω)>x2(ω) a.s. (13)

see [17] – a result comparable with the “optimization short-cut” for minimization
of CVaR in [26]. The resulting stochastic program is of the expectation type with
random entries c2(ω) in the extended recourse matrix.

Hence, two-stage stochastic linear programs with polyhedral risk objectives can
be transformed into expectation-based stochastic linear programs and they can be
rewritten in a form similar to (2) – (3) with fixed sets of decisions X1,Y1, independent
of P .

If the recourse matrix W ≡ W (ω) in (12) is non-random, the special form of
the extended recourse matrix in (12) – (13) allows to apply the stability results of
[29] under standard assumptions of relatively complete recourse, dual feasibility and
compactness of the first-stage solution set of (6) – (8), see Proposition 4.2 of [17].
For stochastic programs of this type, robustness analysis or stress testing of results
with respect to perturbations of probability distribution P has been developed, cf.
[7, 8, 10, 11] and will be briefly surveyed and applied in the next Section.

To complete this part, consider now scenario-based problems.
Let Ω = {ω1, . . . , ωS} and scenario probabilities are p1, . . . , pS . Then (6) – (8)

reads

R(z, P ) = inf

{
d>1 y1 +

S∑

s=1

psd
>
2 y

s
2

}
(14)

subject to
y1 ∈ Y1, y

s
2 ∈ Y2, w

>
1 y1 + w>2 y

s
2 = zs ∀ s. (15)
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Substituting for zs = c>1 x1 + cs>2 xs2 – the random objective in the scenario-
based version of the two-stage stochastic program (3) – (4), we get the minimum
risk solution xR(P ) by solving the extended two-stage stochastic linear program

ϕR(P ) := inf
x1,y1

{
d>1 y1 +

S∑

s=1

psd
>
2 y

s
2

}
(16)

subject to x1 ∈ X1, y1 ∈ Y1, y
s
2 ∈ Y2

W sxs2 = hs − T sx1, x
s
2 ≥ 0, w>1 y1 + w>2 y

s
2 = c>1 x1 + cs>2 xs2 ∀ s (17)

or, equivalently,

ϕR(P ) = inf
x1,y1

{
d>1 y1 +

S∑

s=1

psϕ
s(x1, y1)

}
(18)

subject to x1 ∈ X1, y1 ∈ Y1 and with

ϕs(x1, y1) = inf
{
d>2 y

s
2 |W sxs2 = hs − T sx1, x

s
2 ≥ 0, ys2 ∈ Y2, w

>
1 y1 + w>2 y

s
2

= c>1 x1 + cs>2 xs2

}
. (19)

Multiperiod/multistage polyhedral risk functionals have been defined in the same
spirit – as the optimal values of certain multistage stochastic linear programs. They
aim to capture the multiple dimensions of the risk which cannot be always tied only
with the outcome at the horizon; see Definition 3.7 of [17] and Section 3.3.5 of [25].

3. ROBUSTNESS ANALYSIS OF RISK OBJECTIVES

3.1. Contamination technique

Our approach is based on the contamination technique for stochastic programs (1).
It was developed in a series of papers as one of tools for analysis of robustness of the
optimal value with respect to deviations from the assumed probability distribution
P and/or its parameters; e. g. [7, 8, 10].

For construction of contamination bounds, let us repeat the formulation of the
stochastic program.

min
x∈X

F (x, P ) := EP f(x, ω) =
∫

Ω

f(x, ω)P (dω) (20)

with X independent of P, i. e. the form of (1).
Via contamination, robustness analysis with respect to changes in P gets reduced

to a much simpler analysis with respect to a scalar parameter λ :
Assume that (20) was solved for a probability distribution P and denote ϕ(P ) the

optimal value and X ∗(P ) the set of optimal solutions. Possible changes in probability
distribution P are modeled using contaminated distributions Pλ,

Pλ := (1− λ)P + λQ, λ ∈ [0, 1]
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with Q another fixed probability distribution. Limiting the analysis to the selected
direction only, the results are directly applicable but they are less general than
quantitative stability results with respect to arbitrary (but small) changes in P
summarized e. g. in [28].

