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In this paper are presented two robust estimators of unknown fuzzy parameters in the
fuzzy regression model and investigated the relationship between these robust estimators
in the classical regression model and in the fuzzy regression model.
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1. ROBUST ESTIMATIONS IN CLASSICAL REGRESSION MODELS

The classical regression model (linear in parameters) is studied in the form

y = a1f1(x) + a2f2(x) + · · ·+ amfm(x)

where fi(x) are known functions of the input variable x (predictor), y is an output
variable (response) and a = (a1, a2, . . . , am)T is the vector of unknown parameters.
The observed value

yi = a1f1(xi) + a2f2(xi) + · · ·+ amfm(xi) + ei

measured in the point xi with the error ei (i = 1, 2, . . . , n) is a random variable
with some probability distribution (the most frequently normal distribution). The
uncertainty of the value yi (i = 1, 2, . . . , n) is expressed by a probability distribution
or at least by the expectation

E(yi) = a1f1(xi) + a2f2(xi) + · · ·+ amfm(xi)

(E(ei) = 0) and the variance

Var (yi) = Var (ei) = σ2
i .

Practically all types of estimators of the vector of unknown parameters a =
(a1, a2, . . . , am)T in the classical regression model are functions of residuals ri (dis-
tances between observed values yi and estimated values est yi; i = 1, 2, . . . , n)

ri = yi − est yi
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The most known robust estimators of the vector of unknown parameters a =
(a1, a2, . . . , am)T in the studied model are M estimator and LTS estimator.

M estimator (generalization of Maximum likelihood estimator)

estMa = arg min
a∈Rm

n∑

i=1

ρ(ri)

minimizes the sum of the function values of the residuals ri = yi− est yi of the even
function ρ. If the function ρ(x) = x2, the M estimator defined above, is equal to
the classical least square estimator. There are a lot of possibilities to choose the
function ρ. This function is usually chosen like that it increased to infinity (minus
infinity) more slowly than the function ρ(x) = x2 (see [2, 3]).

Least trimmed squares (LTS) estimator

estLTSa = arg min
a∈Rm

k∑

i=1

r2
(i)

minimizes the sum of squares of k smallest residuals r(i). The residuals in the sum
are ordered r2

(1) 5 r2
(2) 5 r2

(i) · · · r2
(k) · · · 5 r2

(n) and the number of the residuals
k ∈ [n/2, n].

Application of these robust estimators is suitable, when the assumptions of the
classical regression model are not fully satisfied (e. g. independence of observations,
normality of measurement errors, outliers, etc.).

Both these robust estimators are asymptotically unbiased and normally dis-
tributed under the conditions of regularity ([2, 3]). Other statistical properties of
these estimators can be expressed, for example, by the breakdown point ε? ([5, 7]).
If k = [n/2]+[(m+1)/2] in the least trimmed square estimator, then the breakdown
point ε? = 0.5.

2. ROBUST ESTIMATIONS IN FUZZY REGRESSION MODELS

Very natural generalization of the classical regression model is the fuzzy regression
model studied in the form

Y = A1f1(x) +A2f2(x) + · · ·+Amfm(x)

where the input variable x (predictor) is a crisp (real) variable, fi(x) (i = 1, 2, . . . ,m)
are known real functions of the variable x, Y is an output fuzzy variable (response)
and A = (A1, A2, . . . , Am)T is the vector of unknown fuzzy parameters ([8, 9]). It is
easy to see that if the fuzzy numbers Y , Ai (i = 1, 2, . . . ,m) are crisp (real number
is a special case of fuzzy number), then the fuzzy regression model is equal to the
classical regression model.

The uncertainty of an observation Yi in the point xi (i = 1, 2, . . . , n) is ex-
pressed by a membership function µYi of the fuzzy number Yi. We do not have
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any probability distribution, any expectation and any variance of the observed value
Yi (i = 1, 2, . . . , n).

