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The information divergence of a probability measure P from an exponential family E
over a finite set is defined as infimum of the divergences of P from Q subject to Q ∈ E . All
directional derivatives of the divergence from E are explicitly found. To this end, behaviour
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1. INTRODUCTION

Let ν be a nonzero measure on a finite set Z and f a mapping from Z into the d-
dimensional Euclidean space Rd. The (full) exponential family E = Eν,f determined
by ν and the directional statistic f , see [5, 6, 7, 12], consists of the probability
measures (pm’s) Qϑ = Qν,f,ϑ, ϑ ∈ Rd, given by

Qϑ(z) = e〈ϑ,f(z)〉−Λ(ϑ) ν(z) , z ∈ Z ,

where 〈·, ·〉 is the scalar product on Rd and

Λ(ϑ) = Λν,f (ϑ) = ln
∑
z∈Z e

〈ϑ,f(z)〉 ν(z) .

The information divergence (relative entropy) of a pm P on Z from ν is

D(P ||ν) =

{ ∑
z∈s(P ) P (z) ln P (z)

ν(z) , s(P ) ⊆ s(ν) ,

+∞ , otherwise,

where s(ν) = {z ∈ Z : ν(z) > 0} is the support of ν. The information divergence of
P from the exponential family E is defined by

D(P ||E) = infϑ∈Rd D(P ||Qϑ) . (1)
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This work studies the maximizers of the function P 7→ D(P ||E), denoted also by
D(·||E), over the pm’s P dominated by ν, thus satisfying s(P ) ⊆ s(ν).

The maximization of D(·||E) has emerged in probabilistic models for evolution
and learning in neural networks that are based on infomax principles [1, 2]. The
divergence from an exponential family can be related to information theoretic mea-
sures for interdependence of stochastic units and its maximization reveals stochastic
systems with high complexity w.r.t. an exponential family [3]. Dynamical versions
of the problem of interactions in recurrent networks appeared in [1, 4, 16]. Two spe-
cial instances of the maximization of the quantity (1) are described in [13]. Further
relations to previous works on this problem are discussed in remarks of Section 5.

Let µ be the f -image νf of ν, considered for a Borel measure on Rd. Denoting
by s(µ) the support f(s(ν)) of µ, which is the inclusion-minimal closed subset of Rd
of the µ-measure µ(Rd),

Λ(ϑ) = Λµ(ϑ) = ln
∑
x∈s(µ) e

〈ϑ,x〉 µ(x)

whence Λ equals the log-Laplace transform (cumulant generating function) of µ.
In terms of the conjugate Λ∗ of Λ [15, Section 12],

Λ∗(a) = supϑ∈Rd
[
〈ϑ, a〉 − Λ(ϑ)

]
, a ∈ Rd ,

the information divergence of a pm P from the exponential family E rewrites to

D(P ||E) = D(P ||ν)− Λ∗(m(Pf )) (2)
where

m(Pf ) =
∑
x∈s(Pf ) xPf (x) =

∑
z∈Z f(z)P (z)

is the mean of the f -image Pf of P , or equivalently, the P -mean of f . Hence, D(·||E)
is difference of the strictly convex function P 7→ D(P ||ν), denoted by D(·||ν), and
the function P 7→ Λ∗(m(Pf )), which is convex because Λ∗ is convex and P 7→ m(Pf )
is linear.

From now on assume that ν(z) is positive for each z ∈ Z.
This work is organized as follows. After introduction of notations and review of

known facts in Section 2, directional behavior of the conjugate Λ∗ on a boundary
of its domain is described in Theorem 3.1 of Section 3. Consequently in Section 4
it is shown, relying on (2), that the one-sided directional derivatives of the function
D(·||E) at any pm P exist, possibly taking the values ±∞. Explicit formulas for
the derivatives are presented in Theorems 4.1 and 4.3. The first order optimality
conditions for a pm P to be a maximizer ofD(·||E) emerge by requiring the derivatives
not to be positive, see Theorem 5.1 in Section 5. Finally, Section 6 is devoted to a
proof of Theorem 3.1.

2. PRELIMINARIES

This section reviews well-known facts about the log-Laplace transforms, their con-
jugates and exponential families, and introduces necessary notations. It is assumed
throughout that µ is a nonzero positive finite measure on Rd that is concentrated
on a finite set, though many of the assertions below are valid under more general
assumptions [5, 6, 12].
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In accordance with [15], the affine hull of a set B ⊆ Rd is denoted by aff (B), the
shift of aff (B) containing the origin by lin(B) and the relative interior of B by ri(B),
which is the interior of B in the topology of aff (B). The orthogonal complement of
a linear subspace E of Rd is denoted by E⊥.

Since µ is concentrated on a finite set the convex support cs(µ) of µ, which is the
inclusion-minimal closed convex subset of Rd of the µ-measure µ(Rd), is the polytope
spanned by s(µ). For B = cs(µ) above notations are abbreviated to aff (µ), lin(µ)
and ri(µ).

Fact 2.1. For a ∈ aff (µ) and c ∈ Rd the function ϑ 7→ 〈ϑ, a〉−Λ(ϑ) is constant on
c+ lin(µ)⊥.

Let Qµ,ϑ denote the pm with µ-density x 7→ e〈ϑ,x〉−Λ(ϑ), ϑ ∈ Rd, and Eµ the
family of all such pm’s, thus the standard exponential family determined by µ and
the identity mapping on Rd, in the role of a directional statistic.