The objective function in (20) is linear in P, hence

F (x, λ) :=
∫

Ω

f(x, ω)Pλ(dω) = (1− λ)F (x, P ) + λF (x,Q)

is linear in λ. Suppose that the stochastic program (20) has an optimal solution for
all considered distributions Pλ, 0 ≤ λ ≤ 1. Then the optimal value function

ϕ(λ) := min
x∈X

F (x, λ)

is concave on [0, 1] which implies its continuity and existence of directional derivatives
in (0, 1). Continuity at the point λ = 0 is a property related with stability results for
the stochastic program in question. In general, one needs a nonempty, bounded set
of optimal solutions X ∗(P ) of the initial stochastic program (20). This assumption
together with stationarity of derivatives dF (x,λ)

dλ = F (x,Q) − F (x, P ) are used to
derive the form of the directional derivative

ϕ′(0+) = min
x∈X∗(P )

F (x,Q)− ϕ(0) (21)

which enters the upper bound for the optimal value function ϕ(λ)

ϕ(0) + λϕ′(0+) ≥ ϕ(λ) ≥ (1− λ)ϕ(0) + λϕ(1), λ ∈ [0, 1]; (22)

see [7, 10] and references therein.
If x∗(P ) is the unique optimal solution of (20), ϕ′(0+) = F (x∗(P ), Q) − ϕ(0),

i. e. the local change of the optimal value function caused by a small change of P
in direction Q − P is the same as that of the objective function at x∗(P ). If there
are multiple optimal solutions, each of them leads to an upper bound ϕ′(0+) ≤
F (x(P ), Q) − ϕ(0), x(P ) ∈ X ∗(P ). Consequently, contamination bounds (22) are
relaxed to

(1− λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕ(Pλ) ≥ (1− λ)ϕ(P ) + λϕ(Q) (23)

valid with an arbitrary x(P ) ∈ X ∗(P ) and λ ∈ [0, 1].
Contamination bounds (22), (23) are global bounds which hold true for all λ ∈

[0, 1]. They quantify the change in the optimal value due to the considered pertur-
bations of (20) which is a true robustness result. The probability distribution Pλ
can be also understood as a result of contamination of Q by P and alternative con-
tamination bounds can be constructed accordingly. They differ in the upper bound,
now constructed as

λϕ(Q) + (1− λ)F (x(Q), P ).

Its joint application together with the initial upper bound (23) leads to a substan-
tially tighter bound.
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Concavity of the optimal value function ϕ(λ) is important for constructing the
bounds. It does not hold true, in general, when the set X depends on the probability
distribution P. In such cases and under additional assumptions, only local stability
results can be proved, cf. [8]. On the other hand the results can be generalized to
objective functions F (x, P ) convex in x and concave in P, see [10, 11]. To derive these
generalizations, it is again necessary to analyze persistence and stability properties of
the parametrized problems minx∈X F (x, Pλ) and to derive the form of the directional
derivative. Under the assumptions listed above, the optimal value function ϕ(λ)
remains concave on [0, 1]. Additional assumptions are needed to get the existence of
the derivative

ϕ′(0+) = min
x∈X∗(P )

d
dλ
F (x, Pλ)|λ=0+ ,

see e. g. [10] and references therein.
For expected (dis)utility models, stress testing and robustness analysis via con-

tamination with respect to changes in the probability distribution P is a straightfor-
ward procedure because the objective function is linear in P . It can be extended to
stress testing for convex risk or deviation functionals via contamination: When the
risk or deviation functionals are concave with respect to the probability distribution
P , they are concave with respect to the parameter λ of the contaminated probability
distributions (1 − λ)P + λQ. Hence, contamination bounds for their value and for
optimal value of the risk minimization models with respect to changes in P can be
obtained, provided that the directional derivatives exist. This applies also to the
mean-variance model, cf. [12].

Particularly, stress testing and robustness analysis of polyhedral risk functionals
and of their minimal values follow similarly as for CVaR in [16].

3.2. Contamination for static polyhedral risk functionals

To get the form (20), we rewrite the polyhedral risk functional R(z, P ) defined by
(6) – (8):

R(z, P ) = min
y1∈Y1

{d>1 y1 + EPϑ(y1, ω)} (24)

where for a given y1 ∈ Y1 and scenario ω ∈ Ω, ϑ(y1, ω) is the optimal value of the
second-stage program

minimize d>2 y2 subject to w>1 y1 + w>2 y2 = z(ω), y2 ∈ Y2; (25)

compare with (2) – (3). Notice that for CVaRα, ϑ(y1, ω) = 1
1−α [z(ω)− y1]+.

