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STOCHASTIC CONTROL
OPTIMAL IN THE KULLBACK SENSE

Jan Šindelář, Igor Vajda and Miroslav Kárný

The paper solves the problem of minimization of the Kullback divergence between a par-
tially known and a completely known probability distribution. It considers two probability
distributions of a random vector (u1, x1, . . . , uT , xT ) on a sample space of 2T dimensions.
One of the distributions is known, the other is known only partially. Namely, only the
conditional probability distributions of xτ given u1, x1, . . . , uτ−1, xτ−1, uτ are known for
τ = 1, . . . , T . Our objective is to determine the remaining conditional probability distribu-
tions of uτ given u1, x1, . . . , uτ−1, xτ−1 such that the Kullback divergence of the partially
known distribution with respect to the completely known distribution is minimal. Explicit
solution of this problem has been found previously for Markovian systems in Karný [6].
The general solution is given in this paper.
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1. INTRODUCTION

The present paper is devoted to the minimization of Kullback divergence between
a partially known and a completely known probability distribution. It is motivated
by the formulation of the optimal stochastic control problem stated in Karný [6].

The optimality is based on the concept of Kullback divergence [8, 9]. It is widely
used in estimation, approximation, filtering and control problems (see [6, 7]), where
it plays the role of information-theoretic “distance” between different probability
distributions of data.

Two probability distributions are considered, say P (u1, x1, . . . , uT , xT ) and
Q(u1, x1, . . . , uT , xT ), both defined on a space with even number of dimensions.
The distribution Q as well as conditional probability distributions P (xτ |u1, x1, . . .
. . . , uτ−1, xτ−1, uτ ), τ = 1, . . . , T are known. The distribution P (u1, x1, . . . , xT , uT )
is uniquely specified by the remaining conditional probability distributions
P (uτ |u1, x1, . . . , uτ−1, xτ−1), τ = 1, . . . , T . Our goal is to specify these remain-
ing conditional distributions in such a way that the Kullback divergence of P with
respect to Q is minimal.

Optimal stochastic control is a well developed field (see e. g. [2, 3, 4]) with numer-
ous applications like control of technological processes and control of economic or
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biological systems. Real time implementation of the control algorithms requires ex-
plicit numerically feasible solutions. The class of problems meeting this requirement
consists essentially of

• linear Gaussian systems controlled via minimization of the expected value of
a quadratic loss function (see e. g. [1, 3, 13]);

• controlled Markov chains with a finite number of states (see e. g. [3, 10, 11, 12]).

An alternative formulation of the control design has been proposed in [6]. Loosely
speaking, optional parts of the probabilistic description of the closed loop are selected
so that the Kullback divergence [8, 9] of this description with respect to some ideal
description is minimized. The conditional probability distributions P (uτ |u1, x1, . . .
. . . , uτ−1, xτ−1) define controllers controlling a process represented by the condi-
tional probability distributions P (xτ |u1, x1, . . . , uτ−1, xτ−1, uτ ), τ = 1, . . . , T . The
probability distribution Q(u1, x1, . . . , uT , xT ) describes an ideal course of the con-
trolled process. The aim is to minimize a distance from the controlled process to its
ideal description.

An explicit solution of this optimization problem has been derived for Markovian
systems in [6]. Here the general case is solved.

The studied general systems and related mathematical concepts and notations are
introduced in Section 2. The minimization problem solved in the paper is rigorously
stated in Section 3. Section 4 is devoted to the solution of this problem.