The principle question is how to estimate the vector of unknown fuzzy parameters
in the fuzzy regression model and how to define a quality of the estimator. One
eventuality could be to generalize not only model, but to generalize the estimators
defined in the classical regression model to the estimators in the fuzzy regression
model too. What does it mean? It means that, for example,

estLTSA = estLTS(A1, A2, . . . , Am)T

is the least trimmed squares estimator of the vector of unknown fuzzy parameters
in the fuzzy regression model, if it is equal to the least trimmed squares estimator
in the classical regression model

estLTSa = estLTS(a1, a2, . . . , am)T = arg min
a∈Rm

k∑

i=1

r2
(i)

in the case that the observation Yi (i = 1, 2, . . . , n) in the fuzzy regression model is
a crisp (real) number, a special case of fuzzy number with the membership function

µYi(x) =
{

1, x = Yi
0, x 6= Yi.

Because the difference of two fuzzy numbers is a fuzzy number, we will not min-
imize a sum of squares of differences Yi − estYi between observed and estimated
fuzzy values, but distances between them that can be defined as crisp numbers.

The most commonly used in practice are symmetric triangular fuzzy numbers

A = 〈a, s〉
where a is a center and s a spread of the fuzzy number A. This fuzzy number is
about a. Its membership function is

µA(x) =

{
1− |x−a|s , a− s ≤ x ≤ a+ s

0, otherwise.

For addition of two fuzzy numbers A = 〈a, s1〉, B = 〈b, s2〉, we can use

A+B =
〈
a+ b, w

√
sw1 + sw2

〉

and for multiplication of the fuzzy number A = 〈a, s1〉 with the real number k

kA =
〈
ka, w

√
|k|s1

〉

where the parameter w ∈ [1,∞] . We have the set of arithmetic, but the most
interesting are the limit situations. For w = 1

A+B = 〈a+ b, s1 + s2〉, kA = 〈ka, |k|s1〉,



506 Š. VARGA

and for w =∞
A+B = 〈a+ b,max{s1, s2}〉, kA = 〈ka, s1〉.

The distance of two fuzzy numbers that is a real number and that is a general-
ization of the Euclidean distance of two real numbers is the Diamond distance (see
[1]) defined for two fuzzy numbers A = 〈a, s1〉, B = 〈b, s2〉, by the formula

d2(A,B) = (a− b)2 +
2
3

(s1 − s2)2.

Now when we have defined arithmetic and distance for fuzzy numbers we can
specify the studied fuzzy regression model and define robust estimators for unknown
fuzzy parameters.

The studied fuzzy regression model is

Y = A1f1(x) +A2f2(x) + · · ·+Amfm(x)

where the input variable x (predictor) is a crisp variable, fi(x) (i = 1, 2, . . . ,m) are
known real functions of the variable x, Y is an output fuzzy variable (response),
the observation Yi (i = 1, 2, . . . , n) is a symmetric triangular fuzzy number (yi is a
center and zi is a spread)

Yi = 〈yi, zi〉
(yi ∈ R, zi ∈ R+) and A = (A1, A2, . . . , Am)T is the vector of unknown symmetric
triangular fuzzy parameters

Ai = 〈ai, si〉
(ai ∈ R, si ∈ R+).

To estimate the vector of unknown fuzzy parameters A = (A1, A2, . . . , Am)T

means, to estimate the vector of all centers a = (a1, a2, . . . , am)T and the vector of
all spreads s = (s1, s2, . . . , sm)T of the parameters.

Definition 1. M estimator of the vector of unknown fuzzy parametersA = (A1, A2,
. . . , Am)T in the fuzzy regression model is

estMA = estM (A1, A2, . . . , Am)T = arg min
a∈Rm, s∈Rm+

k∑

i=1

ρ(di)

where di is the Diamond distance of the fuzzy numbers Yi and estYi (i = 1, 2, . . . , n)

d2
i = d2(Yi, estYi).

The choice of the function ρ is the same as in the classical regression model ([2, 3]).

Definition 2. Least trimmed squares estimator of the vector of unknown fuzzy
parameters A = (A1, A2, . . . , Am)T in the fuzzy regression model is

estLTSA = estLTS(A1, A2, . . . , Am)T = argmin
a∈Rm, s∈Rm+

k∑

i=1

d2
(i)
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where the distances between observed and estimated values are ordered

d2
(1) 5 d2

(2) 5 · · · 5 d2
(k) 5 · · · 5 d2

(n)

and k ∈ [n/2, n].