Denote
G(y1, P ) = d>1 y1 + EPϑ(y1, ω)

the objective function in (24). It is linear in P, hence for the contaminated proba-
bility distribution

Pλ = (1− λ)P + λQ, λ ∈ [0, 1],

the objective function G(y1, λ) := G(y1, Pλ) is linear in λ. Its optimal value

R(z, λ) = R(z, Pλ) = min
y1∈Y1

G(y1, Pλ)
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is a concave function of λ. This allows to construct the contamination bounds (22)

R(z, P ) + λR′(z, 0+) ≥ R(z, Pλ) ≥ (1− λ)R(z, P ) + λR(z,Q). (26)

The directional derivative needed in (26) follows the usual pattern (21):

R′(z, 0+) = min
y1∈Y∗1 (P )

G(y1, Q)−R(z, P ) (27)

with the set Y∗1 (P ) of optimal first-stage solutions y1(P ) of (24) – (25) obtained for
probability distribution P . To avoid minimization in (27), one may again choose an
arbitrary optimal solution y1(P ) ∈ Y∗1 (P ) and to get an upper bound

R′(z, 0+) ≤ G(y1(P ), Q)−R(z, P )

for the derivative in (27). To evaluate this bound means to get in addition the
expected second-stage costsG(y1, Q) for an already found optimal first-stage solution
y1(P ) with respect to the alternative probability distribution Q.

3.3. Contamination of minimal static polyhedral risk

The minimal risk follows by solving the extended two-stage SLP (10) – (13) or by
minimizing with respect to (12) the polyhedral risk functional R(z, P ) defined by
(6) – (8); just the right-hand side z(ω) is replaced by the random objective c>1 x1 +
c2(ω)>x2(ω) of the two-stage SLP. See [17] for details.

For both possibilities, contamination bounds for the minimal risk value can be
constructed (and are equal). Indeed, the extended two-stage SLP can be rewritten
as

ϕR(P ) := min
x1∈X1,y1∈Y1

[d>1 y1 + EP %(x1, y1, ω)] (28)

with
%(x1, y1, ω) = min d>2 y2

subject to constraints (11) – (13) to be satisfied with a fixed x1 ∈ X1, y1 ∈ Y1 and
scenario ω.

Hence, to get the contamination bounds (22) for ϕR(λ) := ϕR(Pλ) it is necessary
to solve (28) for the contaminating probability distribution Q to get the minimal risk
ϕR(Q) and to evaluate the derivative ϕ′R(0+) or its upper bound. The additional
numerical effort can be reduced again to evaluating the objective function in (28) at
an arbitrary optimal solution x1R(P ), y1R(P ) of (28) obtained for the initial prob-
ability distribution P but taking the expectation with respect to the contaminating
probability distribution Q. The result is

d>1 y1R(P ) + EQ%(x1R(P ), y1R(P ), ω).

For scenario-based problems with Q carried by scenarios ωσ, σ = 1, . . . , S′, with
probabilities qσ one has to compute the minimal second-stage costs % for all addi-
tional scenarios ωσ

%σ(x1R(P ), y1R(P )) := min d>2 y
σ
2
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subject to

Wσxσ2 = hσ−T σx1R(P ), xσ2 ≥ 0, yσ2 ∈ Y2, w
>
1 y1R(P ) +w>2 y

σ
2 = c>1 x1R(P ) + cσ>2 xσ2

and their weighted average
S′∑

σ=1

qσ%
σ(x1R(P ), y1R(P )).

An extension of these approaches to robustness analysis of multiperiod polyhedral
risk functionals is more involved. Some possibilities based on [9, 13] are presented
in [14].

4. APPLICATION: BOND PORTFOLIO MANAGEMENT PROBLEM

The main purpose of the considered bond portfolio management problem is to pre-
serve the value of a bond portfolio of a risk averse or risk neutral institutional investor
over time. For simplicity, neither liabilities nor external cash flows are taken into
account and the interest rate evolution is assumed to be the only factor which drives
the prices of the considered bonds. It means that given a sequence of equilibrium
future short term interest rates rt valid for the time interval (t, t+1], t = 0, . . . , T−1,
the fair price of the jth bond at time t just after the coupon was paid equals the total
cash flow fjτ , τ = t+ 1, . . . , T, generated by this bond in subsequent time instances
discounted to t:

Pjt(r) =
T∑

τ=t+1

fjτ

τ−1∏

h=t

(1 + rh)−1 (29)

where T is greater or equal to the time to maturity.
The future interest rates are not known with certainty and are modeled as ran-

dom. We assume that (as a result of a scenario generation procedure) their discrete
probability distribution P is carried by a finite number of scenarios – T -dimensional
vectors rs of the short rates rst , t = 0, . . . , T − 1, s = 1, . . . , S, with probabilities
ps > 0, s = 1, . . . , S,

∑
s ps = 1; r0 (the rate valid in the first period) is known.

The problem is formulated below as a multiperiod two-stage scenario-based SLP
with complete random recourse (e. g. [4] or Chapter 6 of [15]).

