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The paper presents the solution to the geodetic boundary value problem by the finite
element method in area of Slovak Republic. Generally, we have made two numerical exper-
iments. In the first one, Neumann BC in the form of gravity disturbances generated from
EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly
from EGM-96. In the second one, Neumann BC is computed from gravity measurements
and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method.
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1. INTRODUCTION

The Slovak Republic (SR), located between 47.6 and 49.6 deg north latitude and 16.3
and 22.5 deg longitude, is a country of about 49 000 km2 with altitudes varying from
100 m to 2660 m above sea level. Such range of altitudes together with great variety
of geological phenomena has led to the magnitudes of gravity anomalies between −25
and 130 mGal (Gal≡ 10−2 m∗ s−2) and terrain corrections more than 35 mGal [10].

At the present, there exist several models of gravimetric quasigeoid in SR but
neither one is ultimate. One approach uses classical methods – Fast Fourier Tech-
niques for numerical integration of Stokes Formula (see [9, 10, 11]), while another
explores the Boundary Element Method (BEM) [3, 4, 5, 6].

Our aim is also to compute the gravimetric quasigeoid precise enough to substi-
tute the leveling method [17]. As a method of solution we have chosen the Finite
Element Method (FEM). In this paper we present our first local solution of gravi-
metric quasigeoid in the area of the Slovak Republic.

2. DATA SOURCES

There were three types of data used in our computations, i. e., global geopotential
model – EGM-96 [8], terrestrial gravity data – GrS-95 [7] based on 16 absolute gravity
points and data containing terrain information – global – SRTM (Shuttle Radar
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Topography Mission, http://srtm.usgs.gov/) and local – observation by NAVSTAR
Global positioning system (GPS).

3. FORMULATION OF THE GEODETIC BOUNDARY VALUE PROBLEM

The quantity that describes the gravity field of the Earth is the gravity potential
W (x), consisting of the gravitational potential Vg(x) generated by the Earth and
the centrifugal potential Vc(x) arisen from spinning of the Earth. In applications,
it is also used an idealized (normal) model of the Earth (usually biaxial geocentric
equipotential ellipsoid) rotating with the same angular velocity as the Earth. Its
surface potential is equal to the potential on geoid (geoid is an equipotential surface
which approximately coincides with the mean ocean surface) and its mass is the
same as the mass of the Earth. Then the generated potential is called the normal
potential and denoted U(x). The difference between the actual gravity potential and
this normal potential is called the disturbing potential T (x) [12, 17]. Neglecting the
atmosphere, the disturbing potential is a harmonic function outside the Earth, i. e.,
it satisfies the Laplace equation ∆T (x) = 0 for x ∈ R3 −E, where E represents the
Earth.

The development of satellite technologies has brought new opportunities in geodesy.
With gravimetric and satellite measurements we can get the magnitude γ(x) of
the normal gravity vector ~γ(x) as well as the magnitude g(x) of the actual grav-
ity ~g(x) at the same point. This way we get so-called the gravity disturbance
δg(x) = g(x)− γ(x),x ∈ R3.

Fig. 1. Gravity and normal gravity vectors, deflection of vertical.

Applying the gradient operator to the definition of the disturbing potential we
get ∇T (x) = ∇W (x) − ∇U(x) = ~g(x) − ~γ(x),x ∈ R3. In Figure 1, we plot the
equipotential surfaces U(P ) = const, W (P ) = const that pass through the same
point P on the Earth surface. There we can observe differences in vectors ~γ(x) and
~g(x) that have the opposite direction to the normal n and plumb line t. The spatial
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angle θ, which is called the deflection of vertical, is negligibly small in real situation.
In addition, directions of both vectors are very close to the opposite direction of the
outer normal ne to the ellipsoid. Neglecting the small angles (which are less than
minute) we can project the gradient of the disturbing potential to the Earth normal
n̄ and get 〈∇T (x), n̄〉 = 〈∇W (x), n̄〉 − 〈∇U(x), n̄〉, which is approximately equal
to 〈∇W (x), t〉 − 〈∇U(x), n〉 = −g(x) + γ(x) = −δg(x). This idea has been used
by Čunderĺık, Mikula, Mojzeš in [3, 4, 5, 6], where the Neumann Boundary Value
Problem (BVP) on infinite domain with a boundary condition given on the Earth’s
surface in the form of gravity disturbance were suggested and solved numerically by
the BEM.

Although the given problem deals with the infinite domain in our approach using
the FEM, we construct an artificial boundary away from the approximate Earth
surface, see Figure 2, and due to giant size of the Earth we restrict our computa-

Fig. 2. Geometry of computational domain.

tions only to a partial domain Ω depicted in Figure 2, too. The bottom surface
Γ1 represents a part of the real Earth surface, discretized by triangles, covering
e. g. a neighborhood of Slovakia, where the Neumann boundary condition is given.
The upper spherical part Γ2 = {x; |x| = R} of the domain represents the artificial
boundary where the Dirichlet boundary condition is prescribed and also on further
artificial planar boundaries Γ3,Γ4,Γ5,Γ6 we use Dirichlet boundary condition. Then
our geodetic BVP is defined as follows:

−∆T (x) = 0, x ∈ Ω, (1)
∂T

∂n̄
= −δg(x) on Γ1, (2)

T (x) = TEGM−96(x), on Γi, i = 2, . . . , 6, (3)
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where TEGM−96 represents the disturbing potential generated from global geopoten-
tial model EGM-96.

4. SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM

4.1. Weak formulation of the problem

In order to construct the weak formulation of the problem (1) – (3) we define the
space of test functions V that is the space of functions from W

(1)
2 (Ω) which are

equal to 0 on Γi, i = 2, . . . , 6 in the sense of traces. We multiply the differential
equation (1) by w ∈ V and get

∫

Ω

∇T · ∇w dxdydz −
∫

∂Ω

∇T · nw dσ = 0, ∀w ∈ V. (4)

We can define the weak formulation of our BVP (1) – (3) as follows: we look for
a function T , such that T − TEGM−96 ∈ V and

∫

Ω

∇T · ∇w dxdydz +
∫

Γ1

δgw dσ = 0, ∀w ∈ V. (5)

Assuming δg ∈ L2(Γ1) and extension of TEGM−96 ∈ W
(1)
2 (Ω) due to [2] or [15]

solution of this problem always exists and is unique.
Moreover the finite element approximation given in the following subsection con-

verges to the weak solution refining the finite element grid.

4.2. FEM discretization

The FEM is a numerical method for solving partial differential equations and it
assumes discretization of the domain by a set of subdomains called the finite elements
see e. g. [2] or [14]. In order to build the finite element approximation one can proceed
as follows. One seeks an approximation to the solution of the differential equation
on every element e as a linear combination of nodal values tej and approximation
functions Ψe

j i. e.,

T (x, y, z) ≈ T e(x, y, z) =
N∑

j=1

tejΨ
e
j(x, y, z), (6)

where N is a number of element nodes. Then the weak identity (4) is used on every
element and Ψe

i , i = 1, . . . , N are considered as test functions w. In this way we get
the element system of equations for each e given by

∫

Ωe

N∑

j=1

tj∇Ψe
i · ∇Ψe

jdxdydz −
∫

∂Ωe
Ψe
i qndσ = 0, i = 1, . . . , N, (7)

where qn are interelement fluxes. It can be written in a matrix form:
∑N
j=1K

e
ijtj −

Qei = 0, where K = [Ke
ij ]N×N is an element stiffness matrix and Q = [Qei ]N repre-

sents a vector of fluxes through element faces.
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To create the global finite element model, one should use the balance of the
interelement fluxes and continuity of numerical solution on interelement boundaries.
Taking into account the boundary conditions (2) – (3) one ends up with the global
linear system. For our 3D case we use finite element software ANSYS [1] and its 3D
4-nodes tetrahedral elements.

5. NUMERICAL EXPERIMENTS

Our computational domain Ω has been the space above Slovakia, represented by
a series of triangular areas with maximal diameter 0.11 deg, up to the sphere with
radius R = 6500 or 7000 km. On one spherical and four planar boundaries of Ω we
consider the Dirichlet BC, i. e., disturbing potential generated from EGM-96 [8] and
on the bottom boundary the Neumann BC in the form of gravity disturbances is
used.

In the first experiment the input gravity disturbances (2), shown in the second
column of Figure 3, were generated from EGM-96 by program GRAFIM [13]. The
ANSYS nodal solution, the disturbing potential T , has been transformed into the
quasigeoidal heights by the Bruns formula [12] and compared with quasigeoidal
heights generated from EGM-96 using program GRAFIM as well. One can see good
qualitative agreement of our result in comparison to heights generated from EGM-96
(Figure 4).

Fig. 3. Computational grid and gravity disturbances generated from EGM-96.

In the second experiment we have used the gravity disturbances (2) computed
from actual gravity [7], depicted in Figure 5. As it is obvious from Figure 3 and
Figure 5, there were differences between these two types of data and as well as
between the following final quasigeoidal heights (Figure 6). The reason is that the
EGM-96, from which the gravity disturbances in the first experiment were generated,
is joint spherical harmonic model completed to the degree and order 360 and on the
other hand the actual gravities used in the second experiment were gained by detailed
gravity mapping.

The results of the second experiment have been tested by 61 GPS/leveled points
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Fig. 4. Quasigeoidal heights generated from EGM-96 and computed by ANSYS from

EGM-96 gravity disturbances.

Fig. 5. Gravity disturbances computed from detailed gravity mapping GrS-95 and model

of terrain generated from SRTM.

shown in Figure 7. To gain ellipsoidal heights H the 36-hours GPS observations’
sessions were performed and for altitudes above sea level h all points were connected
to the Slovak leveling network using precise spirit leveling. Then for reference quasi-
geoidal heights hold ζref = h−H.

The mean residual ζref − ζANSYS has been 0.803 m and the standard deviation
0.202 m. It is a promising result in comparison with two versions of much more
detailed Gravimetric Model of Slovak Quasigeoid 2003 (GMSQ03B/C) where the
mean residuals have been 0.334 m (GMSQ03B) and 0.711 m (GMSQ03C) and the
standard deviations 0.190 m (GMSQ03B) and 0.076 m (GMSQ03C) [9].

In order to use the quasigeoid model in practice the adaptation into the national
vertical datum, so called fitting, has to be made. Our future investigation will be
aimed at both fitting and improving of accuracy of the quasigeoid model by using
genuine theory in detailed terrain and gravimetric data. We are willing to use parallel
computations as well.
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Fig. 6. Gravimetric model of Slovak quasigeoid calculated by FEM.

Fig. 7. Distribution of the testing points.
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