Theorem 1. The M estimator of the vector of the centers a and the vector of the
spreads s of the unknown fuzzy parameters in the fuzzy regression model is

estM (a, s) = estM (a1, . . . , am, s1, . . . , sm)T

= argmin
a∈Rm, s∈Rm+

n∑

i=1

ρ

(√
(yi − aT fi)2 +

2
3

(
zi − w

√
sw|fi|

)2
)

where new elements in the formula are two column vectors fi = (f1(xi), . . . , fm(xi))
T
,

|fi| = (|f1(xi)|, . . . , |fm(xi)|)T and one row vector sw = (sw1 , . . . , s
w
m).

P r o o f . It is enough to prove that the Diamond distance of the observed value
Yi and the estimated value estYi in the definition 1 is

di = d(Yi, estYi) =

√
(yi − aT fi)2 +

2
3

(
zi − w

√
sw|fi|

)2

.

The observation Yi = 〈yi, zi〉 but what is the fuzzy number estYi? Using arith-
metic presented in this paper we have

estYi = 〈a1, s1〉 · f1(xi) + · · ·+ 〈am, sm〉 · fm(xi)

estYi =
〈
a1f1(xi) + · · ·+ amfm(xi), w

√
sw1 |f1(xi)|+ · · ·+ swm|fm(xi)|

〉

estYi = 〈aT fi, w
√
sw|fi|〉

and the square of the distance of the fuzzy numbers Yi = 〈yi, zi〉 and estYi is

d2
i = d2(Yi, estYi) = (yi − aT fi)2 +

2
3

(
zi − w

√
sw|fi|

)2

.

Theorem 2. The least trimmed squares estimator of the vector of the centers a and
the vector of the spreads s of the unknown fuzzy parameters A = (A1, A2, . . . , Am)T

in the fuzzy regression model is

estLTS(a, s) = estLTS(a1, . . . , am, s1, . . . , sm)T

= argmin
a∈Rm, s∈Rm+

k∑

i=1

(
(yi − aT fi)2 +

2
3

(
zi − w

√
sw|fi|

)2
)

(i)

where k ∈ [n/2, n] is a number of the least distances between observed and fitted
values of the fuzzy variable Y that their sum is minimized.

The p r o o f of Theorem 2 is a simple modification of the proof of Theorem 1.
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Theorem 3. If the observations Yi = 〈yi, zi〉; (i = 1, 2, . . . , n) in the fuzzy regres-
sion model are crisp (zi = 0; i = 1, 2, . . . , n) then two estimators of the unknown
fuzzy parameters presented in Theorems 1, 2 are crisp too and equal to the analogous
estimators in the classical regression model.

P r o o f . The spreads of all observations zi = 0; (i = 1, 2, . . . , n) and therefore

k∑

i=1

d2
(i) = min

if all elements of the vector sw = (sw1 , . . . , s
w
m) are zero. It means that si = 0

(i = 1, 2, . . . ,m) thus the fuzzy parameters Ai = 〈ai, 0〉 are crisp (i = 1, 2, . . . ,m)
and

k∑

i=1

d2
(i) =

k∑

i=1

(
yi − aT fi

)2

(i)
=

k∑

i=1

[yi − (a1f1(xi) + · · ·+ amfm(xi))]
2
(i) =

k∑

i=1

r2
(i)

that is the formula for the least trimmed square estimator in the classical regression
model.

The p r o o f for the M estimator is analogous.
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[1] A. Bárdossy and L. Duckstein: Fuzzy Rule? Based Modeling with Applications to
Geophysical, Biological and Engrg. Systems. CRC Press, Boca Raton 1995.

[2] P. J. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964),
73–101.

[3] P. J. Huber: Robust Statistics. Wiley, New York 1981.
[4] G. J. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic – Theory and Applications.

Prentice Hall PTR, Upper Saddle River, NJ 1995.
[5] P. J. Rousseeuw: Least median of squares regression. J. Amer. Statist. Assoc. 79

(1984), 871–880.
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