We denote

j = 1, . . . , J, indices of the considered bonds and Tj the dates of their maturities;
T = maxj Tj .

t = 0, . . . , T0 < T the considered discretization of the planning horizon T0;

aj ≥ 0 the initial known holdings (in face value) of bond j;

a0 ≥ 0 the initial known holding in riskless asset;

fsjt cash flow generated from bond j at time t under scenario s expressed as a
fraction of its face value;
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ξsjt and ηsjt are the selling and purchasing prices of bond j at time t for scenario s
obtained from the corresponding fair prices (29) by adding the accrued interest
Asjt and by subtracting or adding scenario independent transaction costs and
spread; the initial prices ξj0 and ηj0 are known, i. e. scenario independent;

xj/uj are face values of bond j purchased/sold at the beginning of the planning
period, at t = 0; xsjt/u

s
jt are the corresponding values for period t under

scenario s.

hj0 is the face value of bond j held in portfolio after the initial decisions xj , uj have
been made; hsjt are the corresponding holdings for period t under scenario s.

The first-stage decision variables xj , uj , hj0 are nonnegative,

uj + hj0 = aj + xj ∀ j, (30)

h+
0 +

∑

j

ηj0xj = a0 +
∑

j

ξj0uj (31)

where the nonnegative variable h+
0 denotes the surplus. We assume a positive market

value of the initial portfolio, W0 = a0 +
∑
j ξj0aj > 0, which implies that the set of

the feasible first-stage solutions is nonempty and bounded.
Provided that an initial trading strategy determined by feasible scenario inde-

pendent first-stage decision variables xj , uj , h+
0 and hj0 for all j has been accepted,

the subsequent second-stage scenario-dependent decisions have to be made in an
optimal way regarding the goal of the model, i. e. to maximize the final value of the
portfolio subject to linear constraints on conservation of holdings and rebalancing
the portfolio

maximize W s
T0

:=
∑

j

ξsjT0
hsjT0

+ h+s
T0

(32)

subject to
hsjt + usjt = hsj,t−1 + xsjt ∀ j, 1 ≤ t ≤ T0, (33)

∑

j

ξsjtu
s
jt +

∑

j

fjth
s
j,t−1 + (1− δ + rst−1)h+s

t−1 =
∑

j

ηsjtx
s
jt + h+s

t , 1 ≤ t ≤ T0, (34)

xsjt ≥ 0, usjt ≥ 0, hsjt ≥ 0, h+s
t ≥ 0∀ j, 1 ≤ t ≤ T0, (35)

with h+s
0 = h+

0 , h
s
j0 = hj0 ∀ j; the auxiliary variables h+s

t describe investments in
the riskless asset (cash) for period t under scenario s. Positive values of parameter
δ account for difference between the returns for bonds and for cash.

With WT0(x, u, h0, h
+
0 ; rs) the corresponding maximal value of the second-stage

scenario rs subproblem (32) – (35) for fixed feasible first-stage decisions h+
0 , xj , uj , hj0

for j = 1, . . . , J, the full stochastic program can be written in the form (1):
• The vector of decision variables x←→ [x, u, h0, h

+
0 ],

• the set of feasible solutions X is defined by nonnegativity constraints on all
first-stage variables and by constraints (30) – (31),

• the random objective function f(x, ω)←→ −WT0(x, u, h0, h
+
0 ; r).
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(The symbol ←→ relates the notation used in Section 1 to that used in the applica-
tion.)

The function WT0(•; r) is piece-wise linear, concave in [x, u, h0, h
+
0 ] for any interest

rate scenario r ∈ RT . The considered stochastic program minx∈X EP f(x, ω) is

minimize −
S∑

s=1

psWT0(x, u, h0, h
+
0 ; rs) (36)

subject to nonnegativity constraints on all variables and subject to (30) – (31).
The initial goal – to preserve the value of the portfolio over time – was formulated

as maximization of the expected wealth at the horizon. Alternatively, one may relate
the outcome to the (known) initial value W0 = a0 +

∑
j ξj0aj of the portfolio and

to solve

max
1
W0

S∑

s=1

psWT0(x, u, h0, h
+
0 ; rs) or max

1
W0

[
S∑

s=1

psWT0(x, u, h0, h
+
0 ; rs)−W0

]
,

or

min− 1
W0

S∑

s=1

psWT0(x, u, h0, h
+
0 ; rs) or min

1
W0

[
W0 −

S∑

s=1

psWT0(x, u, h0, h
+
0 ; rs)

]

over (30) – (31) and nonnegativity constraints.

