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A NOVEL APPROACH TO MODELLING OF FLOW
IN FRACTURED POROUS MEDIUM

Jan Šembera, Jiř́ı Maryška, Jiřina Královcová and Otto Severýn

There are many problems of groundwater flow in a disrupted rock massifs that should
be modelled using numerical models. It can be done via “standard approaches” such as
increase of the permeability of the porous medium to account the fracture system (or
double-porosity models), or discrete stochastic fracture network models. Both of these
approaches appear to have their constraints and limitations, which make them unsuitable
for the large-scale long-time hydrogeological calculations. In the article, a new approach to
the modelling of groudwater flow in fractured porous medium, which combines the above-
mentioned models, is described. This article presents the mathematical formulation and
demonstration of numerical results obtained by this new approach. The approach considers
three substantial types of objects within a structure of modelled massif important for the
groudwater flow – small stochastic fractures, large deterministic fractures, and lines of
intersection of the large fractures. The systems of stochastic fractures are represented by
blocks of porous medium with suitably set hydraulic conductivity. The large fractures are
represented as polygons placed in 3D space and their intersections are represented by lines.
Thus flow in 3D porous medium, flow in 2D and 1D fracture systems, and communication
among these three systems are modelled together.
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1. ROCK MASSIF ENVIRONMENT

Numerical modelling of the hydraulic, geochemical and transport processes in frac-
tured rock attracts the attention of many scientists more than forty years. The first
numerical models of such processes were created in late 1960’s. According to [2],
there existed more than thirty software packages claimed to solve problems of fluid
flow in fractured rock in 1994.

Despite that fact, there is a lot of open and unresolved problems in this field
of research. The reason for that lies in the nature of the problem – lack of input
data, their uncertainty and often low accuracy, high computational cost are the main
difficulties we encounter when we try to simulate processes in a fractured rock. It
is possible to avoid these difficulties usually only at a price of simplification of the
problem.
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The hydrogeological research brought following empirical knowledge about the
rock environment and groundwater flow in them:
• The rock matrix can be considered hydraulically impermeable.
• Even the most compact massifs are disrupted by numerous fractures.
• Most of the fractures are relatively small, with the characteristic length less

than one meter.
• The groundwater flow in the small fractures has significant store capacity and

play important role mainly in the transport processes.
• It is barely possible to obtain exact parameters of all the fractures, they should

be treated in statistical way.
• The most of the liquid is conducted by relatively small number of large frac-

tures. The spatial position of these fractures is usually detectable.
• The fastest groundwater flux is observed on intersections of the large fractures.

These intersections behave like “pipelines” in the compact rock massifs.
These facts lead us to the conclusion that there are in general three different objects
involved in conduction of the grounwater through a compact rock: small fractures,
large fractures and intersections of large fractures.

There are two possible approaches to the modelling of flow in environment of
small fractures: employment of the stochastic discrete fracture networks or the ho-
mogenization and replacement with porous medium. The first one is more suitable
for small problems, see [7]. On the other hand the second approach is much bet-
ter applicable for large problems. Fractured rock disrupted only by small fractures
can by relatively well homogenized and replaced by hydraulically equivalent porous
medium environment. The methods of homogenization and setting the hydraulic
parameters of the porous medium can be found for example in [1].

The large fractures are relatively well known. The discrete fracture network ap-
proach works well in this case. Then, the fractures are represented as 2D objects
(polygons) placed in 3D space.

The intersections of large fractures are relatively rare in the rock massifs, but
significant for the flow. The velocity of the flow on the intersections of fractures
can be higher in order of magnitude than velocity on the fractures. They can be
represented by 1D objects placed in 3D space. Similar way can be represented also
a possible borehole in the model.

On the base of our experience in groundwater flow modelling we decided to build
up a model that could treat all the above–mentioned objects. The model incorpo-
rates 3D blocks, considered as porous medium, 2D fractures, standing for real rock
fractures, and 1D lines, representing significant pipelines in the underground.

2. LINEAR STEADY DARCY FLOW

In general, the linear steady Darcy flow, which we expect in a considered under-
ground domain, is described by the equations

u = −K∇p, (1)
∇ · u = q , (2)
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where u is the vector of Darcy velocity of the flow, p is the hydraulic pressure, K
is the second order tensor of hydraulic conductivity (symmetric, positive definite),
and q is a function expressing the density of sources or sinks of the fluid.