Fact 2.2. The equality Qµ,ϑ = Qµ,θ holds if and only if ϑ− θ ∈ lin(µ)⊥.

The mean
∑
x∈s(µ) x e

〈ϑ,x〉−Λ(ϑ) of Qµ,ϑ is denoted by m(Qµ,ϑ).

Fact 2.3. m(Qµ,ϑ) = ∇Λ(ϑ), ϑ ∈ Rd.

Fact 2.4. The restriction of ∇Λ to lin(µ) is injective and onto ri(µ).

Since Λ is smooth this restriction is a diffeomorphism. Its inverse is denoted in
the sequel by ψ = ψµ. With this notation the mean parametrization a 7→ Qµ,ψ(a) of
Eµ by the elements a of ri(µ) is bijective.

Fact 2.5. If m(Qµ,ϑ) = a then Λ∗(a) = 〈ϑ, a〉 − Λ(ϑ).

In particular, Λ∗(a) = 〈ψ(a), a〉 − Λ(ψ(a)) for a ∈ ri(µ) because m(Qµ,ψ(a)) = a.

Fact 2.6. If a ∈ ri(µ) then for b ∈ cs(µ)

Λ∗(b) = Λ∗(a) + 〈ψ(a), b− a〉+ o(||b− a||) .

The following assertion is a consequence of [8, Lemma 6].

Fact 2.7. If a ∈ cs(µ) \ ri(µ) then +∞ > Λ∗(a) > 〈ϑ, a〉 − Λ(ϑ) for all ϑ ∈ Rd.

Hence, the convex conjugate Λ∗ is finite on cs(µ), thus continuous on this poly-
tope due to convexity. Beyond the polytope it takes the value +∞, e. g. by [8,
Proposition 1 (ii)].

If A is a Borel subset of Rd then B 7→ µ(B ∩A) is the restriction of µ by A. Let
Λµ, Eµ, Qµ,ϑ, ψµ, etc., with µ replaced by its nonzero restriction be denoted by ΛA,
EA, QA,ϑ, ψA, etc. The following assertion follows from [8, Lemma 6].

Fact 2.8. If a ∈ F for a face F of cs(µ) then Λ∗µ(a) = Λ∗F (a).
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Fact 2.9. If a ∈ ri(F ) for a face F of cs(µ) then

Λ∗(a)−
[
〈ϑ, a〉 − Λ(ϑ)

]
= D(QF,ψF (a)||Qµ,ϑ) , ϑ ∈ Rd .

This identity admits a substantial generalization, see [10, Theorem 4.1] where
QF,ψF (a) is called a generalized maximum likelihood estimator for Eµ.

Suppose in the remaining part of this section that µ is the f -image νf of ν as in
Introduction and recall that s(ν) = Z. By (2) and the continuity of Λ∗ on cs(µ),
the function D(·||Eν,f ) is continuous and therefore has a maximizer.

In this situation, Qµ,ϑ is the f -image of Qν,f,ϑ, ϑ ∈ Rd. Taking the f -images of
pm’s from Eν,f is a bijection onto Eµ and a 7→ Qν,f,ψ(a) is the mean parametrization
of Eν,f by the elements a of ri(µ).

It follows from (2) that the infimum in (1) is attained if and only if the mean
a = m(Pf ) belongs to ri(µ) in which case Qν,f,ψ(a) is the unique pm Q of E =
Eν,f satisfying D(P ||Q) = D(P ||E). This pm is called the reverse information (rI-)
projection of P on E and is denoted by ΠP→E , as in [8].

For a face F of cs(µ) the pm QF,ϑ is the f -image of the pm QY,f,ϑ, ϑ ∈ Rd,
where the latter denotes the pm obtained from Qν,f,ϑ when ν is replaced by its
restriction to Y = f−1(F ). Taking the f -images of pm’s from the exponential
family EY,f = {QY,f,ϑ : ϑ ∈ Rd} is a bijection onto EF .

The (variation) closure cl of Eν,f , respectively Eµ, is equal to union of the families
Ef−1(F ),f , respectively EF , over the nonempty faces F of cs(µ), for a general result
see [9, Theorem 2]. The closures are bijectively parameterized by means of pm’s,
exhausting cs(µ).

Fact 2.10. For E = Eν,f and a pm P on Z,

D(P ||E) = D(P ||cl(E)) = minQ∈cl(E) D(P ||Q) .
The minimum is attained uniquely by Qf−1(F ),f,ψF (a) where a = m(Pf ) and F is
that face of cs(µ) which contains a in its relative interior.

This unique minimizer is denoted by ΠP→E , extending the above notation to the
cases when the infimum in (1) is not attained, and called the generalized rI-projection
of P to E .

For a ∈ cs(µ) write Πa↔E = Qf−1(F ),f,ψF (a) where F is the face of cs(µ) with
a ∈ ri(F ). The following Pythagorean identity provides more insight into the min-
imization over cl(E) in Fact 2.10, compare with [11, Proposition 4]. For a general
version see [8, Theorem 1].

Fact 2.11. If E = Eν,f and a ∈ cs(µ) then

D(P ||Q) = D(P ||Πa↔E) +D(Πa↔E ||Q) (3)
holds for any pm P with m(Pf ) = a and Q ∈ cl(E).