To take into account risks, a suitable utility or disutility function may be applied
in (36). This traditional approach suffers from the fact that it may be difficult to
assess the form of the utility function which reflects adequately decision maker’s risk
attitude. Moreover, it introduces nonlinearities into the objective function; see [4]
for a discussion and for results of numerical experiments.

To apply in (36) the mean-variance criterion to the best scenario-dependent out-
comes −WT0(x, u, h0, h

+
0 ; rs) is not a satisfactory choice. Among others, it leads to

problems with piece-wise convex linear-quadratic objective function which need not
be convex; cf. [2]. Robust optimization objective function suggested in [22] applies
the mean-variance criterion to feasible scenario outcomes −W s

T0
:= −∑j ξ

s
jT0
hsjT0
−

h+s
T0

; hence, it preserves convexity properties of the resulting deterministic program.
These two criteria may be related to deviation functionals of [27].

Another possibility is to replace the expectation in (36) by a risk functional
which preserves convexity. Polyhedral risk functionals fulfil this requirement and,
similarly as for the scenario-based stochastic linear programs with an expectation-
type objective, they lead to a linear program. Using CVaR criterion or a mean-CVaR
objective is a special choice.

The minimum risk rebalancing strategy [x, u, h0, h
+
0 ] of the bond portfolio man-

agement problem is then obtained by solving the extended two-stage stochastic linear
program

minimize {d>1 y1 +
S∑

s=1

psd
>
2 y

s
2}
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subject to (30), (31), (33) – (35), y1 ∈ Y1, y
s
2 ∈ Y2 ∀ s and the coupling constraints

w>1 y1 + w>2 y
s
2 = −

∑

j

ξsjT0
hsjT0

− h+s
T0

∀ s.

The last model was applied to the historical input data from the Italian bond
market for equiprobable interest rates scenarios from scenario set Part 8, cf. [5], and
with coefficients (9) corresponding to CVaR risk functional for various values of α.
The planning horizon was set to 1 year and monthly time discretization was used.
The considered date October 3, 1994 allows to include also puttable bonds in the
portfolio; moreover, none of the bonds expires within the investment horizon. The
initial portfolio market value equals 10485.

With the CVaR objective function for α ≥ 0.9, the first-stage optimal decision
shows clearly the tendency to keep cash, contrary to investing all to puttable bond
CTO13212 obtained for expected wealth maximization; the minimal CVaRα value
equals −11436 and the expected wealth decreased for 1.15 %. With an additional
upper limit on cash holdings, the decrease of the expected wealth was lower.

To evaluate CVaR of the portfolio rebalanced according to the optimal first-
stage decision [x(P ), u(P ), h0(P ), h+

0 (P )] of (30) – (31), (36), the optimal scenario-
dependent outcomes −WT0(x(P ), u(P ), h0(P ), h+

0 (P ); rs) are used as the right-hand
sides zs in (15) or in (9).

In our example, we use equiprobable values −11909, −11778, −11640, −11426,
−11419, −11386, −11354, −11336 of −WT0(x(P ), u(P ), h0(P ), h+

0 (P ); rs) at the
place of zs, s = 1, . . . , 8. The CVaR0.9(P ) of the rebalanced portfolio equals −11336
and is attained at y1(P ) = −11336.

Stress testing of this CVaRα value with respect to an out-of-sample scenario r∗

and the related loss z∗ means

1. to get CVaRα for the degenerated probability distribution Q = δ{r∗}, i. e. to
use CVaRα(Q) = z∗, y1R(Q) = z∗ in the lower bound (1 − λ)y1(P ) + λz∗ =
−(1− λ)11336 + λz∗,

2. to evaluate the performance of the rebalanced portfolio [h0(P ), h+
0 (P )] along

scenario r∗ which appears in the derivative (27). The result is the left upper
bound −11336 + 10λ[11336 + z∗]+.

For the right upper bound, one starts with the optimal solution y1(Q) = z∗ of
the deterministic CVaR problem (14) – (15) with only one coupling constraint. The
next step is to get

ϑ(z∗, zs) = min
{

1
1− αy

s
21 | z∗ + ys21 − ys22 = zs, ys21, y

s
22 ≥ 0

}
=

1
1− α [zs − z∗]+

for all initial scenarios zs and their average
∑
s

ps
(1−α) [zs − z∗]+. Finally,

G(z∗, P ) = z∗ +
∑

s

ps
(1− α)

[zs − z∗]+
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enters the formula for the directional derivative at Q in the direction of Q − P
similarly as done in (27).

Evidently, the value of the directional derivative depends on the position of z∗

with respect to the initial zs values. In our simple case, the discussion based on
Proposition 8 and Corollary 9 of [26] is straightforward.
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