The equation (1) is the Darcy’s law – the relation between pressure and water
velocity in porous medium. The equation (2) is the equation of continuity. Sources
q usually represent injection or pumping out the water from the porous medium.

The steady Darcy flow problem is governed by these two equations and it is
solved in a bounded region (1D, 2D, or 3D) with boundary conditions generally of
three sorts. For setting the problem correctly, it is necessary to prescribe a Dirichlet
boundary condition

p = pD,

which determines water pressure on one part of the boundary. On the resting part
of boundary, the Neumann boundary condition prescribing water flow through the
boundary

u · n = uN

(where n is outer boundary normal vector) or more general Newton boundary con-
dition

u · n− σN (p− pN ) = 0

can be prescribed.

3. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider three domains Ω3, Ω2 and Ω1, Ω3 ⊂ R3, Ω2 ⊂ R3, Ω1 ⊂ R3. Besides
let Ω3 be a simply connected three dimensional polyhedral domain, Ω2 be a finite
set of mutually connected polygons placed in 3D space and Ω1 be a finite set of
mutually connected line segments placed in 3D space.

Let the boundary of each domain be divided into two parts – Dirichlet part and
Neumann part: Boundary of domain Ω3: ∂Ω3 = Γ3,D∪Γ3,N , Γ3,D 6= ∅, Γ3,D∩Γ3,N =
∅. Boundary of domain Ω2: ∂Ω2 = Γ2,D ∪ Γ2,N , Γ2,D 6= ∅, Γ2,D ∩ Γ2,N = ∅ and
Boundary of domain Ω1: ∂Ω1 = Γ1,D ∪ Γ1,N , Γ1,D 6= ∅, Γ1,D ∩ Γ1,N = ∅. (∂Ω1 is a
set of discrete points).

The potential driven flow in the domain Ωi (i = 1, 2, 3) can be described by the
following system of equations:

ui = −Ki∇pi in Ωi, (3)
∇ · ui = qi + q̃〈i+1〉,i + q̃〈i+2〉,i in Ωi, (4)

pi = pi,D on Γi,D, (5)
ui · n = ui,N on Γi,N , (6)

where 〈i+ 1〉, 〈i+ 2〉 stand for (i mod 3) + 1, (i+ 1 mod 3) + 1 respectively.
The flow between two different domains is considered as a positive or negative

source of fluid q̃i,j . Its properties follow:

q̃i,j = (pi − pj)σij , i 6= j,

σij = 0 in (Ωi ∪ Ωj) \ (Ωi ∩ Ωj),
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The quantity σij stands for the permeability between domains Ωi and Ωj . σij = σji
so q̃ij = −q̃ji.

The unknowns of the problem are the values of physical quantities pi, ui
(i = 1, 2, 3) over the considered domains. The problem parameters are the do-
mains Ωi, their boundaries Γi,D and Γi,N , values of boundary conditions pi,D, ui,N
(i = 1, 2, 3), and values of material parameters Ki, σij (i, j = 1, 2, 3, i 6= j).

4. MIXED–HYBRID FORMULATION

Let us consider three domains with their boundaries as it was mentioned above. Let
us define the discretization of each domain into a set of subdomains, denote τi,h the
partition of the domain Ωi (i = 1, 2, 3), i. e.

τ3,h = {e; e ∈ Ω3,∪e∈τ3,h ē = Ω3, ei ∩ ej = ∅ for i 6= j},
τ2,h = {e; e ∈ Ω2,∪e∈τ2,h ē = Ω2, ei ∩ ej = ∅ for i 6= j},
τ1,h = {e; e ∈ Ω1,∪e∈τ1,h ē = Ω1, ei ∩ ej = ∅ for i 6= j}.

Let us denote Γi,h the sets of points on all nondirichlet faces in each domain:

Γ3,h = ∪e∈τ3,h∂e \ Γ3,D,

Γ2,h = ∪e∈τ2,h∂e \ Γ2,D,

Γ1,h = ∪e∈τ1,h∂e \ Γ1,D.

Let us emphasize the fact that no special demands for the mutual position of
subdomains of different dimensions are prescribed.

For each Ω ∈ {Ω1,Ω2,Ω3}, Γh ∈ {Γ1,h,Γ2,h,Γ3,h}, τh ∈ {τ1,h, τ2,h, τ3,h} we use
the following function spaces: The standard space of square-integrable functions
L2(Ω), the standard Sobolev space of scalar functions with square-integrable weak
derivatives H1(Ω), the space H

1
2 (Γh) of functions being trace of a function of corre-

sponding H1(Ω). For each subdomain e ∈ τh, let us denote by H(div, e) the space
of vector functions with square–integrable weak divergences and define H(div, τh)
as the space of functions from L2(Ω) whose restriction to each subdomain e ∈ τh
lies in H(div, e).