Given a pm P on Z and a set Y ⊆ Z with P (Y ) > 0 let PY denote the pm, called
truncation in [7], given by PY (z) = P (z)/P (Y ) for z ∈ Y and PY (z) = 0 otherwise.
Note that the set {Q ∈ Eν,f : QY = PY }, though not given via a directional statistic,
is a full exponential family provided it is nonempty. Also {Qν,f,ϑ : ϑ ∈ Ξ} is such a
family when Ξ is an affine subset of Rd.
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3. CONJUGATE OF LOG–LAPLACE TRANSFORM

In this section, µ is a positive measure on Rd concentrated on a finite set.
Each point a of the polytope cs(µ) belongs to the relative interior ri(F ) of a

unique face F of cs(µ). If b ∈ F then Facts 2.6 and 2.8 combine to

Λ∗(a+ ε(b− a)) = Λ∗(a) + ε 〈ψF (a), b− a〉+ o(ε) , (4)

describing the directional behavior of the function ε 7→ Λ∗(a+ ε(b− a)) in a neigh-
borhood of 0.

Let C denote the convex hull of s(µ) \ F and C+ = C + lin(F ).
If b ∈ cs(µ) \ F then it is not difficult to see that there exists a positive t such

that a + t(b− a) belongs to C+ and a 6∈ C+, see Lemmas 6.1 and 6.2. Then such a
minimal t > 0 exists. Denote this number by tab and the nearest point a+ tab(b−a)
of C+ from a in the direction b− a by xab.

Let Ξ = ψF (a) + lin(F )⊥ and

Ψ∗C,Ξ(x) = supθ∈Ξ
[
〈θ, x〉 − ΛC(θ)

]
, x ∈ Rd .

By Lemma 6.8 and Fact 2.5, Ψ∗C,Ξ(xab) is finite.

Theorem 3.1. If a ∈ ri(F ) for a face F of cs(µ), b ∈ cs(µ) \ F and ε > 0 then

Λ∗(a+ ε tab (b− a)) = Λ∗(a) + h(ε) + ε
[
Ψ∗C,Ξ(xab)− Λ∗(a)

]
+ o(ε)

where h(ε) = ε ln ε+ (1− ε) ln(1− ε).
The proof of Theorem 3.1, preceded by several lemmas, is presented in Section 6.

It is independent of the material of Sections 4 and 5.

The following figure illustrates the notations presented above or used later in
proofs: the support of µ consists of five points depicted as black squares, F is the
vertical edge of the pentagon cs(µ), C is the shaded triangle and C+ a vertical infinite
strip.
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4. THE DIRECTIONAL DERIVATIVES OF D(·||E)

In this section, µ = νf , E = Eν,f , P and R are pm’s on Z, a = m(Pf ) belongs to
ri(F ) for a face F of cs(µ), ϑ = ψF (a), b = m(Rf ), and r = R(Z \ s(P )).

As well-known, the one-sided directional derivative of D(·||E) at P in the direction
R− P is given by

limε↓0
1
ε

[
D(P + ε(R− P )||E)−D(P ||E)

]

provided the limit, finite or infinite, exists. If P dominates R then even the two-sided
limiting ε→ 0 makes sense.

Theorem 4.1. If b ∈ F and r = 0 then the two-sided derivative of D(·||E) at P in
the direction R− P equals

∑
z∈s(P ) [R(z)− P (z)] ln P (z)

e〈ϑ,f(z)〉ν(z)
. (5)

If b ∈ F and r > 0 then the one-sided directional derivative of D(·||E) at P in the
direction R− P equals −∞.

If b 6∈ F then this derivative is equal to




+∞ , rtab < 1 ,
−∞ , rtab > 1 ,
T − r

[
Ψ∗C,Ξ(xab)− Λ∗(a) + ln r

]
, rtab = 1 ,

where

T =
∑
z∈s(R)\s(P ) R(z) ln R(z)

ν(z) +
∑
z∈s(P ) [R(z)− P (z)] ln P (z)

ν(z) .

A p r o o f invokes the following simple assertion, demonstrated for convenience
at the end of Section 6.

Lemma 4.2. If ε > 0 then

D(P + ε(R− P )||ν) = D(P ||ν) + h(ε) r + ε T + o(ε) .

If additionally r = 0 then this holds with the h(ε)-term omitted also for ε 6 0.

P r o o f o f T h e o r e m 4.1. If b ∈ F and r = 0 then s(R) ⊆ s(P ). On account
of (2) the derivative equals the difference of coefficients at the ε-terms in Lemma 4.2
and (4) ∑

z∈s(P ) [R(z)− P (z)] ln P (z)
ν(z) − 〈ϑ, b− a〉

which rewrites to (5).
By the same argument, if b ∈ F and r > 0 then the one-sided derivative is equal

to −∞, due to the nonzero term h(ε) r in Lemma 4.2.
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If b 6∈ F then the formula of Theorem 3.1 is equivalent to

Λ∗(a+ ε (b− a)) = Λ∗(a) + h(ε) 1
tab

+ ε
tab

[
Ψ∗C,Ξ(xab)− Λ∗(a) + ln 1

tab

]
+ o(ε) .