2. MODEL AND NOTATION

Let for all 1 ≤ τ ≤ T , (Xτ ,Aτ , µτ ) be σ-finite state measure spaces and (Uτ ,Sτ , ντ )
σ-finite control measure spaces. The controls uτ ∈ Uτ lead to states xτ ∈ Xτ
stochastically depending on uτ and also on the previous history

zτ−1 = (y1, . . . , yτ−1) (1)

where here and in the sequel,

yτ ≡ (xτ , uτ ) ∈ Yτ ≡ (Xτ ⊗ Uτ ) , 1 ≤ τ ≤ T. (2)

The interplay between controls and states in the time horizon 1 ≤ τ ≤ T is thus
described by a probability measure Π on (ZT , CT ). Here and in the sequel, for every
1 ≤ t ≤ T we use the notation

(Zt, Ct) = ⊗tτ=1 (Yτ , Bτ ) , Bτ = Aτ ⊗ Sτ . (3)

Let PT be the class of all probability measures Π on (ZT , CT ) dominated in the
sense

Π ¿ λT (4)

where we put for every 1 ≤ t ≤ T

λt = µt ⊗ νt, µt = ⊗tτ=1µτ , ν
t = ⊗tτ=1ντ . (5)
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All Π ∈ PT are λT a. s. uniquely represented by the densities

π =
dΠ
dλT

, π = π(zT ), zT ∈ ZT . (6)

We assume more, namely that the densities π of the measures Π ∈ PT can be
decomposed into products of regular conditional densities as follows

π (zT ) ≡ π (y1, . . . , yT ) =
∏T

τ=1
π (yτ |zτ−1) (7)

where
π (y1|z0) ≡ π (y1) = π (x1, u1) (8)

and that, moreover, for every 1 ≤ τ ≤ T takes place the decomposition

π (yτ |zτ−1) ≡ π (xτ , uτ |zτ−1)

= π (uτ |zτ−1)π (xτ , uτ |zτ−1) . (9)

Here in accordance with (8) it is assumed that

π (x1, u1|z0) ≡ π (x1, u1) = π (u1)π (x1|u1) . (10)

An important convention adopted in (6) – (10), as well as everywhere in the se-
quel, is that the arguments of the densities and conditional densities specify the
corresponding unconditional and conditional densities. This convention is common
in the literature on information theory, see e. g. [5].

It follows from (7) – (10) that for every 1 ≤ τ ≤ T the functions

π (zt) ≡ π (y1, . . . , yt) =
∏t

τ=1
π (yτ |zτ−1)

=
∏t

τ=1
π (uτ |zτ−1)π (xτ |uτ , zτ−1) (11)

are probability densities on the σ-finite measure spaces

(Zτ , Cτ , λτ ) . (12)

These densities represent interplay between the controls (u1, . . . , ut) and states
(x1, . . . , xt) provided that the controls are governed by the stochastic control rules

Π(c) = (π (uτ |zτ−1) : 1 ≤ τ ≤ T ) (13)

(cf. (10)) and that the controlled system reacts to these controls by the system
dynamics rules

Π(s) = (π (xτ |uτ , zτ−1) : 1 ≤ τ ≤ T ) (14)

(cf. (10) again).
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3. THE PROBLEM

Let Q ∈ PT be a probability measure characterized for every 1 ≤ t ≤ T by the
densities

q (zt) =
∏t

τ=1
q (uτ |zτ−1) q (xτ |uτ , zτ−1) (15)

(cf. (11)) corresponding to the system with a given dynamics

Q(s) = (q (xτ |uτ , zτ−1) : 1 ≤ τ ≤ T ) (16)

(cf. (13)) and to a given stochastic control

Q(c) = (q (uτ |zτ−1) : 1 ≤ τ ≤ T ) (17)

(cf. (14)). Further, let P0, T ⊆ PT be a subset of probability measures P ∈ PT
characterized for every 1 ≤ t ≤ T by the densities

p (zt) =
∏t

τ=1
p (uτ |zτ−1) p (xτ |uτ , zτ−1) (18)

(cf. (11)) corresponding to a given system dynamics

P(s) = (p (xτ |uτ , zτ−1) : 1 ≤ τ ≤ T ) (19)

(cf. (13)) which may be in general different from (16) and to a stochastic control
from a given class

P(c) =
{

P(c) = (p (uτ |zτ−1) : 1 ≤ τ ≤ T )
}

(20)