In the following expressions β denotes the inverse of K, i. e. hydraulic resistance,
fe denotes the restriction of function f on subdomain e, (f, g)e denotes the L2(e)
scalar product of f and g, i. e.

∫
e
fg dx, and 〈f, g〉∂e denotes the integral form∫

∂e
fg dx.
Let u3 ∈ C1(Ω3) (a vector function with continuous derivatives of the first order)

and p3 ∈ C(Ω3) (a continuous scalar function) fulfill the equations (3) – (6). Con-
sidering a particular subdomain e ∈ τ3,h, the following equations obviously hold:

βe3u
e
3 +∇pe3 = 0,

∇ · ue3 − q̃e23 − q̃e13 = qe3.

Multiplying the first equation by any test function v3 ∈H(div, τ3,h) and the second
one by another test function φ3 ∈ L2(Ω3) and integrating over e we obtain

(βe3u
e
3,v

e
3)e + (∇pe3,ve3)e = 0,

(∇ · ue3, φe3)e − ((pe2 − pe3)σe23, φ
e
3)e − ((pe1 − pe3)σe13, φ

e
3)e = (qe3, φ

e
3)e .
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Let us denote ψe3 the restriction of continuous function pe3 to ∂e. Applying the
Green’s formula the equalities can be read as

(βe3u
e
3,v

e
3)e − (pe3,∇ · ve3)e + 〈ψe3,ve3 · ne〉∂e = 0,

(∇ · ue3, φe3)e − ((pe2 − pe3)σe23, φ
e
3)e − ((pe1 − pe3)σe13, φ

e
3)e = (qe3, φ

e
3)e ,

where ne stands for outer normal of ∂e.
Summing the above equalities over all subdomains of τ3,h we get

∑

e∈τ3,h
{(βe3ue3,ve3)e − (pe3,∇ · ve3)e + 〈ψe3,ve3 · ne〉∂e} = 0

∑

e∈τ3,h
{(∇ · ue3, φe3)e − ((pe2 − pe3)σe23, φ

e
3)e − ((pe1 − pe3)σe13, φ

e
3)e} =

∑

e∈τ3,h
(qe3, φ

e
3)e.

Extra equations expressing the continuity of u3 on internal faces between neighbour-
ing subdomains of τ3,h have to hold, too. The continuity on the face iterconnecting
subdomains ek and el can be written down as

uek3 · nek + uel3 · nel = 0.

Let us test the equation by any function µ3 ∈ H
1
2 (Γ3,h) and sum over all internal

faces of partition τ3,h:
∑

e∈τ3,h
〈ue3 · ne, µe3〉∂e∩(Γ3,h\Γ3,N ) = 0.

Changing the sign of the balance equation and introducing the boundary conditions,
the following system of integral equations on partition τ3,h can be derived:

∑

e∈τ3,h

{
(βe3u

e
3,v

e
3)e − (pe3,∇ · ve3)e + 〈ψe3,ve3 · ne〉∂e∩Γ3,h

}

= −
∑

e∈τ3,h
〈p3,D,v

e
3 · ne〉∂e∩Γ3,D , (7)

∑

e∈τ3,h
{−(∇ · ue3, φe3)e + ((pe23 − pe3)σe23, φ

e
3)e + ((pe13 − pe3)σe13, φ

e
3)e}

= −
∑

e∈τ3,h
(qe3, φ

e
3)e, (8)

∑

e∈τ3,h
〈ue3 · ne, µe3〉∂e∩Γ3,h =

∑

e∈τ3,h
〈ue3,N , µe3〉∂e∩Γ3,N . (9)

The same way can be derived the system of integral equations on partitions τ2,h
and τ1,h:

∑

e∈τ2,h

{
(βe2u

e
2,v

e
2)e − (pe2,∇ · ve2)e + 〈ψe2,ve2 · ne〉∂e∩Γ2,h

}
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= −
∑

e∈τ2,h
〈p2,D,v

e
2 · ne〉∂e∩Γ2,D , (10)