This, (2) and Lemma 4.2 imply the last assertion. ¤

The case b 6∈ F in Theorem 4.1 can be further simplified when assuming that there
exist two different parallel hyperplanes HF and HC such that HF ⊇ F and HC ⊇ C,
where C is the convex hull of s(µ) \F . This implies obviously that F+ = F + lin(C)
and C+ = C + lin(F ) are disjoint. The implication can be reversed. In fact, by [15,
Corollary 19.3.3] if the polyhedral sets F+ and C+ are disjoint then it is possible
to separate them strongly by a hyperplane H, and then lin(H) contains lin(F ) and
lin(C), thus different shifts of H contain F and C.

Theorem 4.3. If b 6∈ F and F+ ∩C+ = ∅ then rtab > 1. The equality holds here if
and only if R(f−1(F ) \ s(P )) = 0 in which case the one-sided directional derivative
of D(·||E) at P in the direction R− P is equal to

r
[
D(RY ||F)−D(P ||E)

]
+ (1−r)∑z∈s(P ) [Rs(P )(z)− P (z)] ln P (z)

e〈ϑ,f(z)〉ν(z)
(6)

where Y = f−1(C), F is the exponential family consisting of QY,f,θ, θ ∈ Ξ, and the
truncation Rs(P ) is well-defined if r < 1 or does not enter otherwise.

P r o o f . The first assumption implies Rf (F ) < 1 whence s = R(Y ) is positive.
Then, R = sRY + (1 − s)Q for the truncation RY and a pm Q concentrated on
f−1(F ) = Z \ Y . Thus, b = m(Rf ) equals sc + (1 − s)a′ where c = m(RYf ) ∈ C

and a′ = m(Qf ) ∈ F . Rewrite a + 1
s (b − a) to c + 1−s

s (a′ − a) to conclude that it
belongs to C+. The second assumption implies that a ∈ F and C+ are contained in
two parallel hyperplanes whence a+ t(b−a) ∈ C+ for a unique t. Then, tab = 1

s and
rtab > 1 follows from the obvious inequality r > s. The second assertion obtains
from the equivalence of r = s to R(f−1(F ) \ s(P )) = 0.

If this holds then

T = rD(RY ||ν) + r ln r − rD(P ||ν) +
∑
z∈s(P ) [R(z)− (1−r)P (z)] ln P (z)

ν(z)

and the derivative equals

r
[
D(RY ||ν)−Ψ∗C,Ξ(xab)−D(P ||E)

]
+ (1−r)∑z∈s(P ) [Rs(P )(z)− P (z)] ln P (z)

ν(z)

where the truncation Rs(P ) is well-defined if r < 1. Since xab = c + 1−r
r (a′ − a),

a′ − a ∈ lin(F ), and a′ is the mean of the f -image of Rs(P ) = Q provided r < 1,

rΨ∗C,Ξ(xab) = rΨ∗C,Ξ(c) + (1−r) 〈ϑ, a′ − a〉
= rΨ∗C,Ξ(c) + (1−r) ∑

z∈s(P ) [Rs(P )(z)− P (z)]〈ϑ, f(z)〉 .

Using also the analogue of (2)

D(RY ||F) = infθ∈Ξ D(RY ||QY,f,θ) = D(RY ||ν)− Ψ∗C,Ξ(c)



738 F. MATÚŠ

the above expression for the derivative rewrites to (6). ¤

Sometimes the above simplification of Theorem 4.1 is not available but such
situations are not encountered later, due to the following observation proved at the
end of Section 6.

Lemma 4.4. If F+∩C+ 6= ∅ then there exists a pm Q concentrated on Z \f−1(F )
such that the derivative of D(·||E) at P in the direction Q− P is +∞.

5. OPTIMALITY CONDITIONS

The results on directional derivatives of D(·||E) presented in the previous section
imply first order necessary conditions for a pm to be a maximizer of this function.

Theorem 5.1. If E = Eν,f and P is a maximizer of D(·||E) then P equals the
truncation Π s(P ) to s(P ) of the generalized rI -projection Π = ΠP→E of P to E . If
additionally P is not rI -projectable to E , thus s(Π) 6= Z, then f maps s(Π) and
Z \ s(Π) into two different parallel hyperplanes, correspondingly, and

D(P ||E) > max
{
D(R||EΠ) : R is a pm on Z with s(R) ⊆ Z \ s(Π)

}
(7)

where EΠ = {QZ\s(Π) : Q ∈ E and Qs(Π) = Π}.

Remark 5.2. The condition P = Π s(P ) goes back to [1, Proposition 3.1] under
the assumption that P is rI -projectable to E .

Remark 5.3. The maximization of D(·||EΠ) in (7) is a problem of the same type
as that of D(·||E), however, the family EΠ is of a smaller dimension than E .

P r o o f . Using the notation of Section 4 and Fact 2.10, s(Π) is equal to f−1(F )
and Π = Qs(Π),f,ϑ. Since P is a maximizer the two-sided derivatives of D(·||E) at P
vanish, hence by Theorem 4.1

∑
z∈s(P ) [R(z)− P (z)] ln P (z)

Π(z)
= 0

for all R dominated by P . This implies P = Π s(P ).
If s(Π) 6= Z then, avoiding directional derivatives to be +∞, Lemma 4.4 implies

F+ ∩ C+ = ∅, thus the containments in hyperplanes. By Theorem 4.3, where Y =
Z \ s(Π), for all pm’s R sitting on Y the expression (6) is nonnegative, and thus
D(P ||E) > D(R||F), having r = 1. To prove the inequality (7) it suffices to show
that F = EΠ . For this, observe that QY,f,θ is the truncation of Qν,f,θ to Y while by
Fact 2.2 the truncation Qs(Π),f,θ of Qν,f,θ equals Π if and only if θ − ϑ ∈ lin(F )⊥,
thus θ ∈ Ξ. ¤
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Remark 5.4. It is not difficult to reverse argumentation in the previous proof
and show that the conclusions of Theorem 5.1 hold for a pm P if and only if no
directional derivative of D(·||E) at P is positive.