(cf. (14)) of admissible stochastic controls.
In this paper we solve the problem how to find the probability measure P0 ∈ P0, T

characterized for every 1 ≤ t ≤ T by the densities

p0 (zt) =
∏t

τ=1
p0 (uτ |zτ−1) p (xτ |uτ , zτ−1) (21)

corresponding to the given system dynamics (19) and to the desirable stochastic
controls

P(c)
0 = (p0 (uτ |zτ−1) : 1 ≤ τ ≤ T ) ∈ P(c) (22)

(cf. (20)) which are optimal in the sense

P0 = argminP∈P0, T
K (P ||Q) (23)

where

K (P ||Q) =
∫

ZT
p (zT ) ln

p (zT )
q (zT )

dλT (zT ) (24)

is the Kullback divergence of P and Q with the usual convention

p ln
p

q
:=

{
0 if p = 0, q ≥ 0 ,
∞ if p > 0, q = 0

(25)



Stochastic Control Optimal in the Kullback Sense 57

behind the integral. The problem is thus to find the optimal admissible controls (22).

The solution P0 of the minimization problem (23) may not exist, e. g. Q may be
a boundary point of P0, T not contained in P0, T so that

inf
P∈P0, T

K (P ||Q) = 0

while K (P ||Q) > 0 for all P ∈ P0, T due to the assumption Q /∈ P0, T . Sufficient
conditions for the existence as well as the explicit construction rule are given in the
next section.

4. SOLUTION

Throughout this section we put Z0 = {z0} and for every (x, u, z) ∈ Xτ ⊗Uτ ⊗Zτ−1

we introduce the symbols

pz(u)
4
= p(u|z), puz(x)

4
= p(x|u, z)

qz(u)
4
= q(u|z), quz(x)

4
= q(x|u, z)

(26)

if 1 ≤ τ ≤ T and, in accordance with (10),

pz0(u)
4
= p(u), puz0(x) = pu(x)

4
= p(x|u)

qz0(u)
4
= q(u), quz0(x) = qu(x)

4
= q(x|u)

(27)

if τ = 1 where on the right-hand sides are the above introduced densities w. r. t.
µτ , ντ . Further, we assume that the domination relation

P0, T ¿ Q (28)

holds which means that the densities (26), (27) as well as the densities (15), (18)
satisfy the relation

q = 0⇒ p = 0. (29)

Therefore, the Kullback divergences of the densities p, q in (15), (18) are for all
1 ≤ τ ≤ T well defined by the formula

Kτ (p||q) =
∫

Zτ
p (zτ ) ln

p (zτ )
q (zτ )

dλτ (zτ ) (30)

and the same divergences of the conditional densities (26), (27) are well defined by
the formulas

Kτ (puz||quz) =
∫

X
puz (x) ln

puz (x)
quz (x)

dµτ (x) (31)

(cf. [14]). By (11), the density π of any Π ∈ PT satisfies for

zτ = (x, y, z) ∈ Zτ = Xτ ⊗ Uτ ⊗Zτ−1 (32)
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the relation
π (zτ ) = π(u|z)π(x|u, z)π(z). (33)

Consequently,

Kτ (p||q)=
∫

Zτ−1

p(z)
[∫

Uτ
pz(u)

(
K (puz||quz)+ln

pz(u)
qz(u)

)
dντ (u)+ln

p(z)
q(z)

]
dλτ−1(z).

(34)
Let us define and/or suppose for all (u, z) ∈ Uτ ⊗Zτ−1 and for all 1 ≤ τ ≤ T

ατ (u, z)
4
= ετ (u, z) +K (puz||quz) , (35)

cτ (z)
4
=

∫

Uτ
qz(u)e−ατ (u, z) dντ (u) ∈ (0, ∞), (36)

ετ (u, z)
4
= −

∫

Xτ
ln cτ+1(x, u, z)puz(x) dµτ (x) (37)

where cT+1(x, u, z)
4
= 1 and the expressions containing z0 ∈ Z0 are precised in the

sense of (27), i. e. we put

α1(u, z0) = α1(u)
4
= ε1(u) +K (pu||qu) , (38)

c1(z0) = c1
4
=

∫

U1

q(u)e−α1(u) dν1(u) ∈ (0, ∞), (39)