∑

e∈τ2,h
{−(∇ · ue2, φe2)e + ((pe32 − pe2)σe32, φ

e
2)e + ((pe12 − pe2)σe12, φ

e
2)e}

= −
∑

e∈τ2,h
(qe2, φ

e
2)e, (11)

∑

e∈τ2,h
〈ue2 · ne, µe2〉∂e∩Γ2,h =

∑

e∈τ2,h
〈ue2,N , µe2〉∂e∩Γ2,N , (12)

∑

e∈τ1,h

{
(βe1u

e
1, v

e
1)e − (pe1, v

e
1
′)e + 〈ψe1, ve1 · ne〉∂e∩Γ1,h

}

= −
∑

e∈τ1,h
〈p1,D, v

e
1 · ne〉∂e∩Γ1,D , (13)

∑

e∈τ1,h

{
−(ue1

′, φe1)e + ((pe31 − pe1)σe31, φ
e
1)e + ((pe21 − pe1)σe21, φ

e
1)e

}

= −
∑

e∈τ1,h
(qe1, φ

e
1)e, (14)

∑

e∈τ1,h
〈ue1 · ne, µe1〉∂e∩Γ1,h =

∑

e∈τ1,h
〈ue1,N , µe1〉∂e∩Γ1,N , (15)

where ′ means the first derivative and ne is outer normal in 1D, i. e. either +1 or −1.
In the equations (8), (11), (14) the functions pejij for ej ∈ τj,h, i 6= j, i, j ∈ {1, 2, 3}

stand for ∑

ei∈τi,h
p
ei,ej
ij , (16)

where pei,ejij are any functions fulfilling the following conditions:

for i < j : p
ei,ej
ij ∈ L2(ej) :

∫

ej

p
ei,ej
ij dx =

∫

ei∩ej
pi dx, (17)

for i > j : pei,ejij ∈ L2(ei ∩ ej) :
∫

ei∩ej
p
ei,ej
ij dx =

|ei ∩ ej |j
|ei|i

∫

ei

pi dx, (18)

where |e|i means the i-dimensional measure of e.
Next introduce the function space (Z):

Z = H(div, τ3,h)×H(div, τ2,h)×H(div, τ1,h)

×L2(τ3,h)× L2(τ2,h)× L2(τ1,h)×H 1
2 (Γ3,h)×H 1

2 (Γ2,h)×H 1
2 (Γ2,h).

Definition 1. We call the function

z̄ = (u3,u2,u1, p3, p2, p1, ψ3, ψ2, ψ1) ∈ Z
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the weak solution of mixed hybrid formulation of the problem of flow in fracture
porous medium, if for all functions

z = (v3,v2,v1, ϕ3, ϕ2, ϕ1, µ3, µ2, µ1) ∈ Z

z̄ satisfies the equations (7) – (15).

5. FINITE ELEMENT APPROXIMATION

We are using the same approximation as [5]. Let τ3,h be a partition of Ω3 into
simplex elements, τ2,h be a partition of Ω2 into triangle elements and τ1,h be a
partition of Ω1 into line elements.

For the approximation of function spacesH(div, τi,h) we use the Raviart–Thomas
spaces of piecewise linear functions RT0

−1(τi,h) = {f ∈ L2(Ωi)|(∀e ∈ τi,h)(fe ∈
RT0(e))} (i = 1, 2, 3). The local Raviart–Thomas spaces RT0(e) are defined in
each dimension a different way:

• in 3D (for e ∈ τ3,h): RT0(e) = span{ve3,i|i ∈ {1, 2, 3, 4}}, where

ve3i(x) = k




x− α
y − β
z − γ


 ,

parameters k, α, β, and γ are chosen so that
∫

fe3j

v3i · n3j = δij , i, j ∈ {1, 2, 3, 4},

where fe3j (j = 1, 2, 3, 4) are individual faces of the tetrahedron e, n3j is the
outward normal vector of the face fe3j and δij is the Kronecker symbol.

• in 2D (for e ∈ τ2,h): RT0(e) = span{ve2,i|i ∈ {1, 2, 3}}, where

ve2i(x) = k

(
x− α
y − β

)
,

parameters k, α, and β are chosen so that
∫

fe2j

v2i · n2j = δij , i, j ∈ {1, 2, 3},

where fe2j (j = 1, 2, 3) are individual edges of the triangle e and n2j is the
outward normal vector of the edge fe2j .

• in 1D (for e ∈ τ1,h): RT0(e) = P1(e) (the space of all linear function on e).