Other necessary conditions for maximizers can be formulated as follows.

Proposition 5.5. If P is a maximizer of D(·||E) then f restricted to s(P ) is injec-
tive and f(s(P )) is an affinely independent set.

P r o o f . On account of (2), the function R 7→ D(R||E) is strictly convex on the
polytope {R : m(Rf ) = a} where a = m(Pf ). Since P is a maximizer it must be an
extreme point of this polytope by [15, Theorem 32.1]. This implies the assertions.¤

Remark 5.7. As a consequence, the cardinality of s(P ) is at most one more than
the affine dimension of F where F is the face of cs(νf ) with m(Pf ) ∈ ri(F ). This
implies that this cardinality is bounded above by 1 + dim(E), as observed in [1,
Proposition 3.2] for rI -projectable maximizers and in [14, Corollary 2] in general.

Example 5.7. Let Z consist of six points in the plane, depicted as squares in the
picture below. Let a = (0, 0), b = (0, 1), ν(z) = 1 for z ∈ Z \ {b}, ν(b) = w > 0 and
f be the identity mapping on R2 restricted to Z.

-

6

x1

x2

F

a

b

C

Since
m(Q(0,u)) = (w+2)eu

3+(w+2)eu
b , u ∈ R ,

where the fraction equals a positive ε if and only if eu(w + 2) = 3ε
1−ε

ψ(εb) =
(
0 , ln ε

1−ε
3

w+2

)
, 0 < ε < 1 .

By Fact 2.5 and this formula for ψ(εb),

Λ∗(εb) = ε ln ε
1−ε

3
w+2

− ln
[

3 + 3ε
1−ε

]
= − ln 3 + h(ε) + ε ln 3

w+2
(8)

which is in accordance with Theorem 3.1 where tab = 1, xab = b, Λ∗(a) = − ln 3
and Ψ∗Ξ,C(b) = − ln(w + 2). Note that Ξ is the vertical axis and the expression
〈θ, b〉 − ΛC(θ) is constant for θ ∈ Ξ by Fact 2.1.
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Consider the point masses P and R sitting at a and b, respectively. Then, the
mean of εP + (1− ε)R is εb and, by (2) and (8),

D((1− ε)P + εR||E) = ln 3 + ε
[

ln w+2
w
− ln 3

]
, 0 6 ε 6 1 .

This is in accordance with Theorem 4.3 where C is the upper horizontal edge of the
rectangle cs(νf ), Y = C ∩ Z has three elements, r = 1, F consists of the single pm
QY,f,(0,0) and D(R||F) = ln w+2

w .
Since m(Pf ) is not in the interior of cs(νf ) the pm P is not rI -projectable to E .

The generalized projection Π = ΠP→E = Qf−1(F ),f,(0,0) is a pm sitting and uniform
on F ∩ Z. Obviously, the first two conclusions of Theorem 5.1 hold for P , having
the edges F and C contained in two parallel lines. The third conclusion (7) takes
the form

ln 3 > max {r1 ln r1
1/(w+2)

+ r2 ln r2
w/(w+2)

+ r3 ln r3
1/(w+2)

: (r1, r2, r3) is a pm} .

Note that EΠ consists of a single pm as all Q ∈ E with Qs(Π) = Π have the same
truncation to Z \ s(Π). Thus (7) is equivalent to

ln 3 > max
{

ln(w + 2), ln w+2
w

}
.

It follows that if w 6= 1 then Theorem 5.1 implies that P is not a maximizer while
if w = 1 then all conclusions of Theorem 5.1 take place for P , thus the first order
necessary conditions do not exclude P to be a maximizer. Actually, in the latter case
it is not difficult to prove directly that D(·||E) 6 ln 3, implying that (1− ε)P + εR,
0 6 ε 6 1, are global maximizers.

6. PROOF OF THEOREM 3.1

Recall the assumptions that µ is a positive measure concentrated on a finite subset
of Rd, a ∈ cs(µ) and b ∈ cs(µ) \ F where F is the unique face of cs(µ) such that
a ∈ ri(F ).

Lemma 6.1. There exists t > 0 such that a+ t(b− a) ∈ C+.

P r o o f . Write b as εc+ (1− ε)a′ with c ∈ C, a′ ∈ F and 0 < ε 6 1, and then for
t = 1

ε express a+ t(b− a) as c+ t(1− ε)(a′− a) where the second summand belongs
to lin(F ). ¤

Lemma 6.2. The face F is contained in a hyperplane disjoint with C+.

P r o o f . Since F is a proper face of cs(µ) there exists a supporting hyperplane H
of cs(µ) such that H ∩ cs(µ) = F . The points of s(µ) \ F belong to one of the open
halfspaces associated to H. It follows that C+ is contained in the halfspace, using
lin(F ) ⊆ lin(H). ¤
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Lemma 6.3. If G is a face of C+ then G, G+ lin(F ) and (G∩C)+ lin(F ) coincide,
ri(G) = ri(G ∩ C) + lin(F ) and G ∩ C is a face of C.