ε1(u, z0) = ε1(u)
4
= −

∫

X1

ln c2(x, u)pu(x) dµ1(x). (40)

Theorem 4.1. Let for every 1 ≤ τ ≤ T the conditions (36) hold and let us
consider the system of probability densities P(c)

0 of the form (22) defined for every
(u, z) ∈ Uτ ⊗Zτ−1 by the formulas

p0(u|z) = p0, z(u)
4
=
qz(u)e−ατ (u, z)

cτ (z)
, 1 ≤ τ ≤ T (41)

where ατ , cτ are given by (35) – (40). If this system belongs to P(c), then the cor-
responding unconditional probability measure P0 given by the formula (21) satisfies
(23), that is, it solves the problem of Section 3. The minimum achieved in (23) is

K (P0||Q) = − ln c1

for c1 given by (39).

P r o o f . Fix any 1 ≤ τ ≤ T and put

Eτ =
∫

Zτ−1

p(z)
[∫

Uτ
ετ (u, z)pz(u) dντ (u)

]
dλτ−1(z). (42)

We shall minimize over the probability densities pz(·) = p(·|z), z ∈ Zτ−1 on Uτ the
functional

Fτ (p||q) = Kτ (p||q) + Eτ
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for Kτ (p||q) given by (34). By (34), (42) and (35), (41), Fτ (p||q) can be written as
the integrals

∫

Zτ−1

p(z)
[∫

Uτ
pz(u)

(
ατ (u, z) + ln

pz(u)
qz(u)

)
dντ (u) + ln

p(z)
q(z)

]
dλτ−1(z)

=
∫

Zτ−1

p(z)
[∫

Uτ
pz(u)

(
− ln cτ (z) + ln

pz(u)
p0, z(u)

)
dντ (u) + ln

p(z)
q(z)

]
dλτ−1(z)

=
∫

Zτ−1

p(z)
[
− ln cτ (z) +K (pz||p0, z) + ln

p(z)
q(z)

]
dλτ−1(z).

Therefore
argminpzFτ (p||q) = p0, z

(cf. (41)) and

min
pz
Fτ (p||q)

=
∫

Zτ−1

p(z)
[
− ln cτ (z) + ln

p(z)
q(z)

]
dλτ−1(z)

=
∫

Zτ−2

p(z)

[∫

Uτ−1

pz(u)
(
ατ−1(u, z) + ln

pz(u)
qz(u)

)
dντ−1(u) + ln

p(z)
q(z)

]
dλτ−2(z)

(cf. (35) – (37)) for 2 ≤ τ ≤ T and

min
pz
F2 (p||q) =

∫

Z1

p(z)
[
− ln c2(z) + ln

p(z)
q(z)

]
dλ1(z)

=
∫

U1

p(u)
(
ε1(u) +K (pu||qu) + ln

p(u)
q(u)

)
dν1(u)

=
∫

U1

p(u)
(
α1(u) + ln

p(u)
q(u)

)
dν1(u)

= − ln c1 +
∫

U1

p(u) ln
p(u)
p0(u)

dν1(u)

(cf. (38) – (40)) for τ = 2. The stated result thus follows by induction for τ =
T, T − 1, . . . , 2. ¤

5. CONCLUSIONS

The present paper addresses the problem of minimization of Kullback divergence of
a partially known with respect to a completely known probability distributions. Our
effort was motivated by a probabilistic formulation of the optimal stochastic control
problem.

The paper presents a rigorous formulation of the problem and proves a theorem
that gives explicit solution of the corresponding optimization problem. The result
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obtained is of general type and shows that dynamic optimization under uncertainty
can be solved explicitly.

The result obtained may have a significant theoretical and practical impact on the
probabilistic solution of optimal stochastic control problem. The further research is
to be focused on the detailed algorithmic elaboration and extensive testing of the
found solution.
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