For the approximation of function spaces L2(τi,h) we use the multiplicator spaces
of piecewise constant functions M0

−1(τi,h) = span{φe|e ∈ τi,h} (i = 1, 2, 3), where
φe(x) = 1 for x ∈ e and φe(x) = 0 otherwise.
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For the approximation of function spacesH
1
2 (Γi,h) we use the multiplicator spaces

of piecewise constant functions M0
−1(Γi,h) = span{Ψf |f ∈ Γi,h} (i = 1, 2, 3), where

Ψf (x) = 1 for x ∈ f and Ψf (x) = 0 otherwise.
For more details about the approximation function spaces, see e. g. [3].
Let us define the approximation space

Z̃ = RT0
−1(τ3,h)×RT0

−1(τ2,h)×RT0
−1(τ1,h)

×M0
−1(τ3,h)×M0

−1(τ2,h)×M0
−1(τ1,h)×M0

−1(Γ3,h)×M0
−1(Γ2,h)×M0

−1(Γ1,h)

and approximate the function z̄ = (u3,u2,u1, p3, p2, p1, ψ3, ψ2, ψ1) ∈ Z and test
function z = (v3,v2,v1, φ3, φ2, φ1, µ3, µ2, µ1) ∈ Z by the functions ˜̄z = (ũ3, ũ2, ũ1,
p̃3, p̃2, p̃1, ψ̃3, ψ̃2, ψ̃1) ∈ Z̃ and z̃ = (ṽ3, ṽ2, ṽ1, φ̃3, φ̃2, φ̃1, µ̃3, µ̃2, µ̃1) ∈ Z̃ respectively.

Formal evaluating the equations (7) – (15) for the proposed function and test
function approximations leads to the following system:

∑

e∈τi,h

{
(βei ũ

e
i , ṽ

e
i )e − (p̃ei ,∇ · ṽei )e + 〈ψ̃ei , ṽei · ne〉∂e∩Γi,h

}

= −
∑

e∈τi,h
〈pi,D, ṽei · ne〉∂e∩Γi,D , (19)

∑

e∈τi,h

{
−(∇ · ũei , φ̃ei )e + ((p̃e〈i+1〉,i − p̃ei )σe〈i+1〉,i, φ̃

e
i )e

+((p̃e〈i+2〉,i − p̃ei )σe〈i+2〉,i, φ̃
e
i )e

}
= −

∑

e∈τi,h
(qei , φ̃

e
i )e, (20)

∑

e∈τi,h
〈ũei · ne, µ̃ei 〉∂e∩Γi,h =

∑

e∈τi,h
〈uei,N , µ̃ei 〉∂e∩Γi,N . (21)

Here the meaning of p̃ei+1,i and p̃ei+2,i is analogical to (16) – (18) considering shortened
notation of (i mod 3) + 1 as 〈i+ 1〉 and (i+ 1 mod 3) + 1 as 〈i+ 2〉.

Definition 2. We call the function ˜̄z = (ũ3, ũ2, ũ1, p̃3, p̃2, p̃1, ψ̃3, ψ̃2, ψ̃1) ∈ Z̃ the
mixed-hybrid finite element approximation of the weak solution of the problem of
flow in fracture porous medium, if for all functions z̃=(ṽ3, ṽ2, ṽ1, φ̃3, φ̃2, φ̃1, µ̃3, µ̃2, µ̃1)
∈ Z̃ the the equations (19) – (21) hold for i ∈ {1, 2, 3}.

Let us use the following notation for the partial functions of ˜̄z (i = 1, 2, 3):

ũi =
∑

e∈τi,h

∑

j∈Ii
V eijv

e
3j , I1 = {1, 2}, I2 = {1, 2, 3}, I3 = {1, 2, 3, 4},

p̃i =
∑

e∈τi,h
P ei φ

e, ψ̃i =
∑

f∈Γi,h

µfi Ψf

Obviously, it is sufficient to evaluate the equations (19) – (21) only for all test func-
tions chosen from the basis of Z̃, i. e. for the following sets (i = 1, 2, 3):

ṽi ∈ {veij |e ∈ τi,h, j ∈ Ii}, φ̃i ∈ {φe|e ∈ τi,h}, µ̃i ∈ {Ψf |f ∈ Γi,h}



A Novel Approach to Modelling of Flow in Fractured Porous Medium 585

Let us order the elements of τi,h and faces of Γi,h and align the unknown coefficients
into vectors the following way (i = 1, 2, 3):

V i = (V e1i1 , V
e1
i2 , V

e1
i3 , V

e1
i4 , V

e2
i1 , . . . )

T ,

P i = (P e1i , P e2i , P e3i , . . . )T ,

Ψi = (µf1
i , µ

f2
i , µ

f3
i , . . . )

T .