P r o o f . If g ∈ G then g ∈ C+, and thus g = c+ c′ for some c ∈ C and c′ ∈ lin(F ).
For c′′ ∈ lin(F ) nonzero, g is inside the segment with endpoints c + c′ ± c′′. Since
the endpoints are in C+ and G is a face of C+ it contains c + c′ + c′′ = g + c′′ for
all c′′ ∈ lin(F ). Therefore, G ⊇ G + lin(F ) and c ∈ G ∩ C. The latter implies
G ⊆ (G ∩C) + lin(F ), and thus the first assertion holds. The second one follows by
[15, Corollary 6.6.2]. If εc′ + (1 − ε)c′′ ∈ G ∩ C for c′, c′′ ∈ C and 0 < ε < 1 then
εc′ + (1 − ε)c′′ ∈ G and c′, c′′ ∈ C+, and using that G is a face of C+ it contains
c′, c′′. It follows that c′, c′′ ∈ G ∩ C whence G ∩ C is a face of C. ¤

By this lemma, if G is the unique face of C+ that contains xab in its relative
interior then G ∩ C, denoted in the sequel by Gab, is a face of C.

Corollary 6.4. xab ∈ ri(Gab) + lin(F ).

Lemma 6.5. There exist two different parallel hyperplanes HF , HG such that
HF ∩ cs(µ) = F , xab ∈ HG, HG ∩ C = Gab and HG strongly separates F from
s(µ) \ (F ∪Gab).

P r o o f . The segment with endpoints a and xab intersects C+ at its endpoint xab.
By [15, Theorem 20.2] applied to this segment and C+, there exists a hyperplane H
through xab that separates a 6∈ H from C+. On the other hand, xab ∈ ri(G) for a
unique face G of C+, and thus there exists a supporting hyperplane K of C+ that
intersects this set in G. Then H ∩ C+ ⊇ G because H contains a point from ri(G).

It follows that there exist nonzero θ, ϑ such that the hyperplanes H and K
are defined by the equations 〈θ, x− xab〉 = 0 and 〈ϑ, x− xab〉 = 0, respectively.
In addition, the scalar products vanish for x ∈ G, are nonnegative for x ∈ C+,
〈ϑ, x− xab〉 = 0 with x ∈ C+ implies x ∈ G and 〈θ, a− xab〉 < 0. Then the equation
〈θ + εϑ, x− xab〉 = 0 with ε > 0 defines a supporting hyperplane Hε of C+ that
intersects this set in G. Taking ε sufficiently small, 〈θ + εϑ, a− xab〉 < 0, and thus
Hε separates a 6∈ Hε and C+.

With such a choice of ε, let HG = Hε and HF be the shift of HG containing
a 6∈ HG. By Lemma 6.3, G = G+ lin(F ), and then G ⊆ HG implies that F ⊆ HF .
By the construction of C, the points of s(µ) are either in F or in C, and thus
HF ∩ cs(µ) = F . By the construction of Hε, xab ∈ HG and HG ∩ C+ = G which
implies HG ∩ C = Gab. Then the strict separation takes place. ¤

Lemma 6.6. If E is a linear subspace of Rd, θ ∈ E and x ∈ ri(µ) + E then the
function ϑ 7→ 〈ϑ, x〉−Λµ(ϑ) has a maximizer ϑ∗ over the set θ+E⊥. The pm Qµ,ϑ∗

does not depend on the choice of ϑ∗ and x−m(Qµ,ϑ∗) ∈ E.

P r o o f . Applying [10, Theorem 3.1] to θ + E⊥ (in the role of Ξ, with its
barrier cone equal to E) the function has a unique maximizer over the orthogonal
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projection of θ + E⊥ to Ex,µ = lin(x − s(µ)). By Fact 2.1, 〈ϑ, x〉 − Λµ(ϑ) remains
unchanged when ϑ moves orthogonally to Ex,µ, containing lin(µ). It follows that the
function has a maximizer ϑ∗ over θ+E⊥ and the difference of two such maximizers
is orthogonal to Ex,µ. By Fact 2.2, Qµ,ϑ∗ is independent of the choice of ϑ∗. By [10,
Theorem 3.2], x−m(Qµ,ϑ∗) is a normal vector of θ+E⊥ at ϑ∗, thus belongs to E.¤

From now on Gab is abbreviated to G.

Corollary 6.7. A maximizer ϑ∗ of the function ϑ 7→ 〈ϑ, xab〉 − ΛG(ϑ) with ϑ in
Ξ = ψF (a) + lin(F )⊥ exists, the mean m(QG,ϑ∗) does not depend on its choice and
xab −m(QG,ϑ∗) ∈ lin(F ).

P r o o f . Lemma 6.6 applies to the restriction of µ to G in the role of µ, the linear
space E = lin(F ), the element θ = ψF (a) of lin(F ) and x = xab, which belongs to
ri(G) + lin(F ) by Corollary 6.4. ¤

The mean m(QG,ϑ∗), independent of ϑ∗, is denoted in the sequel by xab∗ .

Lemma 6.8. Λ∗G(xab∗ ) + 〈ψF (a), xab − xab∗ 〉 = Ψ∗C,Ξ(xab)

P r o o f . By Fact 2.5, applied to m(QG,ϑ∗) = xab
∗ , where ϑ∗ is a maximizer from

Corollary 6.7, Λ∗G(xab∗ ) = 〈ϑ∗, xab∗ 〉 − ΛG(ϑ∗). Since ϑ∗ − ψF (a) is orthogonal to
lin(F ), containing xab − xab∗ ,

Λ∗G(xab∗ ) + 〈ψF (a), xab − xab∗ 〉 = 〈ϑ∗, xab〉 − ΛG(ϑ∗) > 〈ϑ, xab〉 − ΛC(ϑ) , ϑ ∈ Ξ ,

using ΛC > ΛG. Maximizing over ϑ, Ψ∗C,Ξ(xab) emerges on the right.
On the other hand, Lemma 6.5 implies that there exists a nonzero τ orthogonal

to lin(F ) such that 〈τ, x− xab〉 6 0 holds for x ∈ C, with the equality if and only if
x ∈ G = Gab. Hence, ϑ∗ + tτ ∈ Ξ, t ∈ R, and

Ψ∗C,Ξ(xab) > 〈ϑ∗ + tτ , xab〉 − ΛC(ϑ∗ + tτ) = − ln
∑
x∈s(µ)\F e

〈ϑ∗+tτ,x−xab〉 µ(x)

where 〈ϑ∗, xab〉 − ΛG(ϑ∗) emerges on the right when t grows to +∞. ¤

Let bε abbreviate a + ε tab(b − a), equal to a + ε(xab − a). The convex hull of
F ∪G is denoted by A.

Lemma 6.9. If ε > 0 is sufficiently small then bε ∈ ri(A).

P r o o f . By Corollary 6.4, xab = c + t(a′ − a) with c ∈ ri(G), a′ ∈ F and t > 0.
Then

bε = a+ ε
(
c+ t(a′ − a)− a

)
= (1− ε)

[
ε t

1−ε a
′ +

(
1− ε t

1−ε
)
a
]

+ εc .

For small ε > 0 the bracket is a convex combination of a′ and a ∈ ri(F ) whence it
belongs to ri(F ). Then, bε is a convex combination of points from ri(F ) and ri(G),
and the assertion follows by [15, Theorem 6.9]. ¤
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By Lemma 6.9, if ε > 0 is sufficiently small then ϑε = ψA(bε) is well-defined.
Denote the means of QF,ϑε and QG,ϑε by cF,ε and cG,ε, respectively. By Lemma 6.5,
two parallel hyperplanes contain the pairs cF,ε, a and cG,ε, xab, and a geometric
argument implies that bε = (1 − ε)a + εxab equals m(QA,ϑε) = (1 − ε)cF,ε + εcG,ε.
In turn,

(1− ε)(cF,ε − a) = ε(xab − cG,ε). (9)

Lemma 6.10. If ε decreases to zero then cF,ε → a and cG,ε → xab
∗ .

P r o o f . The first convergence is a consequence of (9) and cG,ε ∈ ri(G), which is
a bounded set. It implies that ψF (cF,ε), which is the projection of ϑε to lin(F ) by
Fact 2.2, converges to ψF (a). Hence, for a maximizer ϑ∗ from Corollary 6.7

D(QG,ϑε ||QG,ϑ∗) +D(QG,ϑ∗ ||QG,ϑε) = 〈ϑε − ϑ∗,m(QG,ϑε)−m(QG,ϑ∗)〉
= 〈ϑε − ϑ∗, cG,ε − xab∗ 〉 = 〈ψF (cF,ε)− ψF (a), cG,ε − xab∗ 〉 → 0 .

The last equality holds because ϑε−ψF (cF,ε) and ϑ∗−ψF (a) are orthogonal to lin(F )
and cG,ε − xab∗ ∈ lin(F ). Note that cG,ε − xab∗ is sum of cG,ε − xab, proportional to
a − cF,ε ∈ lin(F ) by (9), and xab − xab∗ , belonging to lin(F ) by Corollary 6.7. By
Pinsker inequality, QG,ϑε → QG,ϑ∗ in variation distance which, in turn, implies the
convergence of means cG,ε → xab

∗ . ¤

Let θε denote the orthogonal projection of ϑε to lin(F ) + lin(G).

Corollary 6.11. If ε decreases to 0 then θε converges.

P r o o f . By Fact 2.2, ψF (cF,ε) is the orthogonal projection of ϑε to lin(F ), con-
verging by Lemma 6.10. The arguments work also when F is replaced by G.

Lemma 6.12. Λ∗µ(bε) = Λ∗A(bε) + o(ε)

P r o o f . The assertion is trivial if B = s(µ) \A is empty. Otherwise, Lemma 6.5
implies existence of a nonzero τ such that the function x 7→ 〈τ, x〉 equals a constant
sF on F , a constant sG < sF on G and is upper bounded by sB < sG on B = s(µ)\A.
Scaling τ if necessary, sF − sG = 1. Let

rε = ΛG(θε)− ΛF (θε) + ln 1−ε
ε
.