The system (19) – (21) then converts to the following system of linear algebraic
equations:

Å3V 3 +B3P 3 +C3Ψ3 = q3D

Å2V 2 +B2P 2 +C2Ψ2 = q2D

Å1V 1 +B1P 1 +C1Ψ1 = q1D

BT
3 V 3 +D3P 3 +D32P 2 +D31P 1 = q3E

BT
2 V 2 +DT

32P 3 +D2P 2 +D21P 1 = q2E

BT
3 V 1 +DT

31P 3 +DT
21P 2 +D1P 1 = q1E

CT
3 V 3 = q3N

CT
2 V 2 = q2N

CT
1 V 1 = q1N

,

The resulting system matrix is symmetric, sparse of characteristic internal struc-
ture, indefinite. The blocks Åi are positive definite. The properties enable to use
specialized solvers of linear equation systems (see [6]) to make the process of solving
more effective.

The well-posedness and convergence of the method to the weak solution was
studied for partial problems in [4] (only 3D problem) and [8] (only 2D fractures in
3D). The complete 1D-2D-3D problem as set here was not theoretically studied, yet.

6. NUMERICAL EXAMPLE

The proposed approach to modelling of flow in fractured medium was implemented
and a simple test problem was set up to see the effect of inclusion of fractures into
porous medium model. Two hydraulically equivalent models of one small area were
built. The first one is a model of the polygonal area with two intersecting fractures.
The shape of the area and position of the fractures can be seen at Figure 1. The
dimensions in plan-view are about 10×10 km, the depth is 900 m. The area is slightly
slanted in y-axes direction – the vertical distance is 50 m. The area is composed
of five geological layers. The upper one is 100 m deep, the depth of each of the
other ones is 200 m. The permeability of each layer is homogeneous and isotropic.
The values of layers’ permeability are from top to bottom respectively 100, 10, 50,
0.001, and 0.5 m/day. The permeability of fractures is homogeneous and isotropic,
its value is 3*105 m/day. The inter-dimensional permeability σ23 was set equal to 1
in whole fracture system.

The boundary conditions on upper and lower parts of the boundary of both the
3D area and the 2D fracture system, such as at the left and right parts (in view of
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Fig. 1. The area and mesh of the test problems.

Figure 1), are homogeneous Neumann ones (meaning no flow through the boundary).
On the front and back parts of the boundary, there the Dirichlet conditions are
prescribed. The value of pressure there is prescribed due to z-coordinate so that the
flow is induced just by the slope of the layers.

The second test problem is the same area without fractures, the permeability of
the porous medium is higher so that at the same boundary conditions the inflow and
outflow from the area are the same as in the first problem. The boundary conditions
are the same.

Both computations were made on the mesh pictured at Figure 1 with 2271 tetra-
hedral elements. The fracture in the first problem was represented by 150 triangle
mesh.

The resulting flow fields are noticeably different from each other. The flow
through the fractured area (see Figure 2) is concentrated to the fracture. Almost
no water flows elsewhere. It is not surprising since the permeability of fracture is 3
orders higher than permeability of porous medium. The flow field through purely
porous medium area (see Figure 3) is very different, flow is distributed much more
evenly in the whole area.

The difference in flow fields projects into dissolved species transport so that the
propagation of contamination can be extremely overestimated or underestimated
depending on the contamination source placement near or far from a fracture. This
result demonstrates that if it is possible, the fractures in the modelled rock should
be well localized and taken into account in modelling.
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Fig. 2. Visualization of the computed flow field for the problem including fractures.

Fig. 3. Visualization of the computed flow field for the problem without fractures.
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7. CONCLUSIONS

The presented formulation of water flow is based on connection of 1D, 2D, and 3D
porous medium systems via the source terms only. It allows to construct meshes of
the three systems independently on each other. It can save number of elements of
constructed meshes, which saves computational time and allows to model large-scale
real-world problems with less computational costs.

Actually, the model based on this formulation was implemented and it is a subject
of testing at the time. The results of small-scale tests show qualitatively good
behaviour of the model. The most recent open questions are the identification of σij
parameters in real problems and behaviour of the model in a large scale.
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