Since τ is orthogonal to lin(F ) + lin(G) the means of QF,θε+rετ and QG,θε+rετ are
equal to cF,ε and cG,ε, respectively. It follows from

m(QA,θ) = eΛF (θ)−ΛA(θ)m(QF,θ) + eΛG(θ)−ΛA(θ)m(QG,θ), θ ∈ Rd , (10)

that the mean of QA,θε+rετ equals (1− δ)cF,ε + δcG,ε where

ln 1−δ
δ

= ΛF (θε + rετ)− ΛG(θε + rετ)

= rε(sF − sG) + ΛF (θε)− ΛG(θε) = ln 1−ε
ε
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by the choice of rε. Therefore, δ = ε and m(QA,θε+rετ ) equals the mean bε of QA,ϑε .
This implies

Λ∗µ(bε) > 〈θε+ rετ , bε〉 − Λµ(θε+ rετ) = Λ∗A(bε)− Λµ(θε+ rετ) + ΛA(θε+ rετ)

using Fact 2.5. Here,

ΛA(θε + rετ) = ln
[
erεsF+ΛF (θε) + erεsG+ΛG(θε)

]

and
Λµ(θε) 6 ln

[
eΛA(θε+rετ) + erεsB+ΛB(θε)

]
.

Hence, Λ∗µ(bε)− Λ∗A(bε) is at least

− ln
[

1 +
erεsB+ΛB(θε)

erεsF+ΛF (θε) + erεsG+ΛG(θε)

]
>− erε(sB−sG)+ΛB(θε)−ΛG(θε)

erε+ΛF (θε)−ΛG(θε) + 1

=− ε erε(sB−sG)+ΛB(θε)−ΛG(θε)

due to the choice of rε. By Corollary 6.11, θε converges whence e−rε is of the
order O(ε). In turn, ε erε(sB−sG) is of the order o(ε), on account of sB − sG < 0.
Therefore, a lower bound to Λ∗µ(bε) − Λ∗A(bε) is of the order o(ε). The assertion
follows by mentioning that Λ∗µ 6 Λ∗A. ¤

P r o o f o f T h e o r e m 3.1. By Lemma 6.12 and Fact 2.8, it suffices to prove
that

Λ∗A(bε) = Λ∗F (a) + h(ε) + ε
[
Ψ∗C,Ξ(xab)− Λ∗F (a)

]
+ o(ε) .

It follows from Fact 2.5, bε = (1− ε)cF,ε + εcG,ε and (10) that

Λ∗A(bε) = 〈ϑε, bε〉 − (1− ε+ ε)ΛA(ϑε)

= (1− ε)
[
〈ϑε, cF,ε〉 − ΛF (ϑε) + ln(1− ε)

]

+ ε
[
〈ϑε, cG,ε〉 − ΛG(ϑε) + ln ε

]

= h(ε) + (1− ε)Λ∗F (cF,ε) + εΛ∗G(cG,ε) .

By Lemma 6.10 and (9), the norm of cF,ε − a ∈ lin(F ) is of the order o(ε). Then,
using Fact 2.6,

Λ∗F (cF,ε) = Λ∗F (a) + 〈ψF (a), cF,ε − a〉+ o(ε)

where the scalar product equals ε 〈ψF (a), xab − cG,ε〉+ o(ε) by (9). Therefore,

Λ∗A(bε) = Λ∗F (a) + h(ε) + ε
[
Λ∗G(cG,ε) + 〈ψF (a), xab − cG,ε〉 − Λ∗F (a)

]
+ o(ε) .

This holds also when cG,ε is replaced by xab
∗ because cG,ε → xab

∗ by Lemma 6.10
and Λ∗G is continuous on G. Using Lemma 6.8, the assertion follows. ¤

P r o o f o f L e m m a 4.2. Let Pε = P + ε(R− P ). Assuming first ε > 0,

D(Pε||ν) =
∑
z∈s(R)\s(P ) εR(z) ln εR(z)

ν(z) +
∑
z∈s(P ) Pε(z) ln Pε(z)

ν(z) .
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In the second sum,

ln Pε(z)
ν(z) = ln P (z)

ν(z) + ln
[
1 + ε R(z)−P (z)

P (z)

]
= ln P (z)

ν(z) + ε R(z)−P (z)
P (z) + o(ε) .

Hence,

D(Pε||ν) = r ε ln ε + ε
∑
z∈s(R)\s(P ) R(z) ln R(z)

ν(z)

+D(P ||ν) + ε
∑
z∈s(P ) [R(z)− P (z)]

[
1 + ln P (z)

ν(z)

]
+ o(ε) .

This and

ε
∑
z∈s(P ) [R(z)− P (z)] = −r ε = r (1− ε) ln(1− ε) + o(ε)

imply the first assertion. If r = 0 the argumentation goes through also for ε 6 0,
omitting corresponding terms. ¤

P r o o f o f L e m m a 4.4. First, it is shown that there exists c ∈ C such that
tac < 1. The assumption implies a ∈ aff (C) + lin(F ). Then a = tc′ + (1− t)c′′ + b′

for some c′, c′′ ∈ C, b′ ∈ lin(F ) and t ∈ R. By Lemma 6.2, a 6∈ C+ whence t is not
between 0 and 1. Changing the roles of c′ and c′′ if necessary it is possible to assume
that t > 1. Let c = c′′. It follows that a+ t−1

t (c− a) equals c′ + 1
t b
′ which belongs

to C+. Hence, tac 6 t−1
t < 1. Obviously c = m(Qf ) for some pm Q concentrated

on Z \ f−1(F ). Then f−1(F ) ⊇ s(P ) implies Q(Z \ s(P )) = 1, and the derivative in
the direction Q− P is +∞, by Theorem 4.1. ¤
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